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Abstract

We considered all matches played by professional tennis players between 1968 and2010, and, on the basis of this data set,
constructed a directed and weighted network of contacts. The resulting graph showed complex features, typical of many
real networked systems studied in literature. We developed a diffusion algorithm and applied it to the tennis contact
network in order to rank professional players. Jimmy Connors was identified as the best player in the history of tennis
according to our ranking procedure. We performed a complete analysis by determining the best players on specific playing
surfaces as well as the best ones in each of the years covered by the data set. The results of our technique were compared
to those of two other well established methods. In general, we observed that our ranking method performed better: it had a
higher predictive power and did not require the arbitrary introduction of external criteria for the correct assessment of the
quality of players. The present work provides novel evidence of the utility of tools and methods of network theory in real
applications.
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Introduction

Social systems generally display complex features [1]. Com-

plexity is present at the individual level: the behavior of humans

often obeys complex dynamical patterns as for example demon-

strated by the rules governing electronic correspondence [2–5]. At

the same time, complexity is present also at the global level. This

can be seen for example when social systems are mathematically

represented in terms of graphs or networks, where vertices identify

individuals and edges stand for interactions between pairs of social

agents. Social networks are in most of the cases scale-free [6],

indicating therefore a strong degree of complexity from the

topological and global points of view.

During last years, the analysis of social systems has become an

important topic of interdisciplinary research and as such has

started to be not longer of interest to social scientists only. The

presence of a huge amount of digital data, describing the activity of

humans and the way in which they interact, has made possible the

analysis of large-scale systems. This new trend of research does not

focus on the behavior of single agents, but mainly on the analysis

of the macroscopic and statistical properties of the whole

population, with the aim to discover regularities and universal

rules. In this sense, professional sports also represent optimal

sources of data. Soccer [7–9], football [10,11], baseball [12–15]

and basketball [16,17] are some remarkable cases in which

network analysis revealed features not visible with traditional

approaches. These are practical examples of the general outcome

produced by the intense research activity of last years: network

tools and theories do not serve only for descriptive purposes, but

have also wide practical applicability. Representing a real system

as a network allows in fact to have a global view of the system and

simultaneously use the entire information encoded by its complete

list of interactions. Particularly relevant results are those regarding:

the robustness of networks under intentional attacks [18]; the

spreading of viruses in graphs [19]; synchronization processes [20],

social models [1], and evolutionary and coevolutionary games

[21,22] taking place on networks. In this context fall also ranking

techniques like the PageRank algorithm [23], where vertices are

ranked on the basis of their ‘‘centrality’’ in a diffusion process

occurring on the graph. Diffusion algorithms, originally proposed

for ranking web pages, have been recently applied to citation

networks [24]. The evaluation of the popularity of papers [25],

journals [26,27] and scientists [28] is performed not by looking at

local properties of the network (i.e., number of citations) but by

measuring their degree of centrality in the flow of information

diffusing over the entire graph. The use of the whole network leads

to better evaluation criteria without the addition of external

ingredients because the complexity of the citation process is

encoded by the topology of the graph.

In this paper we continue in this direction of research and

present a novel example of a real system, taken from the world of

professional sports, suitable for network representation. We

consider the list of all tennis matches played by professional

players during the last 43 years (1968–2010). Matches are

considered as basic contacts between the actors in the network

and weighted connections are drawn on the basis of the number of

matches between the same two opponents. We first provide

evidence of the complexity of the network of contacts between

tennis players. We then develop a ranking algorithm similar to

PageRank and quantify the importance of tennis players with the

so-called ‘‘prestige score’’. The results presented here indicate once

more that ranking techniques based on networks outperform
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traditional methods. The prestige score is in fact more accurate

and has higher predictive power than well established ranking

schemes adopted in professional tennis. More importantly, our

ranking method does not require the introduction of external

criteria for the assessment of the quality of players and

tournaments. Their importance is self-determined by the various

competitive processes described by the intricate network of

contacts. Our algorithm does nothing more than taking into

account this information.

Methods

Data set
Data were collected from the web site of the Association of

Tennis Professionals (ATP, www.atpworldtour.com). We auto-

matically downloaded all matches played by professional tennis

players from January 1968 to October 2010. We restrict our

analysis only to matches played in Grand Slams and ATP World

Tour tournaments for a total of 3640 tournaments and 133261

matches. For illustrative purposes, in the top plot of the panel a of

Figure 1, we report the number of tournaments played in each of

the years covered by our data set. With the exception of the period

between 1968 and 1970, when ATP was still in its infancy, about

75 tournaments were played each year. Two periods of larger

popularity were registered around years 1980 and 1992 when

more than 90 tournaments per year were played. The total

number of different players present in our data set is 3700, and in

the bottom plot of panel a of Figure 1 we show how many players

played at least one match in each of the years covered by our

analysis. In this case, the function is less regular. On average, 400

different players played in each of the years between 1968 and

1996. Large fluctuations are anyway visible and a very high peak

in 1980, when more than 500 players participated in ATP

tournaments, is also present. Between 1996 and 2000, the number

of players decreased from 400 to 300 in an almost linear fashion.

After that, the number of participants in ATP tournaments started

to be more constant with small fluctuations around an average of

about 300 players.

Network representation
We represent the data set as a network of contacts between

tennis players. This is a very natural representation of the system

since a single match can be viewed as an elementary contact

between two opponents. Each time the player i plays and wins

against player j, we draw a directed connection from j to i [j?i,
see Figure 2]. We adopt a weighted representation of the contacts

[29], by assigning to the generic directed edge j?i a weight wji

equal to the number of times that player j looses against player i.
Our data are flexible and allow various levels of representation by

including for example only matches played in a certain period of

time, on a certain type of surface, etc. An example is reported in

panel a of Figure 2 where the network of contacts is restricted only

to the 24 players having been number one in the official ATP

ranking. In general, networks obtained from the aggregation of a

sufficiently high number of matches have topological complex

features consistent with the majority of networked social systems so

far studied in literature [30,31]. Typical measures revealing

complex structure are represented by the probability density

functions of the in- and out-strengths of vertices [29], both

following a clear power-law behavior [see Figure 1, panel b]. In

our social system, this means that most of the players perform a

small number of matches (won or lost) and then quit playing in

major tournaments. On the other hand, a small set of top players

performs many matches against worse opponents (generally

beating them) and also many matches (won or lost) against other

top players. This picture is consistent with the so-called ‘‘Matthew

effect’’ in career longevity recently observed also in other

professional sports [12,15].

Prestige score
The network representation can be used for ranking players. In

our interpretation, each player in the network carries a unit of

‘‘tennis prestige’’ and we imagine that prestige flows in the graph

along its weighted connections. The process can be mathemati-

cally solved by determining the solution of the system of equations

Pi~ 1{qð Þ
X

j

Pj

wji

sout
j

z
q

N
z

1{q

N

X
j

Pjd sout
j

� �
, ð1Þ

valid for all nodes i~1, . . . ,N, with the additional constraint thatP
i Pi~1. N indicates the total number of players (vertices) in the

network, while sout
j ~

P
i wji is the out-strength of the node j

(i.e., the sum of the weight of all edges departing from vertex j). Pi

is the ‘‘prestige score’’ assigned to player i and represents the

fraction of the overall tennis prestige sitting, in the steady state of

the diffusion process, on vertex i. In Eqs. (1), q [ 0,1½ � is a control

parameter which accounts for the importance of the various terms

Figure 1. Properties of the data set. In panel a, we report the total number of tournaments (top panel) and players (bottom panel) as a function
of time. In panel b, we plot the fraction of players having played (black circles), won (red squares) and lost (blue diamonds) a certain number of
matches. The black dashed line corresponds to the best power-law fit with exponent consistent with the value 1:2(1).
doi:10.1371/journal.pone.0017249.g001
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contributing to the score of the nodes. The term 1{qð Þ
P

j Pj
wji

sout
j

represents the portion of score received by node i in the diffusion

process: vertices redistribute their entire credit to neighboring

nodes proportionally to the weight of the connections linking to

them.
q

N
stands for a uniform redistribution of tennis prestige

among all nodes according to which each player in the graph

receives a constant and equal amount of credit. Finally the term
1{q

N

X
j
Pjd sout

j

� �
[with d :ð Þ equal to one only if its argument is

equal to zero, and zero otherwise] serves as a correction in the case

of existence of dandling nodes (i.e., nodes with null out-strength),

which otherwise would behave as sinks in the diffusion process.

Our prestige score is analogous to the PageRank score [23],

originally formulated for ranking web pages and more recently

applied in different contexts.

In general topologies, analytical solutions of Eqs. (1) are hard to

find. The stationary values of the scores Pis can be anyway computed

recursively, by setting at the beginning Pi~1=N (but the results do

not depend on the choice of the initial value) and iterating Eqs. (1)

until they converge to values stable within a priori fixed precision.

Single tournament
In the simplest case in which the graph is obtained by aggregating

matches of a single tournament only, we can analytically determine

the solutions of Eqs. (1). In a single tournament, matches are

hierarchically organized in a binary rooted tree and the topology of

the resulting contact network is very simple [see Figure 2, panels b

Figure 2. Top player network and scheme for a single tournament. In panel a, we draw the subgraph of the contact network restricted only
to those players who have been number one in the ATP ranking. Intensities and widths are proportional to the logarithm of the weight carried by
each directed edge. In panel b, we report a schematic view of the matches played during a single tournament, while in panel c we draw the network
derived from it.
doi:10.1371/journal.pone.0017249.g002
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and c]. Indicate with ‘ the number of matches that the winner of the

tournament should play (and win). The total number of players

present at the beginning of the tournament is N~2‘. The prestige

score is simply a function of r, the number of matches won by a

player, and can be denoted by Pr. We can rewrite Eqs. (1) as

Pr~P0z 1{qð Þ
Xr

v~1

Pv{1, ð2Þ

where P0~
1{q

N
P‘z

q

N
and 0ƒrƒ‘. The score Pr is given by the

sum of two terms: P0 stands for the equal contribution shared by all

players independently of the number of victories; 1{qð Þ
Pr

v~1 Pv{1

represents the score accrued for the number of matches won. The

former system of equations has a recursive solution given by

Pr~ 2{qð ÞPr{1~ . . . ~ 2{qð ÞrP0, ð3Þ

which is still dependent on a constant that can be determined by

implementing the normalization condition

X‘
r~0

nrPr~1: ð4Þ

In Eq. (4), nr indicates the number of players who have won r
matches. We have nr~2‘{r{1 for 0ƒrv‘ and n‘~1 and Eqs. (3)

and (4) allow to compute

P0ð Þ{1
~
X‘{1

r~0
2{qð Þr2‘{1{r z 2{qð Þ‘

2‘{1
X‘{1

r~0

2{q

2

� �r

z 2{qð Þ‘

2‘{1 1{ 2{qð Þ=2½ �‘

2{qð Þ=2½ � z 2{qð Þ‘
:

2‘{ 2{qð Þ‘

q
z 2{qð Þ‘

In the former calculations, we have used the well known identityPv
r~0 xr~

1{xvz1

1{x
, valid for any xj jv1 and v§0, which

respectively means 0vqƒ1 and ‘w0 in our case. Finally, we obtain

P0~
q

2‘z 2{qð Þ‘ q{1ð Þ
, ð5Þ

which together with Eqs. (3) provides the solution

Pr~
q 2{qð Þr

2‘z 2{qð Þ‘ q{1ð Þ
: ð6Þ

It is worth to notice that for q~1, Eqs. (6) correctly give Pr~2{‘

for any r, meaning that, in absence of diffusion, prestige is

homogeneously distributed among all nodes. Conversely, for q~0
the solution is

Figure 3. Prestige score in a single tournament. Prestige score Pr

as a function of the number of victories r in a tournament with ‘~7
rounds (Grand Slam). Black circles are obtained from Eqs. (7) and valid
for q~0. All other values of qw0 have been calculated from Eqs. (6): red
squares stand for q~0:15, blue diamonds for q~0:5, violet up-triangles
for q~0:85 and green down-triangles for q~1.
doi:10.1371/journal.pone.0017249.g003

Table 1. Top 30 players in the history of tennis.

Rank Player Country Hand Start End

1 Jimmy Connors United States L 1970 1996

2 Ivan Lendl United States R 1978 1994

3 John McEnroe United States L 1976 1994

4 Guillermo Vilas Argentina L 1969 1992

5 Andre Agassi United States R 1986 2006

6 Stefan Edberg Sweden R 1982 1996

7 Roger Federer Switzerland R 1998 2010

8 Pete Sampras United States R 1988 2002

9 Ilie Na
^

stase Romania R 1968 1985

10 Björn Borg Sweden R 1971 1993

11 Boris Becker Germany R 1983 1999

12 Arthur Ashe United States R 1968 1979

13 Brian Gottfried United States R 1970 1984

14 Stan Smith United States R 1968 1985

15 Manuel Orantes Spain L 1968 1984

16 Michael Chang United States R 1987 2003

17 Roscoe Tanner United States L 1969 1985

18 Eddie Dibbs United States R 1971 1984

19 Harold Solomon United States R 1971 1991

20 Tom Okker Netherlands R 1968 1981

21 Mats Wilander Sweden R 1980 1996

22 Goran Ivaniševic’ Croatia L 1988 2004

23 Vitas Gerulaitis United States R 1971 1986

24 Rafael Nadal Spain L 2002 2010

25 Raúl Ramirez Mexico R 1970 1983

26 John Newcombe Australia R 1968 1981

27 Ken Rosewall Australia R 1968 1980

28 Yevgeny Kafelnikov Russian FederationR 1992 2003

29 Andy Roddick United States R 2000 2010

30 Thomas Müster Austria L 1984 1999

Players having been at the top of ATP ranking are highlighted in gray. From left
to right we indicate for each player: rank position according to prestige score,
full name, country of origin, the hand used to play, and the years of the first and
last ATP tournament played.
doi:10.1371/journal.pone.0017249.t001
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Pr~
2r

2‘{1 ‘z2ð Þ : ð7Þ

In Figure 3, we plot Eqs. (6) and (7) for various values of q. In

general, sufficiently low values of q allow to assign to the winner of

the tournament a score which is about two order of magnitude

larger than the one given to players loosing at the first round. The

score of the winner is an exponential function of ‘, the length of

the tournament. Grand Slams have for instance length ‘~7 and

their relative importance is therefore two or four times larger than

the one of other ATP tournaments, typically having lengths ‘~6
or ‘~5.

Results

We set q~0:15 and run the ranking procedure on several

networks derived from our data set. The choice q~0:15 is mainly

due to tradition. This is the value originally used in the PageRank

algorithm [23] and then adopted in the majority of papers about

this type of ranking procedures [25–28]. It should be stressed that

q~0:15 is also a reasonable value because it ensures a high

relative score for the winner of the tournament as stated in Eqs. (6).

In Table 1, we report the results obtained from the analysis of

the contact network constructed over the whole data set. The

method is very effective in finding the best players of the history of

tennis. In our top 10 list, there are 9 players having been number

one in the ATP ranking. Our ranking technique identifies Jimmy

Connors as the best player of the history of tennis. This could be a

posteriori justified by the extremely long and successful career of this

player. Among all top players in the history of tennis, Jimmy Connors

has been undoubtedly the one with the longest and most regular

trend, being in the top 10 of the ATP year-end ranking for 16

consecutive years (1973–998). Prestige score is strongly correlated

with the number of victories, but important differences are evident

when the two techniques are compared. Panel a of Figure 4 shows

a scatter plot, where the rank calculated according to our score is

compared to the one based on the number of victories. An

important outlier is this plot is represented by the Rafael Nadal, the

actual number one of the ATP ranking. Rafael Nadal occupies the

rank position number 40 according to the number of victories

obtained in his still young career, but he is placed at position

number 24 according to prestige score, consistently with his high

relevance in the recent history of tennis. A similar effect is also

visible for Björn Borg, whose career length was shorter than average.

He is ranked at position 17 according to the number of victories.

Prestige score differently is able to determine the undoubted

importance of this player and, in our ranking, he is placed among

the best 10 players of the whole history of professional tennis.

In general, players still in activity are penalized with respect to

those who have ended their careers. Prestige score is in fact

strongly correlated with the number of victories [see panel a of

Figure 4] and still active players did not yet played all matches of

their career. This bias, introduced by the incompleteness of the

data set, can be suppressed by considering, for example, only

matches played in the same year. Table 2 shows the list of the best

players of the year according to prestige score. It is interesting to

see how our score is effective also here. We identify Rod Laver as the

best tennis player between 1968 and 1971, period in which no

ATP ranking was still established. Similar long periods of

dominance are also those of Ivan Lendl (1981–1986), Pete Sampras

(1992–1995) and Roger Federer (2003–2006). For comparison, we

report the best players of the year according to ATP (year-end

rank) and ITF (International Tennis Federation, www.itftennis.

com) rankings. In many cases, the best players of the year are the

same in all lists. Prestige rank seems however to have a higher

predictive power by anticipating the best player of the subsequent

year according to the two other rankings. John McEnroe is the top

player in our ranking in 1980 and occupies the same position in

the ATP and ITF lists one year later. The same happens also for

Ivan Lendl, Pete Sampras, Roger Federer and Rafael Nadal, respectively

best players of the years 1984, 1992, 2003 and 2007 according to

prestige score, but only one year later placed at the top position of

ATP and ITF rankings. The official ATP rank and the one

determined on the basis of the prestige score are strongly

Figure 4. Relation between prestige rank and other ranking techniques. In panel a, we present a scatter plot of the prestige rank versus the
rank based on the number of victories (i.e., in-strength). Only players ranked in the top 30 positions in one of the two lists are reported. Rank
positions are calculated on the network corresponding to all matches played between 1968 and 2010. In panel b, a similar scatter plot is presented,
but now only matches of year 2009 are considered for the construction of the network. Prestige rank positions are compared with those assigned by
ATP.
doi:10.1371/journal.pone.0017249.g004
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correlated, but small differences between them are very interest-

ing. An example is reported in panel b of Figure 4, where the

prestige rank calculated over the contact network of 2009 is

compared with the ATP rank of the end of the same year (official

ATP year-end rank as of December 28, 2009). The top 4 positions

according to prestige score do not corresponds to those of the ATP

ranking. The best player of the year, for example, is Novak Djokovic’
instead of Roger Federer.

We perform also a different kind of analysis by constructing

networks of contacts for decades and for specific types of playing

surfaces. According to our score, the best players per decade are

(Tables S1, S2, S3, S4 list the top 30 players in each decade) :

Jimmy Connors (1971–1980), Ivan Lendl (1981–1990), Pete Sampras

(1991–2000) and Roger Federer (2001–2010). Prestige score identifies

Guillermo Vilas as the best player ever in clay tournaments, while on

grass and hard surfaces the best players ever are Jimmy Connors and

Andre Agassi, respectively (see Tables S5, S6, S7 for the list of the

top 30 players of a particular playing surface).

Discussion

Tools and techniques of complex networks have wide

applicability since many real systems can be naturally described

as graphs. For instance, rankings based on diffusion are very

effective since the whole information encoded by the network

topology can be used in place of simple local properties or pre-

determined and arbitrary criteria. Diffusion algorithms, like the

one for calculating the PageRank score [23], were first developed

for ranking web pages and more recently have been applied to

citation networks [25–28]. In citation networks, diffusion algo-

rithms generally outperform simple ranking techniques based on

local network properties (i.e., number of citations). When the

popularity of papers is in fact measured in terms of mere citation

counts, there is no distinction between the quality of the citations

received. In contrast, when a diffusion algorithm is used for the

assessment of the quality of scientific publications, then it is not

only important that popular papers receive many citations, but

also that they are cited by other popular articles. In the case of

citation networks however, possible biases are introduced in the

absence of a proper classification of papers in scientific disciplines

[32]. The average number of publications and citations strongly

depend on the popularity of a particular topic of research and this

fact influences the outcome of a diffusion ranking algorithm.

Another important issue in paper citation networks is related to

their intrinsic temporal nature: connections go only backward in

time, because papers can cite only older articles and not vice versa.

The anisotropy of the underlying network automatically biases any

method based on diffusion. Possible corrections can be imple-

mented: for example, the weight of citations may be represented

by an exponential decaying function of the age difference between

citing and cited papers [25]. Though these corrections can be

reasonable, they are ad hoc recipes and as such may be considered

arbitrary.

Here we have reported another emblematic example of a real

social system suitable for network representation: the graph of

contacts (i.e., matches) between professional tennis players. This

network shows complex topological features and as such the

understanding of the whole system cannot be achieved by

decomposing the graph and studying each component in isolation.

In particular, the correct assessment of players’ performances

needs the simultaneously consideration of the whole network of

interactions. We have therefore introduced a new score, called

‘‘prestige score’’, based on a diffusion process occurring on the

entire network of contacts between tennis players. According to

our ranking technique, the relevance of players is not related to the

number of victories only but mostly to the quality of these

victories. In this sense, it could be more important to beat a great

Table 2. Best players of the year.

Year Prestige ATP year-end ITF

1968 Rod Laver - -

1969 Rod Laver - -

1970 Rod Laver - -

1971 Ken Rosewall - -

1972 Ilie Na
^

stase - -

1973 Tom Okker Ilie Na
^

stase -

1974 Björn Borg Jimmy Connors -

1975 Arthur Ashe Jimmy Connors -

1976 Jimmy Connors Jimmy Connors -

1977 Guillermo Vilas Jimmy Connors -

1978 Björn Borg Jimmy Connors Björn Borg

1979 Björn Borg Björn Borg Björn Borg

1980 John McEnroe Björn Borg Björn Borg

1981 Ivan Lendl John McEnroe John McEnroe

1982 Ivan Lendl John McEnroe Jimmy Connors

1983 Ivan Lendl John McEnroe John McEnroe

1984 Ivan Lendl John McEnroe John McEnroe

1985 Ivan Lendl Ivan Lendl Ivan Lendl

1986 Ivan Lendl Ivan Lendl Ivan Lendl

1987 Stefan Edberg Ivan Lendl Ivan Lendl

1988 Mats Wilander Mats Wilander Mats Wilander

1989 Ivan Lendl Ivan Lendl Boris Becker

1990 Stefan Edberg Stefan Edberg Ivan Lendl

1991 Stefan Edberg Stefan Edberg Stefan Edberg

1992 Pete Sampras Jim Courier Jim Courier

1993 Pete Sampras Pete Sampras Pete Sampras

1994 Pete Sampras Pete Sampras Pete Sampras

1995 Pete Sampras Pete Sampras Pete Sampras

1996 Goran Ivaniševic’ Pete Sampras Pete Sampras

1997 Patrick Rafter Pete Sampras Pete Sampras

1998 Marcelo Rı́os Pete Sampras Pete Sampras

1999 Andre Agassi Andre Agassi Andre Agassi

2000 Marat Safin Gustavo Kuerten Gustavo Kuerten

2001 Lleyton Hewitt Lleyton Hewitt Lleyton Hewitt

2002 Lleyton Hewitt Lleyton Hewitt Lleyton Hewitt

2003 Roger Federer Andy Roddick Andy Roddick

2004 Roger Federer Roger Federer Roger Federer

2005 Roger Federer Roger Federer Roger Federer

2006 Roger Federer Roger Federer Roger Federer

2007 Rafael Nadal Roger Federer Roger Federer

2008 Rafael Nadal Rafael Nadal Rafael Nadal

2009 Novak Djokovic’ Roger Federer Roger Federer

2010 Rafael Nadal Rafael Nadal Rafael Nadal

For each year we report the best player according to our ranking scheme and
those of ATP and ITF. Best year-end ATP players are listed for all years from 1973
on. ITF world champions have started to be nominated since 1978 only.
doi:10.1371/journal.pone.0017249.t002
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player than to win many matches against less relevant opponents.

The results of the analysis have revealed that our technique is

effective in finding the best players of the history of tennis. The

biases mentioned in the case of citation networks are not present in

the tennis contact graph. Players do not need to be classified since

everybody has the opportunity to participate to every tournament.

Additionally, there is not temporal dependence because matches

are played between opponents still in activity and the flow does not

necessarily go from young players towards older ones. In general,

players still in activity are penalized with respect to those who

already ended their career only for incompleteness of information

(i.e., they did not play all matches of their career) and not because

of an intrinsic bias of the system. Our ranking technique is

furthermore effective because it does not require any external

criteria of judgment. As term of comparison, the actual ATP

ranking is based on the amount of points collected by players

during the season. Each tournament has an a priori fixed value and

points are distributed accordingly to the round reached in the

tournament. In our approach differently, the importance of a

tournament is self-determined: its quality is established by the level

of the players who are taking part of it.

In conclusion, we would like to stress that the aim of our method

is not to replace other ranking techniques, optimized and almost

perfected in the course of many years. Prestige rank represents

only a novel method with a different spirit and may be used to

corroborate the accuracy of other well established ranking

techniques.
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