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Abstract

An autosomal dominant missense mutation in aB-crystallin (aB-R120G) causes cataracts and desmin-related myopathy, but
the underlying mechanisms are unknown. Here, we report the development of an aB-R120G crystallin knock-in mouse
model of these disorders. Knock-in aB-R120G mice were generated and analyzed with slit lamp imaging, gel permeation
chromatography, immunofluorescence, immunoprecipitation, histology, and muscle strength assays. Wild-type, age-
matched mice were used as controls for all studies. Both heterozygous and homozygous mutant mice developed myopathy.
Moreover, homozygous mutant mice were significantly weaker than wild-type control littermates at 6 months of age.
Cataract severity increased with age and mutant gene dosage. The total mass, precipitation, and interaction with the
intermediate filament protein vimentin, as well as light scattering of aB-crystallin, also increased in mutant lenses. In skeletal
muscle, aB-R120G co-aggregated with desmin, became detergent insoluble, and was ubiquitinated in heterozygous and
homozygous mutant mice. These data suggest that the cataract and myopathy pathologies in aB-R120G knock-in mice
share common mechanisms, including increased insolubility of aB-crystallin and co-aggregation of aB-crystallin with
intermediate filament proteins. These knock-in aB-R120G mice are a valuable model of the developmental and molecular
biological mechanisms that underlie the pathophysiology of human hereditary cataracts and myopathy.
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Introduction

aB-Crystallin is a member of the small heat-shock protein

family, which consists of 10 proteins in humans [1]. The aB-

crystallin protein has a subunit mass of 20 kDa but forms

molecular aggregates with a mass of approximately 650 kDa [2].

It is abundantly expressed in the eye lens fiber cells, where it is

associated with the closely related protein aA-crystallin [3], and is

also constitutively expressed at significant levels in heart and

skeletal muscle and lens epithelial cells [4–6]. aB-crystallin is a

functional chaperone protein that can bind to denatured substrate

proteins, thereby preventing their non-specific aggregation [5]. It

is upregulated in several pathologic conditions where, as a

molecular chaperone, it is thought to provide a first line of

defense against misfolded or aggregation-prone proteins [7]. aB-

crystallin has received significant attention in recent years because

it has been linked to muscle and neurological disorders, as well as

immunity and cancer [8–13]. However, how aB-crystallin

contributes to these pathologies is not clearly understood.

Hereditary cataracts exhibit diverse etiology and morphology

[14]. Cataracts may be inherited by an autosomal recessive,

autosomal dominant, or X-linked mechanism [15]. Cataracts

caused by missense mutations in crystallin genes are most

commonly autosomal dominant disorders [16]. Understanding

the pathophysiology of hereditary cataracts can yield insight into

the mechanisms of cataractogenesis in general [17]. However, the

relationships between cataract etiology, lens morphology, and the

underlying molecular mechanisms that control lens structure and

function are currently unclear [16–18].

Numerous crystallin gene mutations have been reported to be

associated with hereditary cataracts [12,19–21]. Mutations in the

aB-crystallin gene cause either isolated cataracts or cataracts

associated with myopathy. For example, the aB-crystallin

mutation R120G is associated with cataracts and desmin-related

myopathy (DRM), a disorder of the skeletal muscle [12]. In

contrast, aB-crystallin Q151X and 464delCT mutations are linked

to DRM, but not to cataracts [22]. In addition, the aB-crystallin

R157H mutation has been linked to cardiomyopathy [23], while

the P20S, D140N, and 450delA mutations are associated with

hereditary human cataracts [24–26]. While the characterization of

the effects of most aB-crystallin mutations is limited, the effects of

the R120G mutation on protein structure and chaperone activity
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have been extensively investigated [27–30]. Both in vitro studies of

recombinant mutant aB-crystallin and transgenic models express-

ing the mutant protein in vivo have contributed to our

understanding of the effect of this mutation on protein function

[27,31–33]. Using in vitro recombinant substrate proteins,

chaperone assays have indicated that aB-R120G reduces or

abolishes chaperone function, becomes unstable and prone to

aggregation and insolubilization with time, and exists as a large

oligomer with a molecular mass twice that of wild-type aB-

crystallin [31,34]. The loss of chaperone function leads to

aggregation of intermediate filament proteins with the mutant

aB-crystallin and the formation of inclusion bodies in cells [31].

Patients harboring the aB-R120G mutation experience symp-

toms of muscle weakness, cardiomyopathy, and cataracts. The

autosomal dominant ARG mutation in codon 120 of exon 3 of

CRYAB leads to substitution of arginine to glycine [12]. The

arginine residue at position 120 in the aB-crystallin amino acid

sequence is highly conserved and has been shown to be essential

for the quaternary structure and functional integrity of human aB-

crystallin [27]. This residue lies in the C-terminal region that is

crucial for the solubilization and chaperone functions of aB-

crystallin [27]. Mutation of this residue causes a loss of the

chaperone activity of aB-crystallin in vitro, promotes interaction

between the mutant protein and the type III intermediate filament

protein desmin [28], and is associated with adult onset myopathy

and accumulation of desmin in humans [12]. Interestingly, aB-

crystallin/HSPB2 gene knockout mice exhibit myopathy but do

not develop cataracts [8].

Several mechanisms have been proposed to explain DRM

disease etiology, including altered protein processing [35,36] and

the loss of aB-crystallin chaperone function [27]. An alternative

mechanism involves alteration of the binding between aB-

crystallin and desmin filaments. The R120G mutation enhances

the binding capacity of aB-crystallin for desmin and decreases

their dissociation constant. The desmin aggregates that are

characteristic of the disease histopathology might result from

direct alterations of the interaction of aB-R120G with desmin

filaments [28]. The loss of aB-crystallin function may also decrease

cell viability because aB-crystallin negatively regulates apoptosis

by inhibiting caspase 3 activation [37]. Additionally, aB-crystallin

has been shown to inhibit cytochrome c- and caspase 8-dependent

autoproteolytic maturation and activation of caspase 3 [38].

Furthermore, aB-crystallin inhibits Ras-induced apoptosis [39].

While aB-crystallin is known to function in these protein

processing, chaperone, and apoptosis pathways in vitro, whether

these pathways are involved in the development or progression of

myopathy and cataracts remains unclear.

Currently, no in vivo model exists to explore the effect of the

R120G mutation in lenses or skeletal muscle. Furthermore, no

photographic or digital image documentation of human cataracts

caused by the R120G mutation is available. To explore how lens

opacities develop over time and to examine the spatial localization

of the opacities, we generated heterozygous knock-in mice carrying

the R120G mutation. The advantage of the knock-in approach is

that the effects of the mutation can be studied in every cell under the

control of the endogenous promoter, making it possible to analyze

the phenotype in the mouse lens and determine whether it mimics

human disease [40–42]. Additionally, the creation of homozygous

mutant mice by interbreeding allows the phenotypic comparison of

heterozygous and homozygous mice and the study of gene-dosage

effects of the mutation. The results of our study show that the

R120G mutation causes cataracts at a young age, and some mice

also develop corneal opacity and small eye/lens phenotypes. The

knock-in mutant lenses exhibited aberrant morphology, crystallin

aggregation, and altered protein-protein interactions between aB-

crystallin and the intermediate filament protein vimentin. We also

demonstrated that the R120G knock-in mice develop myopathy,

weakness, loss of aB-crystallin solubility, and an increase in desmin-

aB-crystallin aggregates in muscle tissue. Thus, the aB-crystallin

R120G knock-in mouse model recapitulates the key symptoms of

human hereditary myopathy and cataract disease pathology.

Results

Generation of aB-R120G mutant knock-in mice
To investigate the effect of the aB-R120G mutation in mice, we

generated aB-R120G knock-in alleles (Fig. 1A–D). Germline

heterozygous alleles were generated by crossing founder mice

carrying the R120G mutation on one allele with C57BL6 mice.

Polymerase chain reaction (PCR) genotyping of litters generated

from crosses of heterozygotes resulted in the expected amplifica-

tion products (Fig. 1D). The aB-R120G knock-in mice bred

normally and produced offspring in the anticipated Mendelian

ratio, indicating that the mutation was not embryonic lethal. aB-

R120G heterozygous and homozygous mice were viable and

exhibited no obvious phenotype at birth. Lens opacities according

to age and genotype are shown in Fig. 2A–C and Table 1. aB-

R120G mice displayed a complex ocular phenotype when

examined by slit lamp biomicroscopy. Of the heterozygous mutant

mice (n = 37), 84% had lens opacities, with the stage of cataract

increasing with age (Table 1). Cataract stage increased from

1.460.6 at 3–8 weeks to 2.660.8 at 40–56 weeks (p,0.0001)

(Tables 1 and 2). Wild-type mice displayed a low-grade haze or

opacity (stage 0–0.5) up to 20 weeks, and stage 1 opacities at .40

weeks manifested as a ring in the center of the lens. In contrast,

homozygous mutant mice had cataract stages of 1.260.9 (3–8

weeks), 2.660.9 (12–20 weeks), and 3.261.2 (40–56 weeks;

p = 0.005, 3–8 weeks versus 40–56 weeks). The cataract stage

increased with gene dosage at 12–20 weeks for heterozygous and

homozygous mutants (1.761.0 and 2.660.5, respectively;

p = 0.02). However, the percent of mice with cataracts did not

increase with gene dosage. Wild-type mice (n = 21) did not have

small eyes or corneal abnormalities. In contrast, at all ages

combined, 22% and 21% of heterozygous and homozygous mice,

respectively, had small eyes (Fig. 2A–C). The small eye phenotype

was not gene dosage-related. Additionally, corneal abnormalities

and small eyes were not bilateral (Fig. 2B). Wild-type mice (n = 21)

did not show corneal abnormalities or small eyes. However, 2/37

(5%) heterozygous mutant mice and 3/19 (16%) homozygous

mutant mice developed corneal abnormalities.

Qualitative assessment of solubility of aB-crystallin in
mutant knock-in lenses

Western blot analysis was performed to qualitatively assess the

solubility of aB-crystallin in mutant lenses. The proportion of

water-soluble aB-crystallin was lower in mutant lenses, whereas

the proportion of insoluble aB-crystallin was higher in heterozy-

gous mutant lenses than in wild-type lenses, and higher in

homozygous mutant lenses than in heterozygous mutant lenses

(Fig. 2D). These results demonstrate a gene-dosage effect of the

aB-R120G mutation on lens aB-crystallin solubility.

Morphological changes in aB-R120G knock-in lenses
In small eyes with corneal damage (the most severe phenotype),

distinctive multilayering of the anterior lens epithelial cells into

plaques was observed during histological analysis (Fig. 2E).

Immunofluorescence analysis of lens sections revealed that the

lens epithelial cells appeared to enter the fiber cell zone normally

aB-R120G Mutation Knock-In Mouse Model
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and fiber cell elongation appeared to occur (Fig. 2F). Thus,

organization of fiber cells in the equatorial sections of aB-R120G

heterozygous lenses likely occurred, but was apparently less

uniform than the neat packing of membranes in wild-type lenses.

In contrast, fiber cell membranes of anterior lens cortical fibers

were not well organized in the aB-R120G heterozygous mutant

lenses and exhibited highly disturbed membrane packing com-

pared with wild-type lenses (Fig. 2G).

Figure 1. Gene-targeting strategy and genotype analysis. A) Diagram illustrating the gene-targeting strategy used to produce aB-R120G gene
knock-in mice. The numbered rectangles represent exons and the starred exon 3 indicates the mutated exon. Restriction sites relevant to Southern
blot analysis are shown together with the size of the restriction fragments. Lox P sites are represented as closed triangles. The 39 probe that was used
for Southern blot analysis is shown below the mutated allele. Neor represents the neomycin cassette, which was excised by homologous
recombination after introduction of the aB-R120G knock-in plasmid and the Turbo-Cre plasmid. Bold arrows indicate the PCR primers (pcr1 and pcr2)
used to detect the wild-type and mutated alleles. B) Genomic DNA from ES clones was sequenced to verify the A to G mutation in the mouse aB-
crystallin gene. C) Southern blot of SacI digests showing clones 7, 24, 37, and a wild-type clone with no insertion. Of these, clone 24 demonstrated
insertion of the plasmid containing neomycin (mutant). The lower band (9.0 kb) represents the correctly targeted ES clone containing the insertion.
The native aB-crystallin gene (11.5 kb) was present in each positive clone. D) PCR screening of mouse genomic tail DNA confirmed recombination of
the Lox P sites showing that neomycin was deleted. At the 59 end, a sense flanking primer (pcr1) was paired with an antisense aB-crystallin gene
intronic primer (pcr2). These primers amplified a 768-bp band from the wild-type (WT) aB-crystallin gene compared with an 860-bp band from
neomycin-deleted knock-in chromosomes. Both the 768- and 860-bp bands were amplified in heterozygous mice. Absence of the 768-bp band and
detection of only the 860-bp band indicated homozygosity for the aB-R120G mutation.
doi:10.1371/journal.pone.0017671.g001
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Changes in molecular masses of proteins isolated from
aB-R120G knock-in lenses

Next we investigated the effects of the R120G aB-crystallin

mutation on the sizes of aB-crystallin proteins using gel

permeation chromatography (GPC) with light scattering and

refractive index (RI) measurements. Fig. 3 demonstrates the

chromatography profiles of water-soluble lens protein from wild-

type mice, and heterozygous and homozygous mutant mice.

Fig. 3A shows the RI profile of lens crystallins from 3-month-old

mice isolated by GPC. Based on previous studies [43,44] and using

immunoblot analysis of proteins eluted in column fractions (data

not shown), the first peak was identified to be a-crystallin, the

second to be b-crystallin, and the third to be c-crystallin. The RI

profile revealed an incremental loss of the a-crystallin fraction

from the soluble phase (Fig. 3A). This decrease was accompanied

by an incremental increase in the molecular mass of the a-

crystallin fraction in the soluble phase from wild-type to

heterozygous mutant to homozygous mutant lenses. An obvious

Figure 2. Eye and lens phenotypes of aB-R120G knock-in mice. Eyes were dilated in non-anesthetized mice and examined using a slit lamp.
A) Slit lamp micrographs of 5-week-old mice. Left panel, wild-type mice with clear lenses. Middle panel, heterozygous aB-R120G knock-in mice
displaying low-grade opacities in the nuclear and posterior regions of the lens. Right panel, homozygous aB-R120G knock-in mice with prominent
opacity in the lens nucleus (stage 3) and the small eye phenotype. The dotted line shows the outline of the eye. B) Lens opacity and corneal
abnormality in 10-month-old aB-R120G mouse eyes. Top left, wild-type. Top right, left eye. Bottom left, right eye of an aB-R120G heterozygous mutant
mouse. Bottom right, eye of homozygous mutant mouse showing complete (stage 4) opacity. C) Corneal abnormality in aB-R120G heterozygous
mutant mouse eye. The wild type eye was normal. D) Immunoblot analysis of lens water-soluble and water-insoluble proteins using an antibody
specific for aB-crystallin. E) Histological analysis of aB-R120G heterozygous lenses. Lens sections were stained with hematoxylin and eosin (H&E). Top
panel, wild-type lens with normal epithelial and fiber cell morphology. Middle panel, an aB-R120G heterozygous lens with a multilayered region of
cells. Lower panel, a higher magnification image of the multilayerd region shown in the rectangle of the middle panel. F, G) Immunofluorescence
analysis of major intrinsic protein (MIP) expression in wild-type and aB-R120G heterozygous knock-in lenses. F) Mid-sagittal lens sections stained with
anti-MIP (AQP0) to visualize fiber cell membranes. Equatorial region of the lens. Sections of wild-type (left panel) and homozygous (right panel) lenses
are shown. Visualization of fiber cell membranes at the onset of differentiation (cell elongation) region. G). Cross-sections of anterior cortical fibers of
the lens. Sections of wild-type (left panel) and heterozygous (right panel) lenses are shown.
doi:10.1371/journal.pone.0017671.g002
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increase also existed in c-crystallin in the soluble fraction of

mutant lenses with increasing mutant gene dosage (Fig. 3A). Fig. 3B

shows a plot of light scattering measurements for proteins eluted

from the column. As demonstrated previously [43], a-crystallin is

the major contributor to light scattering. Table 3 shows the effects

of the aB-R120G mutation on the average molecular mass,

viscosity, and hydrodynamic radius of the major crystallin peaks

eluted from the GPC column. The average molecular mass of the

a-crystallin fraction from 3-month-old mice was 1113 kDa for

wild-type lenses, 1554 kDa for heterozygous mutant lenses, and

2632 kDa for homozygous mutant lenses. The hydrodynamic

radius was 10.1 nm for wild-type a-crystallin, and 11.5 and

13.3 nm for heterozygous and homozygous mutant lenses,

respectively. The molecular mass and hydrodynamic radius of a-

crystallin increased significantly with age in mutant knock-in

lenses, but not in wild-type lenses (Table 3). Fig. 3C and D show the

refractive indices and 90u light-scattering profiles for mouse lens

crystallins isolated from the water-soluble fractions of 8-month-old

wild-type, aB-R120G heterozygous, and homozygous mutant

knock-in mouse lens lysates. These data also demonstrate that the

light scattering of mutant lens a-crystallin fractions increased

dramatically with age. Additionally, higher molecular weights of b-

and c-crystallins were observed in 4-month-, 8-month-, and 9-

month-old lenses (Table 3). At 9 months, there was a marked

increase in aggregation of the b- and c-crystallin fractions. The

elevation in the c-crystallin fraction was consistent for all 3-month-

old mice (Fig. 3A) and 8-month-old mice (Fig. 3C), supporting the

conclusion that the R120G mutation in aB-crystallin leads to

increased abundance of c-crystallin. We found that cleaved

peptides of a- and b- crystallins (major lens soluble proteins) were

not contaminating our assessment of c-crystallin in mutant lenses

because immunoblot analysis using antibodies against the total a-

and b-crystallin fractions revealed that a-crystallin and b-crystallin

are at trace levels in the c-crystallin fractions (data not shown).

Table 1. Eye abnormalities in aB-R120G knock-in mice.

Age (weeks) 3–8 12–20 40–56
Total (all ages
combined)

Genotype Cataract (lens opacities)

Cataract stage Cataract stage Cataract stage

WT 2/10 (20%) 0–0.5
(0.360.3)

1/4 (25%) 0–0.5
(0.660.6)

4/7 (57%) 1–1.5
(1.260.3)

7/21 (33%)

Het 17/17 (100%) 1–3
(1.460.6)

6/10 (60%) 0.5–3
(1.761.0)

10/10 (100%) 2–4
(2.660.8)

31/37 (84%)

Homo 8/10 (80%) 0–2
(1.260.9)

5/5 (100%) 2–4
(2.660.9)

3/4 (75%) 3–4
(3.261.2)

16/19 (84%)

Small eye and lens

WT 0/10 (0%) 0/4 (0%) 0/7 (0%) 0/21 (0%)

Het 5/17 (29%) 0/10 (0%) 3/10 (30%) 8/37 (22%)

Homo 2/10 (20%) 0/5 (0%) 2/4 (50%) 4/19 (21%)

Corneal abnormalities

WT 0/10 (0%) 0/4 (0%) 0/7 (0%) 0/21 (0%)

Het 2/17 (12%) 0/10 (0%) 0/10 (0%) 2/37 (5%)

Homo 1/10 (10%) 0/5 (0%) 2/4 (50%) 3/19 (16%)

WT, wild-type; Het, heterozygous; Homo, homozygous.
doi:10.1371/journal.pone.0017671.t001

Table 2. Statistical analysis of data in Table 1.

Age (weeks) Genotype comparison p Age comparison p

3–8 WT vs. Het 5.8610211* WT 3 vs. 40 weeks 5.0761027*

WT vs. Homo 0.013* WT 12 vs. 40 weeks 0.005*

Het vs. Homo 0.23 WT 3 vs. 12 weeks 0.09

12–20 WT vs. Het 0.0005* Het 3 vs. 40 weeks 2.0961026*

WT vs. Homo 0.0001* Het 12 vs. 40 weeks 0.003*

Het vs. Homo 0.022* Het 3 vs. 12 weeks 0.13

40–56 WT vs. Het 2.3661027* Homo 3 vs. 40 weeks 0.005*

WT vs. Homo 0.007* Homo 12 vs. 40 weeks 0.20

Het vs. Homo 0.16 Homo 3 vs. 12 weeks 0.003*

Asterisks denote statistical significance with p,0.05.
WT, wild-type; Het, heterozygous; Homo, homozygous.
doi:10.1371/journal.pone.0017671.t002
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Alteration of lens intermediate filament protein vimentin
in aB-R120G knock-in mice

Previous studies have suggested that the aB-R120G mutation

causes DRM and cataracts due to faulty interactions between aB-

crystallin and intermediate filament proteins such as vimentin

[12,31]. To investigate the mechanisms of lens opacity formation

in the knock-in lenses, we assessed the interactions between mutant

aB-crystallin and vimentin. Immunoprecipitation using an anti-

body specific for vimentin followed by immunoblotting with aB-

crystallin-specific antibodies revealed that more aB-crystallin

interacted with vimentin in heterozygous mutant lenses than in

wild-type lenses (Fig. 4A). Densitometric analysis showed that the

amount of vimentin also increased in the whole cell lysate of

heterozygous mutant lenses compared with the wild type. This

suggests that the mutant lenses have a higher concentration of

vimentin.

We also assessed the interaction of vimentin with mutant aB-

crystallin by immunofluorescence of lens epithelial and cortical

fiber cells, which express high levels of vimentin (Fig. 4B). We

observed increased clusters of mutant aB-crystallin and vimentin,

indicating aggregation. We also observed co-aggregates of aB-

crystallin and vimentin in many of the heterozygous mutant lens

epithelial and cortical fiber cells (Fig. 4C).

aB-R120G knock-in mice develop myopathy with aB-
crystallin inclusions

Forelimb grip strength assessment was performed for aB-

R120G heterozygous, homozygous mutant, and wild-type control

littermates at 6 months of age. Strength was significantly lower in

homozygous mice compared with wild-type controls (Fig. 5A).

Ten-month-old wild-type control littermates had normal muscle

tissue structure when visualized with hematoxylin and eosin (H&E)

or modified Gomori trichrome (mGT) staining (Fig. 5B). In

contrast, H&E staining of the tibialis anterior muscle of

heterozygous and homozygous mutant mice exhibited myopathy

with dark basophilic fibers, internal nuclei, scattered necrosis, and

fibrosis by 10 months of age, although the degree of myopathy was

greater in homozygous mutant mouse muscle (Fig. 5B). aB-R120G

heterozygous and homozygous mutant mice also displayed darker

stained regions in mGT-stained muscle sections, consistent with

myofibrillar disarray, than wild-type littermates (Fig. 5B). Addi-

tionally, aB-R120G homozygous mouse muscle had congophilic

inclusions—‘‘rubbed out’’ fibers—as visualized by cytochrome

oxidase staining and ubiquitinated aggregates (Fig. 6A). To

evaluate constituents of the inclusions in mutant mouse muscle, we

immunostained aB-R120G muscle tissue sections from homozy-

gous mutant and wild-type control mice with antibodies against

Figure 3. Size-exclusion gel permeation chromatography (GPC) analysis of lens proteins from aB-R120G knock-in mice. Lens proteins
were separated into water-soluble and insoluble fractions, and then the water-soluble fractions were analyzed by GPC. A, B) Three-month-old lenses.
C, D) Eight-month-old lenses. A) Refractive index profile of the water-soluble proteins in wild-type (black), heterozygous mutant (green), and
homozygous mutant (red) lenses. B) Right-angle light scattering in proteins eluting from the size exclusion chromatography columns for wild-type
(black), heterozygous mutant (green), and homozygous mutant (red) lens proteins. C) Refractive index profile of the water-soluble proteins from wild-
type (black), heterozygous mutant (green), and homozygous mutant (red) lenses. D) Right-angle light scattering in proteins eluting from the size
exclusion chromatography columns from wild-type (black), heterozygous mutant (green), and homozygous mutant (red) lens proteins. Note that
while the y-axis of the light scattering intensity is lower in 8-month-old lens proteins (D), it is spread out over 5 ml, compared with 3 ml in the 3-
month-old lens proteins (B). Thus, the area under the light scattering curve is greater at 8 months. Note also that the higher molecular weight for a-
crystallin (Table 3) calculated by the software shows that the light scattering intensity with respect to the refractive index signal is higher in the 8-
month-old than in the 3-month-old lens proteins.
doi:10.1371/journal.pone.0017671.g003
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aB-crystallin and desmin. These proteins accumulated as inclu-

sions in aB-R120G heterozygous and homozygous mutant muscle

but not in wild-type muscle (Fig. 6B). aB-crystallin aggregates were

ubiquitin-positive and often co-localized with large desmin

inclusions in mutant muscle; however, desmin was also found in

aggregates without aB-crystallin-associated immunoreactivity

(Fig. 6B). To determine whether visualized aB-crystallin inclusions

were indeed insoluble aggregates, we immunoblotted detergent-

soluble and detergent-insoluble protein fractions from wild-type as

well as aB-R120G heterozygous and homozygous tibialis anterior

muscle. Consistent with the immunostaining results, insoluble aB-

crystallin was only detected in aB-R120G heterozygous and

homozygous mutant mouse muscle lysates. The insoluble aB-

crystallin level was highest in the homozygous mutant mouse

muscle (Fig. 6C).

Discussion

Individuals with the aB-crystallin arginine 120 to glycine

(R120G) mutation typically have one copy each of the mutant

and wild-type allele. Over time, this mutation leads to the

development of cataracts and DRM [12]. In this study, we

generated knock-in mice with aB-crystallin R120G heterozygos-

ity to elucidate the mechanism of cataract formation and DRM.

The knock-in mutant mice developed myopathy and cataracts

similar to human individuals carrying the aB-crystallin R120G

mutation. The lens cataract and myopathic muscle in mutant

mice and humans with the aB-crystallin R120G mutation shared

common pathological features and molecular mechanisms. We

observed significant a-crystallin aggregation in the lenses of

mutant mice, which increased with cataract severity. We also

found that the molecular weight of b- and c-crystallin fractions

from the mutant lenses was higher than the wild-type lenses

(Table 3) because these peaks have more light scattering,

implying that b- and c-crystallin fractions aggregate more in

heterozygous and homozygous mutant lenses. Our data also

demonstrate an incremental increase in the lens c-crystallin peak

fraction with the aB-R120G mutation, suggesting that aB-

crystallin may affect the expression of c-crystallin. Our results

appear to corroborate a previous report indicating that a-

crystallin binds to specific regions of DNA in mouse cD/E

crystallin genes [45]. We found no evidence to confirm that the

increase in c-crystallin is because of an increase in a- or b-

crystallin fragments. Whether the increase is caused by increased

expression or decreased degradation of c-crystallin in the

heterozygous and homozygous aB-R120G mutant lenses remains

to be determined. A small increase in c-crystallin by gel

permeation chromatography has been reported in another

mouse model for cataracts [44].

Additionally, the mutant mice accumulated aB-crystallin-

vimentin aggregates in lens cells and aB-crystallin-desmin

aggregates in muscle cells. The mechanism of lens opacification

likely involves a change in the interaction between vimentin and

aB-crystallin [31]. In heterozygous lenses, the interaction between

vimentin and aB-crystallin was elevated, even in the absence of

significant opacification. This increased interaction and aggregate

formation were also observed in the lens epithelial zone of the

mutant lenses by immunofluorescence analysis, consistent with

published studies using cultured cells [28,31,46]. These results

indicate that the interaction between the intermediate filament

protein vimentin and aB-crystallin may be a precursor to the

development of opacities in the mutant lenses. Notably, the mice

used in this study were of a mixed 129Sv and C57BL6

background, and the129Sv strain of mice is known to lack a

lens-specific intermediate filament known as the beaded filament

[47], although mice lacking the beaded filament do not develop

significant opacities and changes in vimentin levels. It would be

interesting to determine whether cataract development in aB-

R120G knock-in mice is altered in mouse strains that have the full

complement of the beaded filaments.

Table 3. Molecular weight (Mw) and hydrodynamic radius (Rh) of crystallins in aB-R120G mice.

Age (months) Genotype Mw (kDa) Rh (nm) Mw (kDa) Rh (nm) Mw (kDa) Rh (nm)

a-Crystallin b-Crystallin c-Crystallin

3 WT 11136103 10.122 50.717 3.79 21.683 2.63

4 WT 11306103 10.473 53.015 4.020 20.175 2.495

8 WT 14126103 11.059 61.888 3.842 21.823 2.587

9 WT 21226103 11.389 70.677 3.371 26.737 2.731

3 aB-R120G Het 11546103 11.47 50.820 3.537 22.720 2.419

4 aB-R120G Het (group 1) 20146103 13.462 61.589 4.054 23.179 2.491

4 aB-R120G Het (group 2) 15926103 12.085 56.472 3.573 20.801 2.474

9 aB-R120G Het 63056103 16.637 168.929 4.769 47.070 3.155

3 aB-R120G Homo 26326103 13.292 67.279 4.022 25.216 2.376

4 aB-R120G Homo (group 1) 28556103 13.974 75.913 3.592 20.223 2.331

4 aB-R120G Homo (group 2) 27496103 14.600 70.269 4.899 23.853 2.540

8 aB-R120G Homo 32496103 14.387 86.584 3.931 32.316 2.828

9 aB-R120G Homo * ** 167.085 ** 46.205 **

*Proteins from completely opaque 9-month-old homozygous mutant lenses were largely water-insoluble. The estimated molecular weight of the a-crystallin fraction
was .106106. Most of the lens proteins did not go through the column filter (0.2-mm). The concentration of protein that went through the column was very low
(0.128 mg/ml). Insufficient soluble protein made it difficult to accurately evaluate the Rh value from viscosity measurements.
**Protein concentration of the homozygous lens proteins was too low for an accurate determination of Rh. Data for two independent sets of 4-month-old mutant lenses
(group 1 and group 2) demonstrate minor differences between litters.
WT, wild-type; Het, heterozygous; Homo, homozygous.
doi:10.1371/journal.pone.0017671.t003
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aB-crystallin is expressed in the cornea [7] where it is important

for corneal clarity. Consistent with this, a proportion of the R120G

mutant mice developed corneal opacities. However, it is unclear

why only a proportion of animals showed this effect. More of the

animals are likely to develop corneal opacities as they age, and

studies are in progress to assess this possibility. Patients with

mutations in the aA-crystallin gene develop similar microcornea

and corneal opacities [48,49], substantiating our findings in knock-

in mice and indicating that aB-crystallin also plays a critical role in

the maintenance of corneal clarity. A small but significant fraction

of the aB-R120G mutant mice had smaller eyes than wild-type

littermates, although this small eye phenotype was not as

prominent as in homozygous aA-R49C mutant mice [40,50].

DRMs are a growing class of skeletal muscle disorders caused by

mutations in desmin, aB-crystallin, Z-band alternatively spliced

PDZ motif, myotilin, filamin C, and Bag3 [51]. Individuals with

DRM typically develop late-onset progressive distal and proximal

muscle weakness. Muscle biopsies from DRM patients have

characteristic desmin inclusions. aB-R120G heterozygous and

homozygous mutant mice recapitulate many of the pathologic

features observed in DRM patients, including myopathy, desmin

aggregates, and mitochondrial pathology [52]. These mice will be

Figure 4. Interaction of aB-crystallin with vimentin in wild-type and aB-R120G knock-in lenses. A) Twelve-week-old lens protein extracts
were immunoprecipitated with anti-vimentin. Two to four lenses were used per experiment. Immunoprecipitates were immunoblotted using
antibodies specific for aB-crystallin. Controls for immunoprecipitation included rabbit serum containing no primary antibody (no antibody controls).
Whole cell lysates were also analyzed to assess the total amount of vimentin and aB-crystallin in the lysates. aB-crystallin levels were identical in wild-
type and heterozygous whole cell lysates (data not shown). Densitometric scans were obtained, and immunoprecipitated aB-crystallin and whole cell
lysate vimentin was determined. Bar graphs to the right show the average of two independent experiments. B, C) Immunohistochemical assessment
of co-localization of vimentin and aB-crystallin in aB-R120G mutant lenses. Mid-sagittal lens sections (4 mm) were stained with antibodies against
vimentin (green) and aB-crystallin (red) and visualized using a confocal microscope. B) Anterior cortical fibers. Top row, wild-type lens. Bottom row, aB-
R120G heterozygous lens. Arrows indicate the areas of dysmorphology. C) Equatorial lens epithelium and fibers. Top row, wild-type lens. Bottom row,
aB-R120G heterozygous lens. Note that the heterozygous mutant lenses showed more clusters of vimentin and aB-crystallin (arrows). Four wild type
and four aB-R120G heterozygous mutant lenses were analyzed.
doi:10.1371/journal.pone.0017671.g004
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invaluable for expanding our understanding of how protein

aggregates lead to skeletal muscle dysfunction.

As mentioned above, DRM is characterized by aggregates of

intermediate filament (IF) proteins that are associated with aB-

crystallin, such as desmin [12]. In cultured cells, heat shock and drug

treatment induce collapse of IFs and associated Hsp27 and aB-

crystallin, demonstrating that these small heat shock proteins are not

sufficient to prevent filament collapse, and suggesting that the purpose

of this association is more than just structural [31]. Inclusion of aB-

crystallin prevents IF gel formation in vitro but not filament assembly,

suggesting that one of the major functions of the association of small

heat shock proteins with IFs is to help regulate the interactions that

occur between filaments in their cellular networks [31]. Investigators

have suggested that aB-crystallin does not alter the polymerization

state of IF proteins in primary astrocytes, but ectopic expression of

aB-crystallin in the absence of stress can modify the organizational

state of IF and aB-crystallin can function as an IF debundling protein

[53]. The sequence and structural domains that mediate aB-crystallin

interactions with IFs include peptide residues 113–120, the region in

the C-terminal domain of human aB-crystallin that includes the aB-

R120G that causes human hereditary cataracts and myopathy,

suggesting dysregulation of IFs may contribute to hereditary cataracts

and DRM [54].

Wild-type aB-crystallin plays a beneficial role in the formation

of desmin filament networks in muscle [31,55]. In humans, and

perhaps also in mice, the promotion of desmin filament

aggregation by aB-R120G mutant protein may be repressed at a

young age by the expression of competing wild-type aB-crystallin,

which could explain the late onset of myopathies caused by aB-

crystallin mutations [12,28].

In contrast to the knock-in mice reported in this study, aB2/2

knockout mice develop degeneration of certain skeletal muscles, most

notably axial muscles and the tongue with relative sparing of the limb

muscle, at about 65 weeks of age [8]. This onset occurs much later

than the phenotypic changes observed in our knock-in mice, which

were present as early as 26 weeks. This suggested that the DRM

phenotype associated with the aB-R120G crystallin mutant is not

caused merely by the loss of mutant protein function or a dominant-

negative suppression of wild-type aB-crystallin function. Similarly,

aB2/2 knockout mice did not develop lens opacities or elevated

Figure 5. In vivo strength and muscle histopathology in aB-R120G knock-in mice. A) Average grip strength of aB-R120G heterozygous
(n = 27), homozygous (n = 20), or wild-type (n = 10) control littermates at ,6 months of age. *p,0.05. B) H&E or modified Gomori trichrome (mGT)
staining of tibialis anterior (TA) muscle from 10-month-old wild-type, aB-R120G heterozygous, or aB-R120G homozygous mutant mice. H&E, evidence
of myopathy in mutant muscle with small angular fibers (open arrowhead) and internal nuclei (closed arrowhead). mGT, increased dark staining
consistent with the accumulation of myofibrillar proteins (arrows) in mutant muscle. Scale bar is 50 mm.
doi:10.1371/journal.pone.0017671.g005
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stress-induced light scattering, in dramatic contrast to the lens

opacities observed as early as 3 weeks in the aB-R120G knock-in

mice described here. The results of the present study indicate that the

mutant aB-R120G protein exhibits a gain of toxic function that

explains the autosomal dominant nature of the aB-R120G-associated

cataracts and myopathic disease.

Desmin-related cardiomyopathy has been recapitulated in

transgenic mice by cardiac-specific expression of the aB-R120G

protein [56]. These mice develop severe cardiomyopathy with

early death at 28 weeks in a gene dosage-dependent manner. We

did not observe a similar elevated mortality in aB-R120G

crystallin knock-in mice. This may be because of expression of

aB-R120G crystallin at endogenous levels, whereas previous

studies [56] have overexpressed aB-R120G crystallin in the target

tissue. Cardiac chaperone dysfunction perturbs cardiac mitochon-

drial architecture and impairs mitochondrial function [32]. These

changes ultimately lead to cardiomyocyte death, dilation, and

heart failure [32]. In another study, increased glucose-6-phosphate

dehydrogenase expression was sufficient to cause cardiomyopathy

in transgenic mice, which may be an additional mechanism

underlying aB-R120G-associated cardiomyopathy [33]. Other in

vitro studies have suggested that the intracellular aggregation of

desmin and mutant aB-R120G in DRM may be caused by

impaired aB-crystallin function and loss of its native supramolec-

Figure 6. Histopathology and aB-crystallin insolubility in aB-R120G knock-in mice. A) Additional staining of 10-month-old aB-crystallin
R120G homozygous mouse TA with Congo red shows multiple congophilic inclusions (red; open arrows). Cytochrome oxidase staining (brown) is
absent or cleared from the central region of scattered myofibers (starred fibers). Immunofluorescence using an antibody against ubiquitinated
proteins (red) highlights large ubiquitinated aggregates within scattered fibers. Blue staining is nuclear DNA. Scale bar is 50 mm. B) Triple
immunofluorescence staining of TA muscle from 10-month-old wild-type or aB-R120G homozygous mutant mice using anti-aB-crystallin (green), anti-
desmin (red), or anti-ubiquitin (red in bottom right panel only), and nuclear DNA (blue). Open arrowhead shows aB-crystallin and desmin co-aggregate,
while closed arrowhead denotes isolated desmin inclusion. Individual myofibers are outlined in white. Scale bar is 50 mm. C) Immunoblot using aB-
crystallin antibody of total, detergent-soluble, or detergent-insoluble proteins from TA muscle lysates of 4.5-month-old wild-type (WT), aB-R120G
heterozygous (het), or homozygous (homo) mutant knock-in mice. Histopathology was performed on at least two mice per age.
doi:10.1371/journal.pone.0017671.g006

aB-R120G Mutation Knock-In Mouse Model

PLoS ONE | www.plosone.org 10 March 2011 | Volume 6 | Issue 3 | e17671



ular organization [55]. Investigators have also suggested that wild-

type aB-crystallin might co-oligomerize with aB-R120G and

prevent the formation of aggresomes. Other chaperones such as

HSP70 or HSPB8 have also been shown to reduce the frequency

of aggregate formation in vitro [55,57]. Although the molecular

basis of cataract and DRM development is not fully understood,

the aB-R120G knock-in mice are a useful model for identifying

the effects of molecular mechanisms that affect intermediate

filament aggregation and lead to cataract formation and DRM.

In summary, we have generated a knock-in aB-R120G mouse

model to study the mechanisms of human hereditary cataract

development and have demonstrated that these animals begin to

develop cataracts and muscle dysfunction at a young age. This

multi-system model recapitulates many features of human hered-

itary cataracts and DRM. We have shown that the lens and muscle

pathologies share many features, including increased insolubility of

aB-crystallin with gene dosage, and increased co-aggregation of aB-

crystallin with intermediate filament proteins. Thus, the aB-R120G

knock-in mouse model is an essential tool for understanding the

mechanisms underlying the development of hereditary cataracts

and myopathy in individuals with aB-R120G mutations.

Materials and Methods

Generation of knock-in mice
Knock-in mice were generated by homologous recombination

in 129SvJ male embryonic stem (ES) cells (SCC-10), modifying the

aB-crystallin gene (cryab) such that exon 3 contained the R120G

mutation in one allele, while the second copy of the gene was wild

type. A mouse genomic DNA clone containing the aB-crystallin

gene derived from a 129Sv strain was generously provided by Dr.

Eric Wawrousek. The 2.3-kb 59 arm was inserted into a cloning

plasmid containing the neomycin cassette. The target nucleotide in

exon 3 was mutated from A to G by site-directed mutagenesis

(QuickChange kit; Stratagene, Santa Clara, CA, USA), the 2.8-kb

39 arm of mouse cryab was cloned into the plasmid (Fig. 1), and

then the plasmid was electroporated into ES cells. ES cell

selection, colony picking, freezing, expansions, and cryopreserva-

tion of homologous recombinant clones expressing the R120G

mutant aB-crystallin gene were performed at the Washington

University ES Cell Core facility. Clones positive for neomycin

were selected with G418, and 150 ES cell colonies were screened

for correct gene targeting by Southern blot analysis. The A to G

mutation was verified by sequencing the genomic DNA of positive

ES clones (Fig. 1B). One clone (clone 24) was correctly targeted

and used to generate knock-in mice (Fig. 1C). Correct insertion of

the knock-in allele was tested by probing the 59 and 39 ends of cryab

in the plasmid construct, and using primers outside cryab. ES cells

positive for the mutation were karyotyped, electroporated with the

Turbo-Cre plasmid to remove the floxed neomycin cassette, and

karyotyped again. ES cells were then injected into C57BL6

blastocysts, which were then implanted into pseudopregnant ICR

(imprinting control region) females. Chimeric founders were

mated with wild-type C57BL6 mice. Genotyped progeny that

were positive for germline transmission were bred. First generation

offspring that inherited the targeted allele with neomycin were

subsequently mated with C57BL/6J mice. The primers used to

genotype the mice were 59-GGA TTA GGA CGA ACA TGG

CTT CAT CTC CG-39 (forward) and 59-CCA CCG ATG TCC

TAT TTA CTG TCC TGC G-39 (reverse).

Heterozygous offspring within each mating scheme were

subsequently bred to yield homozygous mice. PCR genotypes of

heterozygous and homozygous knock-in mice after deletion of the

neomycin cassette are shown in Fig. 1D. Mice were maintained at

Washington University by trained veterinary staff in the Division

of Comparative Medicine. All protocols and animal procedures

were approved by the Washington University Animal Studies

Committee (protocol number 20090031).

Slit lamp examination and recording
Slit lamp biomicroscopy was performed on non-anesthetized mice.

Pupils were dilated with a mixture of 10% phenylephrine hydrochlo-

ride and 1% tropicamide (Alcon, Fort Worth, TX, USA). After 3 min,

each mouse was positioned directly facing the slit lamp, holding the

animal gently by the scruff of the neck. Next, both eyes of the animals

were examined. Finally, the knock-in mice were examined at postnatal

ages of 3–8 weeks, 12–20 weeks, and 40–56 weeks.

Assessment of lens opacity and corneal changes
Cataract formation was scored by slit lamp biomicroscopy as

follows: stage 0, clear lens; stage 1, loss of normal appearance of

anterior, nuclear, and posterior lenses as well as prominence of y-

suture line; and stage 2, discrete anterior changes accompanied by

distinct nuclear opacity. The following changes were evident at 3–

8 weeks: increased involvement of nuclear and cortical regions of

the lens accompanied by increasing opacity (stage 3) and

completely mature cataract involving the cortex and nucleus

(stage 4). Stage 4 characteristics were observed in some of the

homozygous lenses by 20 weeks. For each time point and strain, at

least four animals were used, unless otherwise stated. The p-values

were determined using unpaired Student’s t-test.

Analytical chromatography and analysis
High performance liquid chromatography (HPLC)-GPC was

performed using a VE 1122 pump with a VE 7510 degasser

(Viscotek/Malvern, Houston, TX, USA) that was equipped with a

TDA302 triple detector system that measured the RI, multi-angle

laser light scattering, and viscosity. The latter was supplemented with

a model 2501 UV detector set at 280 nm. Two columns were

connected in series: a Poly [Analytic] PAP-402.5 (Lausanne,

Switzerland) and a G4000PWXL (Tosoh Biosep, Montgomeryville,

PA, USA). Viscotek Omnisec software was used to calculate the RI

area, weight-averaged molecular weight, intrinsic viscosity, and

hydrodynamic radius. Three-month-old mouse lens proteins were

analyzed on this column system. Samples were injected into a volume

of 100 ml. The flow rate was 0.8 ml/min and the column buffer

contained modified Dulbecco’s phosphate-buffered saline (PBS)

without CaCl2 and MgCl2 (Sigma-Aldrich, St. Louis, MO, USA).

Samples from the column were then collected for further analysis.

First, the amount of protein present in the wild-type, heterozygous

mutant, and homozygous mutant lens samples was calculated using

the RI area from the initial run. Samples of each condition were then

re-run using approximately equal amounts of total protein. Column

fractions of each condition were collected at 1-min intervals (800 ml/

tube). To further analyze changes in a-crystallin fractions in older

mouse lenses, we also performed GPC using A4000PWXL and

G4000PWXL columns in series. All other conditions were the same

as described above. Two to four lenses were analyzed per age and

genotype. Chromatography runs were repeated three times.

Molecular mass standards
Protein standards with known molecular masses were used to

standardize and validate the column and detectors. Identical conditions

were then used for separating lens crystallins. The primary standard

was high purity bovine serum albumin (A0281, 67 kDa; Sigma-

Aldrich). Other molecular weight protein standards obtained from

Amersham Biosciences GE Healthcare (Piscataway, NJ, USA) were:
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dextran blue (2,000 kDa), thyroglobulin (669 kDa), ferritin (440 kDa),

catalase (232 kDa), aldolase (158 kDa), ovalbumin (43 kDa), carbonic

anhydrase (35 kDa), and ribonuclease A (13.7 kDa).

Assessment of major intrinsic protein (MIP/AQP0) by
immunofluorescence

Lenses were embedded in paraffin and 4-mm sections, stained

with a polyclonal antibody to MIP (Alpha Diagnostics Interna-

tional) and an Alexa-568-conjugated secondary antibody, were

visualized by confocal microscopy using a Zeiss 510 confocal

microscope (Zeiss, Jena, Germany). Four lenses per genotype and

two sections per lens were analyzed.

Assessment of vimentin-aB-crystallin interactions by
immunoprecipitation and immunoblotting

A co-immunoprecipitation assay was used to investigate the

effect of the aB-R120G mutation on the association of vimentin

with aB-crystallin. Mouse lenses were extracted in lysis buffer

(50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA, 0.1%

sodium dodecyl sulfate (SDS), and protease inhibitor cocktail

(Sigma-Aldrich), lysed for 5 min on ice, and then centrifuged for

10 min at 10,0006 g. Supernatants were treated with a polyclonal

primary antibody against vimentin (a gift from Dr. Paul Fitzgerald)

conjugated to amino-link plus coupling resin (Pierce Biotechnol-

ogy, Rockford, IL, USA) according to the manufacturer’s protocol.

Control rabbit serum conjugated to the resin was used as a control

for immunoprecipitation. Immunoprecipitated proteins were

washed by centrifugation at 4uC for 3 min, eluted with 200 ml of

buffer containing 100 mM glycine (pH 2.5) for 10 min at room

temperature, and then centrifuged at 10,0006 g for 5 min. The

resulting supernatants were neutralized with 1.25 ml potassium

phosphate solution (pH 9.0). Proteins were resuspended in SDS-

polyacrylamide gel electrophoresis (PAGE) sample buffer, and

then analyzed by SDS-PAGE as described previously [58].

Immunoblot analysis with antibodies against aB-crystallin (Assay

Designs, Ann Arbor, MI, USA) was performed. Two to four lenses

were analyzed per genotype. Densitometric analysis was per-

formed as described previously [59] and averages of two

independent experiments were determined.

Quantitative grip strength measurements
Strength testing consisted of five separate measurements using a

trapeze bar attached to a force transducer that recorded the peak

generated force (Stoelting, Wood Dale, IL, USA). Mice instinc-

tively grabbed the bar with their forepaws and continued to hold

while being pulled backwards by the tail, releasing only when

unable to maintain grip. Five consecutive measurements were

recorded: the highest and lowest measurements were discarded

and the three remaining measurements were averaged to obtain

the strength score. For each time point and strain, at least four

animals were used, unless otherwise stated. The p-values were

determined using paired Student’s t-test.

Muscle histology
Freshly isolated skeletal muscle was mounted using tragacanth gum,

and then quick frozen in liquid nitrogen-cooled isopentane. Samples

were then stored at 280uC until sectioning. Frozen biopsy samples

were cut into 7-mm-thick sections. Skeletal muscle was taken from the

quadricep, tibialis anterior (TA), and soleus/gastrocneumius muscles.

Histochemistry and immunohistochemistry were performed as

previously described [60]. Antibodies used were mouse anti-desmin

(1:200; Dako), mouse anti-FK2 (ubiquitin; 1:500), and rabbit aB-

crystallin (1:100; Stressgen). Two to three mice were analyzed per

genotype, and at least three sections per mouse were analyzed.

Analysis of muscle aB-crystallin solubility
Fresh TA muscle was collected and flash frozen in liquid

nitrogen. Tissue (20 mg) was homogenized in 250 ml of 2% SDS-

radioimmunoprecipitation assay buffer (50 mM Tris-Cl (pH 8.0),

150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, and 2%

SDS) and protease inhibitor cocktail (Sigma-Aldrich). Homogenates

were precleared with a 30-sec low speed spin and an aliquot of the

supernatant was collected and named the total fraction. The

additional supernatant was centrifuged at 100,0006g for 30 min at

4uC and this supernatant was collected and named the soluble

fraction. The pellet was then sonicated on ice after the addition of

150 ml of 5 M guanidine-HCl and re-centrifuged at 100,0006g for

30 min at 4uC. This supernatant was removed and named the

insoluble fraction. The insoluble fraction was precipitated by adding

an equal volume of 20% trichloroacetic acid (Sigma-Aldrich) and

incubated on ice for 20 min. Samples were then centrifuged at

10,0006 g for 15 min at 4uC and the resulting pellet was washed

twice with ice-cold acetone. Residual acetone was removed by

drying tubes at 95uC and the samples were resuspended in 50 ml of

5% SDS in 0.1N NaOH. The protein concentrations of all samples

were determined using a BCA protein assay kit (Pierce). Each

sample (30 mg) was analyzed by Western blotting for each fraction

as previously reported [60] using anti-aB-crystallin (1:2500;

Stressgen) and anti-desmin (1:2500; Dako).
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