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Abstract

Background: A number of gene-profiling methodologies have been applied to microRNA research. The diversity of the
platforms and analytical methods makes the comparison and integration of cross-platform microRNA profiling data
challenging. In this study, we systematically analyze three representative microRNA profiling platforms: Locked Nucleic Acid
(LNA) microarray, beads array, and TaqMan quantitative real-time PCR Low Density Array (TLDA).

Methodology/Principal Findings: The microRNA profiles of 40 human osteosarcoma xenograft samples were generated by
LNA array, beads array, and TLDA. Results show that each of the three platforms perform similarly regarding intra-platform
reproducibility or reproducibility of data within one platform while LNA array and TLDA had the best inter-platform
reproducibility or reproducibility of data across platforms. The endogenous controls/probes contained in each platform
have been observed for their stability under different treatments/environments; those included in TLDA have the best
performance with minimal coefficients of variation. Importantly, we identify that the proper selection of normalization
methods is critical for improving the inter-platform reproducibility, which is evidenced by the application of two non-linear
normalization methods (loess and quantile) that substantially elevated the sensitivity and specificity of the statistical data
assessment.

Conclusions: Each platform is relatively stable in terms of its own microRNA profiling intra-reproducibility; however, the
inter-platform reproducibility among different platforms is low. More microRNA specific normalization methods are in
demand for cross-platform microRNA microarray data integration and comparison, which will improve the reproducibility
and consistency between platforms.
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Introduction

MicroRNAs (miRNA) are a set of small, single-stranded, non-

coding RNA molecules that bind the complementary 39-UTR

sequence of their target mRNA, preventing translation and

inducing mRNA degradation [1,2]. In this manner, miRNAs are

predicted to regulate the expression of more than 30% of all

human genes and are known to play a key role in many biological

processes, including development, cell growth, differentiation,

apoptosis, and tumorigenesis [3,4,5,6,7,8,9]. Recent studies have

demonstrated the value of miRNA expression patterns for

diagnostic, prognostic, and therapeutic uses [10,11], thus height-

ening interest in miRNAs’ potential as biomarkers for tumor

development, progression, and chemosensitivity. Many well-

established molecular and biological methodologies including

microarray, cloning, northern blotting, quantitative real-time-

PCR (qRT-PCR), in situ hybridization (ISH), and next generation

sequencing (NGS) are now being successfully utilized for miRNA

research [12,13,14,15,16,17]. However, some unique signatures of

miRNAs, such as their small total number and short length, have

created technical obstacles for direct application in various array

platforms, leading to a need for developing novel methodologies

designed to measure miRNA expression with high specificity and

sensitivity. Here, we will systematically compare three represen-

tative platforms that use different carriers: glass slide LNA

microarray, beads-based array, and TLDA quantitative real-time

PCR array. Each has been broadly applied to miRNA profiling.

Microarray technology has been successfully applied in the field

of genomic and biological research over the past decade, allowing

for the simultaneous profiling of tens of thousands of genes

[12,18]. Briefly, cyanine dye-labeled cRNA/cDNA is hybridized

to its complementary detection probe on an array carrier (e.g.

glass, silicon or nylon) and emits fluorescence in the presence of a

laser. The intensity of fluorescence, as caught and measured using
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a scanner administered by professional software, relates the

abundance of bound genes. However, miRNA is much shorter

than mRNA, which provides an important caveat for its use in

classically mRNA-favored technologies. Since mature miRNA

contains only 19-25 nucleotides and detective probes on the array

carrier require the complementary pairing of at least ,20 base

pairs, the full-length sequence of each mature miRNA must

inherently be included in the probes. The effect is a wide Tm

range for the entire miRNA population, resulting in decreased

binding efficacy or fluorescent distortion. The application of

Locked Nucleic Acid (LNA)-modified oligonucleotide probes has

overcome this obstacle by modifying the LNA contents in the

probe, eliminating the diversity of Tm values for individual

miRNA probes by enhancing binding affinity and by leading to

the improvement of miRNA detection specificity and sensitivity

[19]. LNA array is one of multiple successful examples of

microarray technology adopted into miRNA study. Thus, we

selected it to represent microarray technology in our analysis.

Bead-based hybridization carries an expectation of increased

specificity over glass-based microarray [20]. Five-micron polysty-

rene beads, uniquely colored (up to 100 colors) and covered with

oligonucleotide capture probes specific for a single miRNA, are

hybridized to biotinylated miRNA in the liquid phase and then

they are stained with streptavidin-phycoerythrin. A flow cytometer

(Luminex 200) directs a single column of beads through the path of

two lasers; one laser is used to identify the particular miRNA by its

bead color, and the other is used to detect bound quantities of

miRNA based on the presence of the reporter molecule,

phycoerythrin. Bead-based arrays allow for the inclusion of many

combinations of miRNA capture beads into a single pool, which

are adjusted based on the interaction of bead-coupled probes, and

provides greater flexibility over time as miRNA are discovered and

corresponding beads are created. Indeed, beads-based miRNA

detection is both feasible and attractive for its high speed,

heightened accuracy, and relatively low cost [20].

Quantitative real-time RT-PCR (qRT-PCR) assay is a rapid

and reproducible methodology with a broad dynamic range

compared to Northern blot or conventional RT-PCR when

assessing RNA expression [21]. It has been widely applied in

miRNA research for years and recognized therein as a gold

standard [22]. TaqMan is a relatively mature technology for the

qRT-PCR application and has been adopted into miRNA

research utilizing a stem-loop structure specific for binding mature

miRNA [15]. The development of TaqMan technology has led to

an innovative design of Low Density Arrays (TLDA), a medium-

throughput method for real-time RT-PCR that uses 384-well

microfluidics cards. A single TLDA card may assay up to 384

miRNAs. In theory, this technology provides a feasible platform

combining miRNA discovery and validation.

In this study, we will profile miRNAs from a panel of

osteosarcoma xenografts using LNA microarray, beads array,

and TLDA, respectively. Systematic comparison and evaluation

within (intra-) and across (inter-) platforms will be performed.

Results

MicroRNA profiling using three platforms
A total of 40 human osteosarcoma xenograft specimens were

employed for this study, which included 10 samples for each

chemotherapeutic treatment (Cisplatin, Doxorubicin, and Ifosfa-

mide) plus 10 non-treated samples. Locked Nucleic Acid (LNA)

miRNA array, beads array, and TaqMan Low Density Array

(TLDA) cards profiled 560, 319, and 664 human miRNAs,

respectively. TLDA shared 508 and 231 miRNAs with LNA array

and beads array, respectively, and LNA array has 221 overlapped

miRNAs with beads array. A total of 213 miRNAs were shared by

three platforms, as illustrated in Figure S1.

Signal quality and background noise comparisons
Figure 1 compares the distributions of the log2 intensity

measures for all the samples tested by the three platforms. The

left panel illustrates the distribution of all miRNAs from three

different platforms while the right panel displays the distribution of

the 213 shared miRNAs. For each plot, we see that within each

platform, the distributions of different profiles (without normali-

zation) show similar patterns. By comparing each pair of plots in

each row, especially (a) versus (b) and (e) versus (f), we find that the

left modes are lower after the non-overlapped miRNAs are

excluded. Meanwhile, the patterns of the distributions maintain

similarity, indicating that a majority of the non-overlapped

miRNAs are weakly expressed.

The signal-to-noise ratio (SNR) is a statistical tool that measures

the quality of the signals that are obtained from the arrays. When

SNR is low, the background noise could dominate the measured

expression signal and thus increase the uncertainty in evaluating

gene expression levels. We computed the SNR for each miRNA in

the LNA and beads arrays by dividing the background-subtracted

signal by the estimated background noise. Results show that the

beads array has an overall higher SNR than the LNA array

(Figure 2). A number of probes have lower intensity than the

background on the LNA array, which causes log (SNR) values to

be negative. The SNR was not computed for TLDA because there

were no estimates for the background noises in qRT-PCR.

Intra-platform reproducibility
To evaluate the intra-platform reproducibility, we calculated

the rank-based Spearman’s correlation coefficients among various

miRNA profiles tested on different samples by the same platform.

A stable platform is expected to produce similar results across

different experiments. In other words, the results from the same

sample using the same platform should be reproducible. The

Pearson correlation coefficient analysis was banned because the

study demonstrated that array profiling data were mostly non-

linear [23,24]. By using the Spearman’s correlation coefficient

measurement to evaluate intra-platform reproducibility, which

adopts the rank information, the different scales used in each

platform may be ignored and log-transformation can be avoided.

From the three box plots on the left in Figure 3, we see that the

beads array has the highest intra-platform reproducibility with a

median Spearman correlation of 0.8544 and a standard deviation

of 0.0475. The first and third quartiles are 0.8189 and 0.8877,

respectively. TLDA has a median coefficient of 0.8118 with a

standard deviation of 0.0745. The median coefficient of the LNA

array is 0.7367, and the standard deviation is 0.0759. The

correlation coefficients are computed based on the profiles of 213

overlapping miRNAs that are undergoing the same treatment.

Our results demonstrate that the intra-platform reproducibility of

all three platforms are acceptable and have no significant

differences.

Inter-platform consistency
The Spearman’s correlation coefficients were also employed to

evaluate the inter-platform reproducibility between any two

platforms. The three box plots on the right in Figure 3 show the

coefficients among the three platforms. Both beads array and

TLDA display relatively good inter-platform reproducibility with

LNA array. The median coefficient between LNA and beads

arrays is 0.4521 with a standard deviation of 0.0537, and the
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median coefficient between LNA array and TLDA is slightly

improved (0.4872) but with a slightly larger standard deviation of

0.0962. The reproducibility between beads array and TLDA is

much lower, with a median coefficient of 0.1060 and a standard

deviation of 0.0391.

The evaluation of endogenous controls/probes for each
platform

Our models measured the miRNA profiles of 10 xenograft

samples. In order to evaluate the stability of endogenous controls/

probes contained in each array, we employed 30 chemo drug

treated samples and 10 untreated control samples to constitute the

research models. The details will be described in the Material and

Methods.

LNA array includes 12 snoRNAs purposed for normalization.

Table S1 compares their stability by computing coefficients of

variation (CVs) based on the four replicates of 12 snoRNAs on

each array. When processing raw data, if the signal intensity is less

than 2 standard deviations from the background intensity, the

probe will be flagged by the ImaGene 7.0 software. We found a

few probes out of all 12 snoRNAs to be flagged across the 40

samples; however, hsa_SNORD2, hsa_SNORD3, hsa_SNORD6,

hsa_SNORD10, and U6-snRNA-1 have relatively stable CVs

compared to the remaining controls. In particular, hsa_SNORD2

has the smallest CVs and has no flagged probes across the 10

control samples. Because hsa_SNORD3 has a few outstanding

measurements in some samples (data not show), we finally selected

hsa_SNORD2, hsa_SNORD6, hsa_SNORD10, and U6-snRNA-

1 for the further analyses. The expression patterns of these four

controls, as determined by their absolute intensities, are presented

in Figure 4A.

Beads array includes four normalization beads, which harbor

probes that target ubiquitous small nucleolar RNAs (snoRNAs),

useful for intra- and inter-sample normalization, upon successful

Figure 2. Signal-to-noise ratio comparison between beads array and LNA array. Plot (a) shows the density curves of the log signal-to-noise
ratios for different samples tested by beads array, while the results for LNA array are demonstrated in plot (b). A log signal-to-noise ratio close to
‘‘one’’ indicates that the signal after background subtraction is close to the background noise.
doi:10.1371/journal.pone.0017167.g002

Figure 1. Expression distributions of miRNAs being profiled by the three platforms. Plots (a), (c) and (e) demonstrate the density curves of
the expression of all miRNAs being profiled by LNA array, beads array, and TLDA, respectively. Plots (b), (d) and (f) compare the density curves of the
expressions of the overlapped miRNAs from all three platforms. We took a log2 transformation to all intensity measures. For TLDA data, the {DCt

values were used.
doi:10.1371/journal.pone.0017167.g001
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identification of similarly expressed snoRNAs across multiple

samples. Their relatively close expression patterns, determined by

using the intensity values after background subtraction, are

exhibited in Figure 4B.

A complete miRNA profile requires use of two TLDA cards,

Cards A and B; Card A contains three endogenous controls

(MammU6, RUN44, and RUN48) for relative quantitation, while

B contains six endogenous controls (MammU6, RNU6B, RNU24,

RNU43, RNU44, and RNU48). Figure 4C shows the profiles of

the three endogenous controls common in the two cards

(MammU6, RUN44, and RUN48) presented by Ct values.

To compare the stability of all endogenous controls/probes used

within the three platforms, we again employed CVs by taking the

expression levels into consideration (Figure 5). For the TLDA and

LNA arrays, the CVs were computed based on the replicates of

each control/probe in a single array, while in the beads array, the

CVs were computed based on the intensities after intra-sample

normalization for the four normalization beads from the five pools

for each sample. From Figure 5, we find that the CVs of the four

snoRNAs in LNA array have much larger means and variances

compared to those on the other two platforms. Three endogenous

controls in TLDA have the best performance with the small means

and standard deviations.

Proper normalization methods improve consistency
between the platforms

The low data consistency using inter-platform comparison bans

data integration across the platforms. There are many reasons that

could lead to this concern, such as array design, properties, signal

measurement, et al, but we assume that normalization might be

one adjustable factor, as we previously reported [25]. In order to

improve the inter-platform consistency, we introduced two

additional and popularly used normalization methods [26,27],

quantile and loess, in parallel with using designated probes/beads

for normalization. TLDA data was removed from the normaliza-

tion by quantile and loess since its signals were presented as cycle

threshold (CT), which denotes the number of PCR cycles required

for the fluorescent signal to cross a designated threshold level

above a calculated background, rather than being presented as

intensity values for the probes, as LNA and beads array utilize. We

demonstrated earlier that TLDA included the most stable

endogenous controls, and, considering the suggestion of others

[21,22], we used the results from TLDA as a standard to evaluate

the performance led by different normalization methods when

applied to the analysis of LNA and beads arrays.

In this study, we also utilized sensitivity and specificity, two

statistical measures of the performance of a binary classification, as

test statistics of each platform to measure the inter-platform

reproducibility. Our foremost assumption regarding the use of raw

miRNA data for such a study is that a given miRNA from a single

patient after a single treatment should maintain a consistent trend

of up- or down-regulation across each platform, and an effective

miRNA expression profiling platform should be capable of

assessing the true direction of regulation. Thus, we compared

the sensitivity and specificity of beads array (Figure 6; left panel)

and LNA array (right panel), using the TLDA results as a

Figure 3. Intra- and inter-platform reproducibility comparisons. The first box plot to the left is based on Spearman’s correlation coefficients
between the LNA profiles of any two samples under the same treatment. The second and third plots are for the beads array and TLDA, respectively.
The fourth plot is constructed based on the Spearman’s correlation coefficients between the two profiles obtained by beads array and LNA array
based on the same sample under the same treatment for all 10 samples. The fifth plot shows the results between beads array and TLDA, while the
sixth plot shows the results between LNA array and TLDA.
doi:10.1371/journal.pone.0017167.g003
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reference, under different normalization methods with various

fold-change cutoffs (x-axis). As shown in the left plot in the first

row, the specificity is high when normalizing the profiling data of

beads array by the four normalizers; however, the sensitivity is low.

The loess method can improve the sensitivity and lower the

specificity as a trade-off for the beads array data, while quantile

normalization and the scaling method have similar effects on the

beads data. By comparing the results of beads array with that of

LNA array, we see that the consistency of LNA array in predicting

the regulation trends (up- or down-regulated) is better than beads

array, consistent with the results of inter-platform reproducibility

as assessed by correlation coefficients. Additionally, quantile and

loess normalization can improve the consistency of beads array

and LNA array with TLDA, although the choice of optimal cutoff

value could be slightly different.

Discussion

MiRNA continues to attract more and more attention in the

biomedical field due to its important roles in many cellular and

molecular processes [3,4,5,6,7,8,9]; however, unlike DNA, mRNA,

and protein, the genomic methodologies for miRNA discovery and

validation are not well-developed when considering they are

prospective in basic and clinical research. For example, there are

relatively few specific normalization methods currently available for

miRNA profiling analysis [25]. Even though many well-established

methods for mRNA/cDNA and protein have been applied in

miRNA analysis, their performance is still under evaluation,

partially due to a shortage of effective validation methods that can

assess the ‘‘real’’ presence and activity of miRNA. The total number

of known human miRNAs to date is 939, according to the Sanger

database, which is much lower than the number of known human

gene transcripts (,50 k). Any profiling normalization methods

based on normal distribution can be applied to this small population

estimation but the accuracy of those methods is questionable [25].

In this study, using a large cohort of samples constituting unique

models exposed to different environments, we evaluated three

representative platforms based on different mechanisms/carriers

that have been applied for miRNA profiling, including LNA array,

beads array, and TLDA. The distribution of intensity measures

from each profile appear as variable patterns, which could be

attributed to differences in signal collection and scales of

measurement. Surprisingly, the SNR of the LNA array was

secondary to the beads array; however, each probe for LNA had

four technical duplicates, potentially overcoming the disadvantage

of a weaker signal to some extent. Each array contained variable

probe types based on the array’s design or capacity, but 213

miRNAs were shared by three platforms. These miRNAs had

similar distribution patterns in each array, indicating that they

could represent each array for further analyses.

Git et al. compared microarray (from Agilent, Exiqon, Ambion,

Invitrogen, and Combimatrix), qRT-PCR, and next generation

sequencing (NGS) technologies for the miRNA profiles of three

cell lines. They found that the actual overlap between the

differentially expressed miRNAs was surprisingly low when

comparing microarray, NGS, and qRT-PCR data [28]. Sato

et al. also evaluated five commercial miRNA microarray platforms

from Agilent, Exiqon, Ambion, Invitrogen, and Toray using two

RNA samples and found the miRNA microarray to have high

intra-platform repeatability and comparability to qRT-PCR but

lower inter-platform concordance [29]. Using the designated

normalization controls/probes for each array, we computed the

intra- and inter-platform reproducibility. Our results demonstrat-

ed that the intra-platform reproducibility of all three platforms is

reasonable, while the beads array is the most consistent. The LNA

array and TLDA had the best inter-platform correlation while the

TLDA and beads arrays were the least correlated. These

observations are in agreement with the above reports [28,29].

Multiple factors could potentially contribute to low inter-

platform consistency, such as data collecting, mining, noise

subtracting, etc. Normalization methods have thus been accepted

to play an important role in data comparison and its integration

across platforms [25,26,28,30]. Specific controls have been

recommended for miRNA normalization because data acquired

from the small total number of miRNAs results in insufficient

statistical power that can be used to adopt established mRNA

profiling normalization methods [25]. The ideal controls should be

consistently stable and highly abundant despite tissue types or

treatments. Additionally, they should have properties similar to

those of miRNAs, including size, biogenesis and stability [25].

Each platform employed herein includes a number of such

controls with the potential to act as normalizers. Our unique

models consisted of 10 untreated xenograft controls; each had

three different chemo drug treatments, which resulted in a total of

40 samples. The beads array included four normalization beads of

synthesized short oligos used to maintain consistency across

samples and treatments. Similarly, the LNA array included 12

snoRNAs, and the TLDA contained three endogenous controls

common to Cards A and B, which contributed to computing the

relative quantity for each miRNA. When examining these

controls, the beads array and TLDA performed better than the

LNA array, which had only four controls that maintained

relatively stable expression patterns across all samples.

We performed normalization for each array using the most stable

controls. By adding two broadly applied normalization methods,

quantile and loess, for comparison, we computed the sensitivity and

specificity for each array. Endogenous controls in TLDA performed

better across treatments, though its relative measures are calculated

by 2{DDCt , which is an unsuitable factor for normalization by the

quantile and loess methods. Therefore, we used the TLDA data as a

reference for evaluating the beads and LNA array because others

have suggested qRT-PCR to be a gold standard for relative

quantitation [22]. Our results indicate that proper normalization

methods can improve the sensitivity and specificity of such

platforms,; these results are in line with previous reports [26,30].

Next generation sequencing (NGS) has been pushing for reform

in the field of genomics [31] and has been projected to replace the

use of microarray in the near future. Its introduction into miRNA

research can be attributed to its ability to read short fragments in a

high throughput pattern [32]. Most researchers, including us, agree

with the prospective of this newly developed technology though it

should be admitted that the NGS sequencing technology is still not a

fully mature especially when compared to the microarray, which

Figure 4. Comparison of three platforms’ miRNA profiling data. (A) LNA array: The expressions of the four normalization probes in each
LNA array are plotted, which have similar patterns across 10 samples under the four different treatments. (B) Beads array: The expressions of the
four normalization beads in the five pools while testing 40 different samples are compared, which have similar patterns in the five pools across
samples and indicate that these transcripts do not express significant variation between pools and samples. (C) TLDA: The profiles of the three
endogenous controls commonly used by TLDA Cards A and B are demonstrated relatively stable across samples and treatments. Ctrl, Cis, Dox, and Ifo
represent control, and three different chemo drug treatments.
doi:10.1371/journal.pone.0017167.g004
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has more than twenty years of wide use [28]. In addition, NGS is

based on RNA ligation, PCR amplification, and professional

bioinformatic support, challenging its application in quantitative

gene expression analysis due to cost, labor, and time consumption

concerns [28]. Though it will take time for NGS to fully take over

the microarray, its unique and outstanding sequence discovery

capability is making NGS become a combatant to the microarray.

Hopefully, the imminent advent of third generation sequencing

Figure 5. Stability evaluation for endogenous controls/probes from three platforms. The box plots of coefficient of variation (CV) values
for each projected normalizer are calculated by using the measures of the replicates. Ctrl, Cis, Dox, and Ifo represent control, and three different
chemo drug treatments.
doi:10.1371/journal.pone.0017167.g005
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Figure 6. Inter-platform reproducibility measured by sensitivity and specificity. Sensitivities were compared to evaluate the consistency
among the three platforms. The three plots in the first column compare the consistency between beads array and TLDA, the three plots in the second
column compare the consistency between LNA array and TLDA, and the plots in the third column compare the consistency between beads array and
LNA array. The results in the first, second and third rows are based on the profiles normalized using scaling by specific controls/probes, quantile
normalization, and the cyclic loess method, respectively.
doi:10.1371/journal.pone.0017167.g006
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provides further hope for more reliable and affordable genomic

research platform availability for the future.

LNA array, beads array, and TLDA —three miRNA profiling

platforms based on different mechanisms/carriers— exhibit better

intra-platform consistency than inter-consistency, though each

platform has its inherent merits and shortcomings. For example,

LNA is an affordable platform with novel LNA technology and

probe extending capacity but low SNR and unreliable normali-

zation probes. The beads array has better intra-consistency but

interference between short probes has to be considered. Even

though the beads array has extending capacity, more input

templates will reduce enthusiasm for its use. Both the LNA and

beads arrays use a direct labeling process without template

amplification, which eliminates the errors acquired from PCR.

TLDA is an easy-to-use and effective solution for miRNA profiling

but it is costly with limited extending capacity and no replicates are

available at this time. Therefore, TLDA may be better applied to

validation rather than discovery.

We are not advertising any platforms. We have attempted to

evaluate the scientific merit of each applied miRNA profiling

platform and provide useful evidence for our peers when selecting

miRNA analytic strategies. Unfortunately, we could not identify

any of these to be superior to the others due to their low inter-

platform consistency. Thus, users should select a platform based

on their available facilities, budget, interests, and/or loyalties;

although, the selection of proper normalization and validation

methods will clearly be one of the most critical factors in

determining the best miRNA candidates. Therefore, we conclude

that it is important to develop specific normalization methods for

miRNA profiling in order to improve the accuracy of proofing

data and provide the possibility of data integration across

platforms, profound even in the future sequencing era.

Materials and Methods

Sample preparation and assessment of total RNA
concentration, purity and quality

Forty human osterosarcoma xenografts were collected as described

in the previous publication [33]. Frozen xenografts were ground by a

stainless steel mortar and pestle under liquid nitrogen. Total RNA

was isolated from the tissue powder using Trizol Reagent (Invitrogen,

CA, USA) and was quantitated using a NanoDrop spectrophometer

(Thermo Fisher Scientific Inc., MA, USA).

MiRNA expression analysis using LNA array
Total RNA was labeled using the miRCURY LNA microRNA

Array power labeling kit (Exiqon Inc., Denmark). All reagents used

here were from Exiqon unless specifically mentioned. In brief, a

4 ml reaction volume consisting of 0.5 ml CIP buffer, 0.5 ml CIP

enzyme, 1 ml Spike-in controls and 1 mg total RNA was incubated

at 37uC for 30 min followed by 95uC for 5 min. The CIP reaction

products were mixed with 3 ml labeling buffer, 1.5 ml Hy5

fluorescent label, 2 ml labeling enzyme, and 2 ml DMSO and

were placed in the dark at 16uC for 60 min. The total volume of

the labeled samples was adjusted to 200 ml by adding nuclease-free

water, then mixed with an equal volume of 26 hybridization

buffer at 95uC for 2 min and immediately cooled down on ice.

The samples were loaded on the miRCURY LNA microRNA

Array (Exiqon Inc.; based on miRbase 9.2) using a hybridization

SureHyb chamber kit and gasket slide kit (Aglient Technologies,

CA, USA). The slides were then rotated at 56uC for 16 hrs. After

disassembling the chambers, the slides were washed in three steps.

The first step was to immediately soak the slides in pre-warmed 26
salt buffer, containing 0.2% detergent solution, for 2 min. The

second step was to rinse the slides with 16 salt buffer for 10 sec

and then wash for 2 min in fresh 16salt buffer. The third step was

to use 0.26 salt buffer to wash the slides for 2 min. Finally, the

slides were quick-dried by centrifuging at 1000 rpm for 2 min.

Scanning was performed by an Axon GenePix Professional 4200A

microarray scanner (Molecular Devices, CA, USA). Finally, the

images were gridded and analyzed using ImaGene 7.0 software

(BioDiscovery Inc., CA, USA).

MiRNA expression analysis using beads array
Five mg (one mg per bead pool) of total RNA per sample in a

40 ml reaction volume were 39-biotinylated using Luminex

FlexmiR MicroRNA Labeling Kit (Luminex Corp., TX, USA),

following manufacturer protocol. Using the Luminex FlexmiR

MicroRNA Human Panel of reagents and xMAP beads, 8 ml of

biotin-labeled total RNA, or water for the background control,

were added to an equal volume of a single pool of microspheres

(five pools total in the Human Panel targeting 319 miRNA), 14 ml

of hybridization buffer and 20 ml water, mixed and covered to

protect from evaporation and light, and denatured at 95uC for

3 min in a 96-well plate. Biotinylated miRNA were then

hybridized to oligonucleotide-capture probes coupled to the

carboxylated 5-micron polystyrene xMAP beads at 60uC for one

hour. Following hybridization, the beads were washed and filtered,

and 75 ml streptovidin-phycoerythrin:wash buffer (1:300) reporter

were added to the beads and incubated at room temperature on a

plate shaker (600 rpm) for 30 min. Median fluorescence intensity

(MFI) values were then measured using a Luminex 200 machine.

MiRNA expression analysis using TLDA
The global profiling for miRNA expression for 40 samples was

performed using the TaqMan Array Human MicroRNA Panel v2.0

(Applied Biosystems, CA, USA), which includes Cards A and B in a

384-well format. Card A contains 380 TaqMan MicroRNA Assays

enabling the simultaneous quantitation of 377 human miRNAs plus 3

endogenous controls; Card B contains 293 assays for 287 human

miRNAs plus 6 controls, which were experimental procedures

following manufacturer instructions. In brief, total RNA was first

reverse-transcribed with the Multiplex RT pool set (Applied

Biosystems) through a reverse transcription (RT) step using the

High-Capacity cDNA Archive Kit (Applied Biosystems), wherein a

stem-loop RT primer specifically binds to its corresponding miRNA

and initiates its reverse-transcription. The RT mix included 50 nM

stem-loop RT primers, 16 RT buffer, 0.25 mM each of dNTPs,

10 U/ml MultiScribe reverse transcriptase, and 0.25 U/ml RNase

inhibitor. The 7.5 ml reaction was then incubated for 30 min at 16uC,

30 min at 42uC, 5 min at 85uC, and then held at 4uC. The RT

products were subsequently amplified with sequence-specific primers;

we were using the Applied Biosystems 7900 HT Real-Time PCR

system. Six ml of RT products were added to 444 ml nuclease free

water and mixed with 450 ml TaqMan Universal Master Mix II, No

UNG, then dispensed into the 384 wells by centrifugation. The

reactions were incubated in a 384-well plate at 95uC for 10 min

followed by 40 cycles of 95uC for 15 sec and at 60uC for 1 min. The

data were collected and processed using the Plate Utility and

Automation Controller software (Applied Biosystems). For each

miRNA, the expression level was determined by 2{DDCt value

calculation formula [34].

Normalization methods
Intra-sample and inter-sample normalization for beads

arrays. As recommended by the FlexmiR MicroRNA Human

Panel Instruction Manual, intra- and inter-sample normalization is

performed to normalize the median fluorescent intensity (MFI)
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across all the pools of a given sample or between two samples. To

perform the intra-sample normalization, we first calculated the net

MFI value for each result by subtracting the MFI values of the

background. Second, we selected Pool 1 as the reference and

computed the normalization factors by dividing the net MFI of all

the normalization microspheres in the reference pool by the net

MFI of the corresponding normalization microspheres from other

pools. Third, we computed an intra-sample normalization factor

for each pool by taking the median of the normalization factors of

all the normalization microspheres across each pool. Lastly, we

multiplied each calculated intra-sample normalization factor by all

of the net MFI results within each associated pool.

After the intra-sample normalization, we performed the inter-

sample normalization. First, we regarded the median net MFI

value for each of the four normalization beads across the five pools

as net MFI of the corresponding normalization microspheres.

Second, we selected non-treated samples as controls and used the

net MFI values to compute the normalization factors by dividing

the net MFI of all of the normalization microspheres in the control

sample by the net MFI of the corresponding normalization

microspheres from treated samples. Third, we computed an inter-

sample normalization factor for each sample by taking the median

of the normalization factors of all the normalization microspheres

across each sample. Lastly, we multiplied each calculated inter-

sample normalization factor by all of the net MFI results within

each associated sample.
Normalizing LNA array data by designated probes. Each

LNA array contains 12 designated probes primarily designed

for normalization purposes. Among them, U6-snRNA-1,

hsa_SNORD2, hsa_SNORD6, and hsa_SNORD10 were chosen

to normalize profiling data based on their proved stability earlier.

For each selected probe, we took the median of the intensity

measures after background subtraction from the four replicates for

each array. Then the same inter-sample normalization algorithm

for the beads arrays was applied to normalize the LNA arrays.
Computing coefficients of variation(CVs). CV value is

calculated by dividing the standard deviation of X by the mean

value of X, then multiplying by 100 when defining X as a vector of

the intensities of the replicates.
Cyclic loess. The cyclic loess method, sometimes known as

the MA scatter plot, was first presented by Dudoit et al [35,36].

Let Y be a profile for a sample under a treatment and X be a

profile for the same sample as a control (without treatment). We

first considered the M = log(Y/X) versus A = (log(Y)+log(X))/2

plot. Second, we fit a loess curve by regressing M on A and denote

the fitted values byM̂M. Third, we set D = exp ((M-M̂M )/2) and

justified Y and X by Y’ = Y*D and X’ = X/D. The R loess

function is used with the default smoothing parameter.
Quantile method. The quantile normalization method can

deal with non-linear compressions by effectively taking the ranks of

the observations into account and has been proposed by several

authors [37,38,39]. It transforms all the replicates onto the same

scale. Quantile normalization is applied to a matrix X of spotted

intensities for all p genes and k replicates. Let xij be the spot

intensity for spot j on array i, x(j) be a vector of jth smallest spot

intensities across arrays, and x
(j)

be the mean/median of x(j). The

vector (x
(j)

) for j~1, . . . , p represents the ‘‘compromise’’

distribution. Let R be the matrix of row ranks associated with

matrix X, then the quantile normalized value for spot j on array i

is x(rij). The quantile normalization method has been implemented

in R package affy and is freely available from the The Comprehensive

R Archive Network servers over the internet.

Computation of sensitivity and specificity. In this study,

the sensitivity measures the proportion of actual positives that are

correctly identified as such while specificity measures the

proportion of negatives that are correctly identified.

Sensitivity(i,j)~TP=(TPzFN)

Specificity(i,j)~TN=(TNzFP)

where TP (True Positive) is the number of up- or down-regulated

miRNAs identified consistently by both the TLDA results and the

platform being evaluated (LNA array or beads array), and TN

(True Negative) is the number of non-differentially expressed

miRNAs according to TLDA results and the platform being

evaluated. FN (False Negative) refers to the number of miRNAs

being classified as non-differentially expressed by the platform

being evaluated while being classified as either up-regulated or

down-regulated by the TLDA results. FP (False Negative) refers to

the number of miRNAs being classified as either up-regulated or

down-regulated by the platform being evaluated while being

classified as non-differentially expressed by the TLDA results.

Supporting Information

Figure S1 Venn diagram illustrating the association of
three miRNA profiling platforms. LNA array, beads array,

and TLDA profiled 560, 319, and 664 human miRNAs,

respectively. TLDA shared 508 and 231 miRNAs with LNA

array and beads array, and LNA array has 221 overlapped

miRNAs with beads array. A total of 213 miRNAs were shared by

three platforms.
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Table S1 Stability evaluation of the designated probes
on the LNA array.
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