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Abstract

Background: Neurotrophic factors may be future therapeutic agents for neurodegenerative disease. In the screening of
biologically active molecules for neurotrophic potency, we found that a photosensitizing cyanine dye, NK-4, had remarkable
neurotrophic activities and was a potent radical scavenger.

Methodology/Principal Findings: In this study, we evaluated the effect of NK-4 on the protection of neurons against
oxidative damage and investigated the associated intracellular signaling pathways. Subsequently, we evaluated the effect of
NK-4 in an animal model of neurodegeneration. In vitro, NK-4 showed dose-dependent protection of PC12 cells from toxicity
induced by oxidative stress caused by hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA). Comparison of
extracellular signal-regulated kinase signaling pathways between treatment with NK-4 and nerve growth factor (NGF) using
K252a, an inhibitor of the NGF receptor TrkA, revealed that NK-4 activity occurs independently of NGF receptors. LY294002,
a phosphatidylinositol 3-kinase (PI3K) inhibitor, blocked the protective effect of NK-4, and NK-4 caused activation of Akt/
protein kinase B, a downstream effector of PI3K. These results suggest that the neuroprotective effects of NK-4 are mediated
by the PI3K-Akt signaling pathway. NK-4 treatment also attenuated stress-induced activation of SAPK/JNK, which suggests
that NK-4 activates a survival signaling pathway and inhibits stress-activated apoptotic pathways independently of the TrkA
receptor in neuronal cells. In vivo, administration of NK-4 improved motor coordination in genetic ataxic hamsters, as
assessed by rota-rod testing. Histological analysis showed that cerebellar atrophy was significantly attenuated by NK-4
treatment. Notably, the Purkinje cell count in the treated group was threefold higher than that in the vehicle group.

Conclusions/Significance: These results suggest that NK-4 is a potential agent for therapy for neurodegenerative disorders
based on the activation of survival signaling pathways.
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Introduction

Neurodegenerative diseases including Alzheimer’s disease (AD),

Parkinson’s disease (PD), and motor neuron diseases are an

enormous growing public health burden globally. Thus, there is a

clear need to develop therapies that will halt or reverse their

progression. Neurotrophic factors may serve as therapeutic agents

because they play key roles in coordination of brain development

and maintenance of brain function in adulthood. Indeed, the use

of neurotrophic factors such as nerve growth factor (NGF) and

brain derived neurotrophic factor (BDNF) for treatment of

neurodegenerative diseases is widely advocated, based mainly on

in vitro observations and preliminary success in animal models of

AD, PD, Huntington disease, Rett syndrome, traumatic brain

injury, and aging [1–6]. However, several properties limit the

therapeutic application of neurotrophic factors. Their large size

causes poor blood brain barrier penetration [7], and high

antigenicity may lead to failure of long term efficacy. NGF and

BDNF also interact at low affinity with the P75 receptor, and this

might contribute to promotion of pain and other undesirable

effects [8]. Therefore, small molecules are required as therapeutic

agents that have high and long-lasting neurotrophic potency and

do not cause serious adverse effects.

Therapies that promote cellular events including proliferation,

differentiation, and migration, neurite-outgrowth, synaptogenesis,

and myelination of neurons are needed for many neurodegerative

diseases. Proliferation and growth of axonal and dendritic

processes (neurites) are critical determinants of neuronal function,

and disruption of these processes can lead to neuronal dysfunction.

The PC12 cell line has been widely used in neurobiology to

evaluate chemical effects on neurite-outgrowth [9–11]. Following

exposure to neurotrophic factors such as NGF, PC12 cells

proliferate and differentiate into a sympathetic neuron-like

morphology, and develop extensive neuritic processes in a

concentration-dependent manner [12]. Thus, we screened biolog-

ically active molecules for neurotrophic potency using PC12 cells,
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and we found that certain photosensitizing cyanine dyes have

remarkable neurotrophic activities.

Cyanine dyes have been studied for over 150 years and continue

to be of interest in biology and medicine [13]. One of these dyes,

NK-4, has a variety of biological activities, including antimicrobial

[14], macrophage-activating [15] and anticancer [16] properties,

and is used practically as an immunomodulator in treatment with

antiviral and anticancer agents [17]. However, the effect of

cyanine dyes on neurodegenerative disease is not well established.

Recently, we identified NK-4 as the most potent radical scavenger

among a series of cyanine dyes, and found that NK-4 was effective

for treatment of cerebral ischemia [18]. Thus, we focused on NK-

4 as an agent for treatment of neurodegeneration.

Tropomyosin-related kinases (Trks) are essential for neurotro-

phin family-mediated cellular events, including neuronal survival,

differentiation, and synaptic function [19] via activation of

downstream signaling mediators of phosphatidylinositol 3-kinase

(PI3K) and the survival signaling kinase Akt [20]. In a therapeutic

context, Akt has been shown to mediate striking neurotrophic and

anti-apoptotic effects in vivo [21]. In contrast, in relation to

neuronal degeneration, oxidative stress may cause activation of

stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/

JNK). Inhibition of the SAPK/JNK pathway by activation of

PI3K-Akt has been proposed as a potential therapeutic target in

neurodegenerative diseases [22]. These observations suggest that

PI3K-Akt is of particular therapeutic interest, and it is likely that

therapeutic targets related to kinase signaling pathways will

emerge.

Hamsters with inheritable ataxia, an autosomal recessive trait,

were used to evaluate the preclinical efficacy of NK-4. This ataxic

animal originally arose spontaneously in one of our breeding

colonies, and shows typical clinical signs of ataxic gait, including a

slight trembling of the head, unsteady walking, and stumbling after

7 weeks of age [23,24]. These ataxic symptoms were well correlated

with the cerebellum atrophy and Purkinje cells degeneration. The

Purkinje cell degeneration of the mutant was characterized by

suppression of Nna1, a gene discovered in an axonal regenerative

context [23,25]. Similarly, abnormal development of Purkinje cell

dendrites in mice with Purkinje cell degeneration has been linked to

a deletion mutant in exon 7 of Nna1 [26]. We refer to the ataxic

mutant line as hmPCD (hamster PCD).

In this study, we demonstrate that NK-4 has potent neuro-

trophic activity and protects neuronal cells against toxicity,

including oxidative stress, by activating the PI3K-Akt signaling

pathway in vitro. We further show that administration of NK-4 to

the ataxic hamster significantly improved motor discoordination,

with reversal of damage to Purkinje cells and the cerebellum.

Methods

Ethics Statement
All animal protocols were approved by the Institutional Animal

Care and Use Committee of Hayashibara Biochemical Labora-

tories (permit number F-902), and were conducted in accordance

with the guidelines of the Care and Use of Laboratory Animals at

Hayashibara Biochemical Laboratories.

Chemicals
NK-4 (4,49-[3-{2-(1-ethyl-4(1H)-quinolylidene)ethylidene}pro-

penylene]bis(1- ethylquinolinium iodide)) was synthesized at

Hayashibara Biochemical Laboratories, Inc. (Okayama, Japan).

A stock solution of 6.3 mM NK-4 was prepared in DMSO (Sigma,

St. Louis, MO) and stored at room temperature with protection

from light. Just before use, the stock solution was diluted with

DMSO to give a 32 mM solution. This solution was used for

experiments with further dilution. NGF, K252a, and LY294002

were purchased from Wako Pure Chemical Industries (Osaka,

Japan). Phospho-Akt (Ser 473) antibody, Phospho-SAPK/JNK

(Thr183/Thr185) antibody, Akt antibody, and SAPK/JNK

antibody were obtained from Cell Signaling Technology, Inc.

(Beverly, MA), anti-calbindin D28K antibody was from Chemicon

International, Inc. (Temecula, CA) and Alexa488-conjugated anti-

rabbit IgG antibody was from Molecular Probes (Eugene, OR).

Cell Culture
The rat pheochromocytoma cell line PC12 (Human Science

Research Resources Bank, Osaka, Japan) was cultured in

Dulbecco’s Modified Eagle Medium (D-MEM; Nissui, Tokyo,

Japan) supplemented with heat-inactivated 10% fetal bovine

serum, 5% horse serum. For cell growth and neurite-outgrowth

assays, PC12 cells were harvested using 0.1% (w/v) trypsin

containing 0.03% (w/v) EDTA, and seeded at a density of 5,000

cells/100 ml in 96-well plates pre-coated with collagen type IV.

After a 24-hr pre-culture, PC12 cells were exposed to NK-4. For

neurite-outgrowth quantification, cells were treated with NK-4 at

a low concentration of NGF (5 ng/ml). Cells were incubated for

72 hr prior to evaluation of cell growth and neurite-outgrowth.

Cell survival was determined using alamarBlue dye (Trek

Diagnostic Systems, Cleveland, OH) [27]. To measure neurite-

outgrowth, cells were fixed with 4% glutaraldehyde in phosphate

buffer and visualized by phase-contrast microscopy. Representa-

tive cells were photographed for each well. The percentage of cells

with neurites that were at least twice the diameter of the cell body

was calculated. Neurites were identified and counted from ,100

cells per photograph. In some experiments a PI3K or Trk

inhibitor, LY294002 or K252a, was added at the indicated

concentration to serum-free medium and incubated for 15 min,

after which 50 ng/ml NGF or 250 nM NK-4 with 5 ng/ml NGF

was added.

Evaluation of the protective effects of NK-4 against
neurotoxic environments

Hydrogen peroxide (H2O2) and 6-hydroxydopamine (6-OHDA)

were used to produce neurotoxic environments in which to

investigate the cytoprotective effects of NK-4. PC12 cells were

seeded at a density of 26104 cells/100 ml in 96-well plates pre-

coated with collagen type IV and cultured for 24 hr prior to

stimulation. To investigate the effect of NK-4 on H2O2- or 6-

OHDA-induced cytotoxicity, PC12 cells were exposed to 200 mM

H2O2 for 2 hr or 100 mM 6-OHDA for 24 hr in the presence or

absence of NK-4. After treatment, cell survival was assessed using

alamarBlue dye. All results were confirmed by visual inspection

using phase-contrast microscopy.

Western Blotting
After PC12 cells were treated for the indicated periods with

NK-4, the culture medium was aspirated and cells were washed

with ice-cold PBS. Subsequently, cells were homogenized with lysis

buffer [62.5 mM Tris, pH 6.8, 150 mM NaCl, 0.02% (w/v)

sodium azide, 2% (w/v) SDS, 10% glycerol, 50 mM DTT, 0.01%

(w/v) bromophenol blue] and sonicated for 10 sec. Equal amounts

of protein (20 mg) were separated on a SDS polyacrylamide gel

and transferred to a nitrocellulose membrane (Osmonics, Inc.,

Gloucester, MA). Blots were blocked for 1 h at room temperature

with 5% (w/v) nonfat dried milk in Tris-buffered saline (10 mM

Tris, pH 7.6, and 150 mM NaCl) containing 0.1% Tween 20.

The membrane was incubated overnight at 4uC with specific
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antibodies. Rabbit polyclonal antibodies against Akt, SAPK/JNK

and their phosphorylated forms were used in the study. The blot

was then incubated with the G-horseradish peroxidase conjugated

anti-rabbit immunoglobulin (Dako, Glostrup, Denmark). Immu-

noreactive proteins were detected with the enhanced chemilumi-

nescence Western blotting detection system. The relative density of

the protein bands was quantified by densitometry using Image

Master 2D (Amersham Pharmacia Biotec, Piscataway, NJ).

Animals
Male and female inbred homozygous ataxic mutant Syrian

hamsters (Mesocricetus auratus) and age- and sex-matched wild-type

hamsters were used in the study [23,24]. The animals were housed

individually with nesting materials supplied, and food and water

were provided ad libitum. NK-4 solution was injected intraperito-

neally at a dose of 20 or 100 mg/kg once a day for 7 weeks,

beginning at 3 weeks of age. Controls received 200 ml of saline.

Behavioral analysis
Motor coordination of ataxic animals was determined in a rota-

rod task performed every week after injection of NK-4. In this test,

animals were placed in a rota-rod apparatus (6-cm diameter,

Hayashibara Biochemical Laboratories, Inc.) with a constant

rotation rate of 6 rpm. The apparatus consisted of a horizontal

motor-driven rotating rod in which the animals were placed

perpendicular to the long axis of the rod, with the head directed

against the direction of rotation so that the hamster has to progress

forward to avoid falling. The trial was stopped when the animal

fell down or after a maximum of 180 s. The time spent in the

rotating rod was recorded for each animal and trial. All animals

received a pretraining session to familiarize them with the rotating

apparatus one week before the first test session. Subsequently, six

consecutive trials were performed for every animal in each session

every week [28,29]. The results of the sixth test were used in the

statistical comparison. At the end of the study, each hamster was

placed in a plastic cage (20630615 cm) and the spontaneous

falling frequency was counted for 60 s [30].

Volumetric measurements of hamster brain
Animals were deeply anesthetized with pentobarbital (50 mg/

kg), brains were dissected and fixed with 10% buffered-formalin

and pictured from the constant distance from the top. The sizes of

the cerebellum were measured and the volumes were calculated as

V = ab2/2, where ‘‘a’’ and ‘‘b’’ are the lengths of the major and

minor axes of the cerebellum, respectively [31].

Histology
Brains were embedded in paraffin, and then mid-sagittal

sections of 5 mm thickness were stained with hematoxylin and

eosin (H&E). To count the calbindin-positive cells, dewaxed and

rehydrated paraffin sections were permeablized and blocked with

PBS containing 0.2% Triton X-100 and 5% BSA. The sections

were then incubated with anti-calbindin antibody (1:500) 2

overnight at 4uC diluted in PBS containing 0.1% Triton X-100

and 2% BSA. After several washes in PBS, sections were incubated

with Alexa488-conjugated secondary antibody (1:50) [32]. Calbin-

din-positive cells in the Purkinje layer were counted as Purkinje

cells. The density of granule cells was calculated in the tenth lobule

of the cerebellum.

Statistical Analysis
All values are expressed as means 6 SD or SEM. A paired t test

was used for comparison between 2 groups. One-way ANOVA

with a subsequent Tukey-Kramer test was used to determine the

significance of differences in multiple comparisons. Differences

with a probability value of P,0.05 were considered to be

significant.

Results

NK-4 promotes the growth and neurite-outgrowth of
neuronal PC12 cells

NK-4 induced PC12 cell growth (Fig. 1A) and promoted NGF-

primed neurite extension (Fig. 1B), as shown by the appearance of

neurite-outgrowth within 3 days (Fig. 1C). NK-4 alone promoted

cell growth, but did not affect the morphological differentiation of

PC12 cells. The effects of NK-4 were dose-dependent, based on

fluorometric and quantitative analysis of cellular growth and

neurite extension. The concentration at which NK-4 exerted its

maximum effect differed when assessed by growth or neurite-

outgrowth: a maximal effect was obtained at 250 nM as assessed

by cell growth, whereas a higher dose of up to 2.5 mM was needed

for neurite-outgrowth.

Effects of NK-4 in PC12 cells treated with neurotoxins
The effect of NK-4 against oxidative toxicity induced by H2O2

was examined because neurons are vulnerable to the toxic effects

of oxidative stress. In this model, the viability of cells exposed to

200 mM H2O2 for 2 hr was about 50% compared to controls

without H2O2 exposure. NK-4 protected cells from H2O2 toxicity

in a dose-dependent manner (Fig. 2A). Since oxidative stress

induced by H2O2 occurred rapidly and severely, relatively high

concentrations of NK-4 were required to obtain a significant

protective effect. The cytoprotective effect of NK-4 was also found

using 6-OHDA, a selective catecholaminergic neurotoxin that has

been used to produce PD models in vitro and in vivo [33,34]. When

PC12 cells were cultured with 100 mM 6-OHDA for 24 hr, cell

viability was significantly decreased to 60% compared with

controls with no 6-OHDA (Fig. 2B). NK-4 dose-dependently

attenuated cell damage induced by 6-OHDA and the results were

significant at doses over 16 nM. We also found a protective effect

of NK-4 against cell damage induced by serum deprivation (data

not shown).

Given the cytoprotective effect of NK-4 against oxidative

damage, we examined if NK-4 could directly scavenge H2O2,

since it has been reported that H2O2 generated from 6-OHDA is

involved in cytotoxicity [33]. NK-4 was able to detoxify reactive

oxygen species (ROS) such as hydroxyl, superoxide and peroxy

radicals [18], but showed no effect on H2O2 scavenging at

concentrations up to 63 mM (data not shown).

NK-4 does not act via Trks
We next investigated if NK-4 acts via Trks to induce growth

and neurite-outgrowth in PC12 cells. Trks includes the NGF

receptor, Trk A, which mediates NGF-induced neuronal survival

and differentiation in PC12 cells [35]. Pretreatment with K252a, a

Trk inhibitor, dose-dependently inhibited NGF-induced cell

growth, but did not inhibit that induced by NK-4 (Fig. 3A). This

suggests that NK-4 activity occurs independently of TrkA

activation in PC12 cells. Similarly, NGF-induced neurite-out-

growth was inhibited in a concentration-dependent manner by

K252a, while the effect of NK-4 on neurite-outgrowth was not

inhibited efficiently (Fig. 3B). A high K252a concentration did

significantly decrease the effect of NK-4, which might be because

neurite-outgrowth induced by NK-4 is dependent on the presence

of a low level of NGF.

A Cyanine Dye as a Treatment for Neurodegeneration
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Intracellular signaling events that underlie NK-4-
mediated cytoprotection

To analyze the effect of NK-4 on survival and differentiation of

PC12 cells further, we next examined whether NK-4 activates

PI3K and its downstream signaling effector Akt. This cascade has

been implicated in the survival signaling caused by NGF in serum-

deprived PC12 cells, and in neuritogenesis in PC12 cells [36,37].

We examined if LY294002, a specific PI3K inhibitor, blocked the

activity of NK-4, and also determined the kinetics of Akt activation

following NK-4 treatment of PC12 cells. LY294002 caused cell

growth arrest of PC12 cells dose-dependently in the presence of

NGF and NK-4 (Fig. 4A). An inhibitory effect of LY294002 was

also found in the neurite-outgrowth assay (Fig. 4B). The

neurotrophic effects of NK-4 and NGF on PC12 cells were

similarly inhibited by the PI3K inhibitor.

Activation of Akt can be detected by Western blotting with

antibodies that specifically recognize Akt phosphorylated at Ser

473, because this phosphorylation correlates with Akt activity [38].

As shown in Fig. 5, NK-4 induced phosphorylation of Akt in a

time-dependent manner. Akt phosphorylation was detected by

5 min NK-4 treatment and maximally increased between 60 and

120 min. The dose of NK-4 required for induction of Akt

phosphorylation was consistent with that required for promotion

of PC12 cell growth. These results suggest that activation of PI3K

and its downstream signaling effector Akt are important in NK-4-

induced neurotrophic effects in PC12 cells.

Effect of NK-4 on stress-activated SAPK/JNK
We subsequently investigated whether SAPK/JNK, a major

cellular stress responsive protein induced by oxidative stress, plays

an important role in NK-4-mediated effects in PC12 cells. PC12

cells treated with cytotoxic levels of H2O2 induced SAPK/JNK

activation in PC12 cells (Fig. 6). This activation was attenuated by

NK-4 in a concentration-dependent manner, and the dose of NK-

4 was well correlated with the concentration found in the H2O2-

induced cytotoxicity model in PC12 cells. This observation

suggests that NK-4 might attenuate H2O2-induced cell death

through inhibition of SAPK/JNK activation.

Cerebellar ataxia in mutant hamsters
Given the effects of NK-4 on neurotoxicity in vitro, we evaluated

NK-4 for treatment of neurodegeneration in vivo using an ataxic

animal model in Syrian hamster characterized by Purkinje cell

degeneration (hmPCD). Homozygous mutants were viable at birth

and indistinguishable in appearance from normal controls (Fig. 7A),

but grew up to be smaller than age-matched wild type hamsters.

The mutants had a normal life span [23], but showed motor and

behavioral deficits, including abnormal tremor and unusual falling.

Figure 1. Neurotrophic effects of NK-4 in PC12 cells. (A) Effect of NK-4 on PC12 cell growth. PC12 cells were raised in D-MEM containing 10%
FBS for 72 hr in the presence or absence of NK-4. The number of cells was assessed by alamarBlue assay. (B) Effect of NK-4 on NGF-primed neurite-
outgrowth in PC12 cells. PC12 cells were treated with NGF (5 ng/ml) plus NK-4 (indicated concentrations) for 72 hr. The percentage of PC12 cells with
neurites longer than twice the diameter of the cell body was calculated. Results are shown as a mean 6 SD (n = 3). **P,0.01 vs. the respective
control. (C) Phase contrast micrographs of PC12 cells. PC12 cells treated with NK-4 (1000 nM) plus NGF (5 ng/ml) (c) had longer neurites than those
treated with NK-4 (1000 nM) (a) or NGF (5 ng/ml) (b) for 72 hr. Bar: 50 mm.
doi:10.1371/journal.pone.0017137.g001
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Figure 2. Cytoprotective effects of NK-4 against neurotoxins in PC12 cells. (A) Effect of NK-4 on H2O2-induced cytotoxicity. PC12 cells were
treated with 200 mM H2O2 for 2 hr in the absence or presence of the indicated concentrations of NK-4. Control cells were incubated under the same
conditions, but without H2O2. (B) Effect of NK-4 against 6-OHDA-induced toxicity. PC12 cells were treated with 100 mM 6-OHDA for 24 hr in the
absence or presence of the indicated concentrations of NK-4. Control cells were incubated under the same conditions, but without 6-OHDA. All
results were obtained by alamarBlue assay and are expressed as the percentage fluorescence of control cells. Values are means 6 SD obtained in
triplicate. *P,0.05, **P,0.01 for comparison of wells with and without NK-4.
doi:10.1371/journal.pone.0017137.g002

Figure 3. Effects of K252a, a Trk inhibitor, on PC12 cell growth (A) and neurite-outgrowth (B) induced by NK-4 (bold line) and/or
NGF (broken line). PC12 cells were preincubated in serum-free D-MEM with the indicated concentrations of K252a for 15 min. NK-4 (250 nM) or
NGF (50 ng/ml) was added and the cells were further incubated for 72 hr. In the neurite-outgrowth assay, 250 nM NK-4 with 5 ng/ml NGF, or 50 ng/
ml of NGF alone was used. The number of cells was assessed by alamarBlue assay. The percentage of cells with neurites was quantified by phase
contrast microscopy. Values are means 6 SD in triplicate. **P,0.01 vs. control.
doi:10.1371/journal.pone.0017137.g003
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Figure 4. Promotion of PC12 cell growth and neurite-outgrowth through activation of PI3K by NK-4. Effects of LY294002, a PI3K
inhibitor on cell growth (A) and neurite-outgrowth (B) induced by NK-4 (bold line) and/or NGF (broken line). PC12 cells were preincubated in serum-
free D-MEM containing the indicated concentrations of LY294002 for 15 min. NK-4 (250 nM) or NGF (50 ng/ml) was added and the cells were further
incubated for 72 hr. The number of cells was assessed by alamarBlue assay. In the neurite-outgrowth assay, 250 nM NK-4 with 5 ng/ml NGF, or 50 ng/
ml of NGF alone was used. The percentage of cells with neurites was quantified by phase contrast microscopy. Values are means 6 SD in triplicate.
**P,0.01 vs. control.
doi:10.1371/journal.pone.0017137.g004

Figure 5. Induction of Akt phosphorylation by NK-4 in PC12
cells. PC12 cells were treated with 250 nM NK-4 for the indicated times.
Whole cell lysates were analyzed by Western blotting using anti-
phospho-Akt antibody (upper panel) or anti-Akt antibody (lower panel).
The graph shows the ratio of phosphorylated Akt to total Akt at each
time point.
doi:10.1371/journal.pone.0017137.g005

Figure 6. NK-4 attenuated H2O2-induced SAPK/JNK phosphor-
ylation in PC12 cells. PC12 cells were treated with 400 mM H2O2 in
the presence of the indicated concentrations of NK-4 for 2 hr. Whole
cell lysates were analyzed by Western blotting using anti-phospho-
SAPK/JNK antibody (upper panel), or anti-SAPK/JNK antibody (bottom
panel). The graph shows the ratio of phosphorylated SAPK/JNK to total
SAPK/JNK at each time point.
doi:10.1371/journal.pone.0017137.g006
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In a rota-rod test, all homozygous mutants fell after grasping the rod

only briefly (Fig. 7B). Histological analysis using H&E staining

showed marked atrophy of the cerebellar cortical region of the

mutants at 48 weeks of age (Fig. 7C). Concomitantly, in the

cerebellar cortex, a large reduction in the number of Purkinje cells

was observed in the mutant brain (Fig. 7D).

Effect of NK-4 on cerebellar ataxia in hmPCD
Animals were treated with 20 or 100 mg/kg NK-4 once a day

for 7 weeks, beginning at 3 weeks of age. We designed this dose

schedule based on preliminary experiments for dosing of NK-4. In

general, the animals remained in good health throughout the

study. Motor discoordination of ataxic and non-ataxic animals was

evaluated with rota-rod testing. Preliminary experiments showed

that mutant animals had a moderate level of motor discoordina-

tion at 4 weeks of age, and that the disease progressed over time.

As shown in Fig. 8A, a low dose of NK-4 (20 mg/kg) elicited a

moderate, but significant, effect in attenuating deterioration of

motor function that lasted for 2 weeks after 3 weeks of

administration. A high dose of NK-4 (100 mg/kg) gave a strong

effect that lasted for the whole test period. However, the rotation

time for animals in the treated group was not comparable to the

wild type controls, which were able to stay on a rotating rod for the

maximum testing period (180 s). The effect of NK-4 on motor

discoordination of hmPCDs was similarly observed in an inclined

plane task [39] (data not shown).

Figure 7. Overview of phenotype and behavioral disorders in the Purkinje cell-degenerated ataxic mutant hamster (hmPCD). (A)
Representative appearance of a male hmPCD and a wild type control at 18 months of age. (B) Rota-rod testing of hmPCDs and age-matched wild type
controls. The time spent on the rotating rod (6 rpm) is shown. (C) H&E-stained sections of the cerebellum from a hmPCD and a wild type control at 18
months of age. Purkinje cells are indicated with arrows. (D) Purkinje cell counts in cerebellar mid-sagittal sections from hmPCDs and wild type
controls at 18 months of age. Bars: 2 mm and 50 mm for low and high power fields, respectively. Graphs show the mean 6 SEM of 6 hamsters (3
males and 3 females). **P,0.01 vs. wild type control.
doi:10.1371/journal.pone.0017137.g007
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At the end of the study (10 weeks of age), the motor ability of

NK-4 treated animals was evaluated by counting the falling

frequency. The hmPCDs began to fall frequently in their cage from

around 7 weeks of age and the frequency of falling increased with

age. Animals treated with low and high dose NK-4 showed a

significant reduction in falling frequency compared to saline-

treated controls (Fig. 8B). These observations show that NK-4 is

effective for treating motor discoordination of cerebellar ataxia in

the hmPCD model.

Effect of NK-4 on cerebellar atrophy in hmPCD
We next examined the cerebellar sizes in the animals (Fig. 9A).

The mutants had severe cerebellar atrophy and volumetric

reduction (about 60% of age-matched wild type animals) at 10

weeks of age. In contrast, the volume of the cerebrum did not

differ significantly between mutants and wild type controls (data

not shown). Animals treated with low or high doses of NK-4 had a

significantly larger cerebellum volume compared with saline-

treated controls. Thus, NK-4 was effective in ameliorating motor

function and retaining cerebellar volume, which suggests that

maintenance of Purkinje cells function might be the key step for

achieving recovery of motor function.

H&E staining of the cerebellar cortex sections revealed a large

reduction in the number of cerebellar Purkinje cells in the brain of

hmPCDs at 10 weeks of age (Fig. 9B), which was further confirmed

by immunostaining of Purkinje cells with anti-calbindin antibody

(Fig. 9C). The number of calbindin-positive cells was well

correlated with the number of Purkinje cells (Fig. 9B) and

treatment with NK-4 (both low and high doses) significantly

attenuated the loss of calbindin-positive cells compared with

saline-treated controls. The dendrites of surviving calbindin-

positive cells in slices from saline-treated hmPCDs had degenerated

and weak features that made them difficult to find. In contrast,

calbindin-positive cells in slices from high dose NK-4-treated

hmPCDs had significantly longer and arborized dendrites (Fig. 9C).

In the brain of hmPCDs, the cerebellar granule cell density was

moderately (,80%) reduced compared to wild type controls, and

the granule cells in the cerebellum from control hmPCDs showed

atrophic feature (Fig. 9D). Effects of NK-4 against neuronal

degeneration were also found in this context. NK-4 dose-

dependently prevented the reduction of granule cells and

attenuated the granule cell atrophy. Typical examples of H&E-

stained sections of cerebellar white matter are shown in Fig. 9E.

Saline-treated ataxic mutants displayed moderate levels of

demyelination in cerebellar white matter (5/5 animals), while

fewer animals showed demyelination after treatment with low and

high doses of NK-4 (NK-4l; 4/5 animals, NK-4 h; 1/5 animals).

Discussion

Chronic neurodegenerative diseases are characterized by a

selective loss of specific neuronal populations over a period of

years. Although the underlying causes of most neurodegenerative

diseases are unclear, the loss of neurons and neuronal contacts is a

critical feature of the disease pathology. Development of a

compound that regulates neuronal cell death is a plausible

Figure 8. Effects of NK-4 on motor coordination in hmPCDs. (A) Effect of NK-4 on motor performance in the rota-rod test. Animals were tested
weekly for the ability to remain on the rotating rod, and the time spent on the rod is shown. (B) Effect of NK-4 on frequency of falling in hmPCDs.
Spontaneous falling of each animal was counted for 60 s and is presented as the falling frequency. Values are the mean 6 SEM of 5 animals per
group (2 males and 3 females). *P,0.05, **P,0.01 vs. vehicle-treated hmPCD.
doi:10.1371/journal.pone.0017137.g008
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therapeutic strategy to slow or halt the progression of neurode-

generative disease. In this study, we showed that NK-4, a

photosensitizing cyanine dye, had neurotrophic effects, and found

that promotion of proliferation and neurite-outgrowth of PC12

cells by NK-4 was dependent on activation of PI3K-Akt and

occurred independently of Trk. Subsequently, we investigated the

effects of NK-4 in an animal model of cerebellar ataxia

attributable to Purkinje cell degeneration, and found that NK-4

effectively attenuated motor discoordination and prevented

degeneration of cerebellar Purkinje and granule cells.

More than 20 cyanine dyes have been shown to exhibit

neurotrophic effects, but NK-4 is one of the most potent agents for

promotion of growth and differentiation of PC12 cells. Radical

scavenging by NK-4 was also more effective than that of other

dyes, and this led us to examine NK-4 for treatment of

neurodegerative disease. In the present study, NK-4 clearly

promoted PC12 cell growth and neurite-outgrowth primed by

NGF. Consistent with these observations, ascorbate, a major

H2O2 scavenger, also promotes NGF- or cAMP-primed neurite-

outgrowth in PC12 cells [40,41]. A superoxide scavenger,

mitochondrial manganese superoxide dismutase (SOD), has also

been reported to induce neurite-outgrowth in PC12 cells, with

long term NGF-induced activation of extracellular signal-related

kinase (ERK1/2), which regulates neurite-outgrowth in PC12

cells, required for SOD activation [42]. NGF exerts a neuritogenic

effect by changing mitochondrial metabolism by reduction of ROS

produced by mitochondria and stabilization of the electrochemical

gradient. These observations suggest that NK-4 promotes neurite-

outgrowth in PC12 cells by reduction of ROS via induction and

maintenance of long term activation of ERK1/2.

Direct scavenging of free radicals may be one mechanism

through which NK-4 exerts neuronal protection against oxidative

damage. NK-4 protected PC12 cells from oxidative toxicities

induced by H2O2 and 6-OHDA in a significant and dose-

dependent manner (Fig. 2AB). However, NK-4 did not scavenge

H2O2, which suggests that NK-4 can detoxify radical species

generated from H2O2. ROS play pivotal roles in the pathogenesis

of neurodegenerative diseases, since increased formation of

superoxide radicals leads to increased of production of H2O2

due to (SOD) activity. In living cells, H2O2 is a major underlying

cause of oxidative damages [43], and is readily converted to highly

reactive hydroxyl radicals via a Fenton reaction in the presence of

iron ions [44,45]. These are the most oxidizing radicals known in

biological systems and may be involved in neurodegeneration.

NK-4 is a highly effective free radical scavenger for hydroxyl and

peroxy radicals and a moderate scavenger for superoxide [18];

therefore, NK-4 may detoxify these radical species before they

cause cellular damage.

We investigated whether TrkA and its downstream signal

transduction pathways were involved in NK-4-induced prolifera-

tion and neurite-outgrowth in PC12 cells. TrkA is the cell surface

receptor through which NGF mediates neuronal survival and

differentiation in PC12 cells [19]. K252a, an inhibitor of tyrosine

autophosphorylation of Trks, inhibited proliferation of PC12 cells

induced by NGF, but did not inhibit that induced by NK-4

(Fig. 3A). This result suggests that neurotrophic activity by NK-4 is

not mediated by TrkA or other K252a-sensitive molecules in

PC12 cells. Consistent with this observation, K252a also dose-

dependently inhibited NGF-induced neurite extension in PC12

cells, but did not effectively inhibit that induced by NK-4 primed

with NGF (Fig. 3B). This indicates that neuronal cell growth

induced by NK-4 occurred independently of Trk activation, but

that neurite-outgrowth in PC12 cells required activation of K252a-

sensitive Trk receptors. In contrast, LY294002, a specific inhibitor

of PI3K, affected cell growth induced by both NK-4 and NGF

(Fig. 4A) and inhibited neurite-outgrowth induced by NGF and

NK-4 primed with NGF (Fig. 4B) in PC12 cells. These results

suggest that PI3K is an essential regulator of NK-4-mediated

effects. NK-4 also induced phosphorylation of Akt, a downstream

regulator of PI3K, in PC12 cells (Fig. 5), which indicates that the

PI3K-Akt signaling pathway is affected by NK-4.

In agreement with the activation of survival signaling pathways,

we also showed an effect of NK-4 on SAPK/JNK activation

induced by H2O2. This pathway is relevant to neuronal death

because neurons undergo apoptosis through the SAPK/JNK

pathway. SAPK/JNK is also activated by neurotrophic factors

such as NGF, and this process is a key for neurotrophic factor-

mediated neuronal apoptosis. NGF induces SAPK/JNK activa-

tion within 1 day of treatment [46], whereas NK-4 (,6.3 mM) did

not induce SAPK/JNK activation for up to 3 days (data not

shown). This result is consistent with our previous observation that

NK-4 mediated signaling is independent of neurotrophin receptors

because SAPK/JNK is a downstream effector of Trks [46]. In the

present study, NK-4 inhibited H2O2-induced activation of SAPK/

JNK in PC12 cells (Fig. 6), and the viability of PC12 cells subjected

to H2O2 toxicity with or without treatment with NK-4 was

negatively correlated with SAPK/JNK phosphorylation. Thus,

NK-4 might activate the survival signaling cascade and inhibit the

death signaling cascade independently through a Trk-mediated

pathway, and this may provide protection against the neurotoxic

environment. We did not determine whether the low affinity p75

neurotrophin receptor for NGF might also be a target of NK-4,

but this appears unlikely because selective activation of p75 NTR

by NGF stimulates JNK activity and apoptotic cell death [47], in

contrast to the inability of NK-4 to activate JNK and apoptosis.

The effect of NK-4 against neurodegeneration was confirmed in

an animal model of ataxia. We recently showed that NK-4

attenuated brain injury and improved motor function in a rat

middle cerebral artery occlusion model [18]. This study indicated

the efficacy of NK-4 on the central nervous system (CNS);

however, the administration route remained in question because

disruption of the blood-brain barrier in this model [48] might

change the permeability of NK-4. Therefore, we used a genetic

animal model of ataxia (hmPCD) to evaluate the effect of NK4 on

neurodegenerative disease. This animal model reflects the

pathogenesis of human spinocerebellar ataxia [24], and exhibits

Figure 9. Effects of NK-4 on cerebellar atrophy and histopathology in hmPCDs. (A) Effect of NK-4 on cerebellar size in hmPCDs. Brains from
10-week-old animals were photographed from a constant distance and the cerebellar volume was calculated. (B) Effect of NK-4 on the Purkinje cell
frequency in hmPCDs. Purkinje cells in the Purkinje cell layer were counted in the mid-sagittal section of the cerebellum from hmPCDs. (C)
Immunohistochemistry using an anti-calbindin antibody on cerebellum sections for wild type (a), saline-treated hmPCD (b), and high dose NK-4
(100 mg/kg)-treated hmPCD (c). Bar: 30 mm. (D) Granule cell density in the cerebellum from hmPCDs and wild type controls. H&E stained sections of
cerebellum cortex from hmPCDs and wild type controls were photographed and counted for granule cells in an area of 20000 mm2 (a). Representative
images for wild type (b), saline-treated hmPCD (c), and high dose NK-4-treated hmPCD (d). Bar: 10 mm. Graphs show the mean 6 SEM of 6 hamsters at
10 weeks of age (3 males and 3 females). *P,0.05, **P,0.01 vs. hmPCD control. (E) Attenuation of cerebellar demyelination in the white matter.
Representative microphotographs of cerebellar white matter for wild type (a), saline-treated hmPCD (b), and high dose NK-4-treated hmPCD (c).
Bar: 50 mm.
doi:10.1371/journal.pone.0017137.g009
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extensive cerebellar atrophy, including a substantial loss of

Purkinje cells and a mild reduction of granule cells, along with

decreased thickness of the molecular layer and internal granule

layer. In contrast, the cerebral hemisphere has no altered features

and no neurodegeneration [23]. The gene responsible for this

cerebellar atrophy is Nna1, which encodes a putative nuclear

protein containing a zinc carboxypeptidase domain initially

identified by its induction in spinal motor neurons during axonal

regeneration [25]. Blood-brain barrier permeability in this animal

model is unlikely to be affected by Nna1. In the hmPCD model, 20

or 100 mg/kg NK-4 was effective in attenuating motor discoordi-

nation and Purkinje cell loss with no toxic effects. This suggests

that NK-4 can attenuate neurodegeneration in the CNS via a

peripheral route of administration. The dose of NK-4 used in this

study was equivalent to that used in the rat middle cerebral artery

occlusion model. From these observations, NK-4 would cross the

blood-brain barrier and acted directly on degenerating neurons

and protected against cell damage. The concentration of NK-4 in

the cerebellum of hmPCDs remains in question. In our preliminary

study, NK-4 penetrated into the cerebellum, and was detected at

nM levels in the cerebellum from 15 min after intraperitoneal

administration in hamster (100 mg/kg) using high-performance

liquid chromatography detection system. The concentration found

in cerebellum was comparative to that found in plasma. These

results were consistent with the in vitro observations that nM levels

of NK-4 was sufficient to exert its neurotrophic effects.

Purkinje cells are susceptible to ischemic damage because of

their reduced capacity to isolate glutamate and reduced ability to

generate energy during anoxia [49]. Granule cells are also

vulnerable to a variety of toxins that decrease glutathione levels

and this make the cells more vulnerable to DNA and other cellular

damage from ROS [50,51]. Direct scavenging of free radicals by

NK-4 may protect these cells. In addition, NK-4 seems to activate

survival signaling pathways in degenerating cerebellar neurons.

This is supported by the protection of Purkinje and granule

neurons from cell death by activation of a PI3K-Akt dependent

mechanism [52,53]. Calbindin-positive Purkinje cells in NK-4-

treated animals possessed longer and well-branched neurites, in

contrast to the feeble dendrites in saline-treated hmPCDs, which

suggests functional differences (Fig. 9C) between neurons in these

animals. This might provide a better explanation of the improved

motor coordination in the NK-4-treated animals, rather than

dependence on the Purkinje cell number. The number of granule

neurons in treated animals was also higher than that in the saline-

treated controls (Fig. 9D). This result is consistent with the

observation that Purkinje cells provide critical trophic support to

developing cerebellar granule neurons [54]. Granule cells are the

most abundant and provide input to the Purkinje cells, whose

axons are the sole output from the cerebellar cortex and provide

input to multiple target cells. These observations suggest that the

attenuation of cerebellar atrophy by NK-4 may be a result of

restoration of these two main cell types.

In summary, we conclude that NK-4 exerts neurotrophic

activity both in vitro and in vivo, and that this activity may be

mediated partially through direct free radical scavenging,

especially of hydroxyl and peroxy radicals. Analysis of signaling

events revealed that the PI3K-Akt survival signaling cascade was

triggered by NK-4 without Trk activation. Results in an ataxic

animal model demonstrated the preclinical efficacy of NK-4 and

suggested its potential utility as a treatment for neurodegenerative

disease. Assessment of NK-4 in human neurodegenerative therapy

will require further studies. A safety evaluation and the

pharmacokinetics of NK-4 are currently being investigated.

Author Contributions

Conceived and designed the experiments: HO TO SF. Performed the

experiments: HO SA. Analyzed the data: HO SA. Contributed reagents/

materials/analysis tools: HO. Wrote the manuscript: HO SA KA SF.

References

1. Bui N, Konig H, Culmsee C, Bauerbach E, Poppe M, et al. (2002) p75
neurotrophin receptor is required for constitutive and NGF-induced survival

signalling in PC12 cells and rat hippocampal neurons. J Neurochem 81:

594–605.

2. Ferrer I, Goutan E, Marin C, Rey M, Ribalta T (2000) Brain-derived
neurotrophic factor in Huntington disease. Brain Research 866: 257–261.

3. Dago L, Bonde C, Peters D, Moller A, Bomholt S, et al. (2002) NS 1231, a novel

compound with neurotrophic-like effects in vitro and in vivo. J Neurochem 81:

17–24.

4. Yoo Y, Kim Y, Lee U, Paik D, Yoo H, et al. (2003) Neurotrophic factor in the
treatment of Parkinson disease. Neurosurgical Focus 15: ECP1.

5. Mironov S, Skorova E, Hartelt N, Mironova L, Hasan M, et al. (2009)

Remodelling of the respiratory network in a mouse model of Rett syndrome

depends on brain-derived neurotrophic factor regulated slow calcium buffering.
J Physiol 587: 2473–2485.

6. Minnich J, Mann S, Stock M, Stolzenbach K, Mortell B, et al. (2010) Glial cell

line-derived neurotrophic factor (GDNF) gene delivery protects cortical neurons
from dying following a traumatic brain injury. Restor Neurol Neurosci 28:

293–309.

7. Poduslo J, Curran G (1996) Permeability at the blood-brain and blood-nerve

barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol
Brain Res 36: 280–286.

8. Spedding M, Gressens P (2008) Neurotrophins and cytokines in neuronal

plasticity. Novartis Foundation Symposium 289: 222–233.

9. Levi A, Biocca S, Cattaneo A, Calissano P (1988) The mode of action of nerve

growth factor in PC12 cells. Mol Neurobiol 2: 201–226.

10. Shafer T, Atchison W (1991) Transmitter, ion channel and receptor properties
of pheochromocytoma (PC12) cells: a model for neurotoxicological studies.

Neurotoxicology 12: 473–492.

11. Radio N, Breier J, Shafer T, Mundy W (2008) Assessment of chemical effects on

neurite outgrowth in PC12 cells using high content screening. Toxicol Sci 105:
106–118.

12. Greene L, Tischler A (1976) Establishment of a noradrenergic clonal line of rat

adrenal pheochromocytoma cells which respond to nerve growth factor. Proc
Natl Acad Sci USA 73: 2424–2428.

13. Ishihara M, Fujisawa S (2007) Photooxygenation, photodegradation and

antioxidative activity of platonin, a cyanine photosensitizing dye. In Vivo 21:
163–173.

14. Ushio C, Ariyasu H, Ariyasu T, Arai S, Ohta T, et al. (2009) Suppressive effects

of a cyanine dye against herpes simplex virus (HSV)-1 infection. Biomed Res 30:

365–368.

15. Kunikata T, Ishihara T, Ushio S, Iwaki K, Ikeda M, et al. (2002) Lumin, a
cyanine dye, enhances interleukin 12-dependent interferon gamma production

by lipopolysaccharide-stimulated mouse splenocytes. Biol Pharm Bull 25:

1018–1021.

16. Mito K (1996) A needle type therapeutic system incorporating laser light and
lumin for immunotherapy of cancer growing in deep organs. J Med Eng

Technol 20: 121–126.

17. Mito K (1996) Photodynamic efficiency of macrophage activity using a

photosensitizer, lumin, with near-IR laser light for photoimmunotherapy of a
cancer. Front Med Biol Eng 7: 81–92.

18. Koya-Miyata S, Ohta H, Akita K, Arai S, Ohta T, et al. (2010) Cyanine
photosensitizing dyes attenuate cerebral ischemia and reperfusion injury. Biol

Pharm Bull 33: 1872–1877.

19. Culmsee C, Gerling N, Lehmann M, Nikolova-Karakashian M, Prehn J, et al.

(2002) Nerve growth factor survival signaling in cultured hippocampal neurons is
mediated through TrkA and requires the common neurotrophin receptor P75.

Neuroscience 115: 1089–1108.

20. Nguyen N, Lee S, Lee Y, Lee K, Ahn J (2009) Neuroprotection by NGF and

BDNF against neurotoxin-exerted apoptotic death in neural stem cells are
mediated through Trk receptors, activating PI3-kinase and MAPK pathways.

Neurochemical Research 34: 952.

21. Ries V, Henchcliffe C, Kareva T, Rzhetskaya M, Bland R, et al. (2006)

Oncoprotein Akt/PKB induces trophic effects in murine models of Parkinson’s
disease. Proc Natl Acad Sci U S A 103: 18757–18762.

22. Burke RE (2007) Inhibition of mitogen-activated protein kinase and stimulation
of AKT kinase signaling pathways: two approaches with therapeutic potential in

the treatment of neurodegenerative disease. Pharmacol Ther 114: 261–277.

23. Akita K, Arai S, Ohta T, Hanaya T, Fukuda S (2007) Suppressed Nna1 gene

expression in the brain of ataxic Syrian hamsters. J Neurogenet 21: 19–29.

A Cyanine Dye as a Treatment for Neurodegeneration

PLoS ONE | www.plosone.org 11 February 2011 | Volume 6 | Issue 2 | e17137



24. Akita K, Arai S (2009) The ataxic Syrian hamster: an animal model homologous

to the pcd mutant mouse? Cerebellum 8: 202–210.
25. Fernandez-Gonzalez A, La Spada A, Treadaway J, Higdon J, Harris B, et al.

(2002) Purkinje cell degeneration (pcd) phenotypes caused by mutations in the

axotomy-induced gene, Nna1. Science 295: 1904–1906.
26. Li J, Gu X, Ma Y, Calicchio M, Kong D, et al. (2010) Nna1 mediates Purkinje

cell dendritic development via lysyl oxidase propeptide and NF-kB signaling.
Neuron 68: 45–60.

27. Ahmed S, Gogal Jr R, Walsh J (1994) A new rapid and simple non-radioactive

assay to monitor and determine the proliferation of lymphocytes: an alternative
to [3H]thymidine incorporation assay. J Immunol Meth 170: 211–214.

28. Fernandez A, de la Vega A, Torres-Aleman I (1998) Insulin-like growth factor I
restores motor coordination in a rat model of cerebellar ataxia. Proc Natl Acad

Sci U S A 95: 1253–1258.
29. Carrascosa C, Torres-Aleman I, Lopez-Lopez C, Carro E, Espejo L, et al. (2004)

Microspheres containing insulin-like growth factor I for treatment of chronic

neurodegeneration. Biomaterials 25: 707–714.
30. van de Warrenburg B, Steijns J, Munneke M, Kremer B, Bloem B (2005) Falls in

degenerative cerebellar ataxias. Mov Disord 20: 497–500.
31. Giavazzi R, Campbell D, Jessup J, Cleary K, Fidler I (1986) Metastatic behavior

of tumor cells isolated from primary and metastatic human colorectal

carcinomas implanted into different sites in nude mice. Cancer Res 4:
1928–1933.

32. Hsu S, Raine L, Fanger H (1981) Use of avidin-biotin-peroxidase complex
(ABC) in immunoperoxidase techniques: a comparison between ABC and

unlabeled antibody (PAP) procedures. J Histochem Cytochem 29: 577–580.
33. Saito Y, Nishio K, Ogawa Y, Kinumi T, Yoshida Y, et al. (2007) Molecular

mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells:

involvement of hydrogen peroxide-dependent and -independent action. Free
Radic Biol Med 42: 675–685.

34. Mendez J, Finn B (1975) Use of 6-hydroxydopamine to create lesions in
catecholamine neurons in rats. J Neurosurg 42: 166–173.

35. Berg M, Sternberg D, Parada L, Chao M (1992) K-252a inhibits nerve growth

factor-induced trk proto-oncogene tyrosine phosphorylation and kinase activity.
J Biol Chem 267: 13–16.

36. Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, et al. (2004) Regulation of
heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt

pathway and the Nrf2 transcription factor in response to the antioxidant
phytochemical carnosol. J Biol Chem 279: 8919–8929.

37. Kim Y, Seger R, Suresh BC, Hwang S, Yoo Y (2004) A positive role of the

PI3-K/Akt signaling pathway in PC12 cell differentiation. Mol Cells 18:
353–359.

38. Alessi D, Andjelkovic M, Caudwell B, Cron P, Morrice N, et al. (1996)
Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15:

6541–6551.

39. Behrmann D, Bresnahan J, Beattie M (1994) Modeling of acute spinal cord
injury in the rat: neuroprotection and enhanced recovery with methylprednis-

olone, U-74006F and YM-14673. Exp Neurol 126: 61–75.

40. Weeks B, Perez P (2007) A novel vitamin C preparation enhances neurite

formation and fibroblast adhesion and reduces xenobiotic-induced T-cell

hyperactivation. Med Sci Monit 13: BR51–BR58.

41. Zhou X, Tai A, Yamamoto I (2003) Enhancement of neurite outgrowth in PC12

cells stimulated with cyclic AMP and NGF by 6-acylated ascorbic acid 2-O-

alpha-glucosides (6-Acyl-AA-2G), novel lipophilic ascorbate derivatives. Biol

Pharm Bull 26: 341–346.

42. Cassano S, Agnese S, D’Amato V, Papale M, Garbi C, et al. (2010) Reactive

oxygen species, Ki-Ras, and mitochondrial superoxide dismutase cooperate in

nerve growth factor-induced differentiation of PC12 cells. J Biol Chem 285:

24141–24153.

43. Halliwell B, Gutteridge J (1999) Antioxidant defence enzymes: the glutathione

peroxidase family. Free Radic Biol Med Ed 3: 140–146 170-172.

44. Halliwell B, Gutteridge J, Cross C (1992) Free radicals, antioxidants, and human

disease: where are we now? J Lab Clin Med 119: 598–620.

45. Breen A, Murphy J (1995) Reactions of oxyl radicals with DNA. Free Radic Biol

Med 18: 1033–1077.

46. Malek R, Nie Z, Ramkumar V, Lee N (1999) Adenosine A(2A) receptor mRNA

regulation by nerve growth factor is TrkA-, Src-, and Ras-dependent via

extracellular regulated kinase and stress-activated protein kinase/c-Jun NH(2)-

terminal kinase. J Biol Chem 274: 35499–35504.

47. Florez-McClure M, Linseman D, Chu C, Barker P, Bouchard R, et al. (2004)

The p75 neurotrophin receptor can induce autophagy and death of cerebellar

Purkinje neurons. J Neurosci 24: 4498–4509.

48. Fisher M, Meadows M, Do T, Weise J, Trubetskoy V, et al. (1995) Delayed

treatment with intravenous basic fibroblast growth factor reduces infarct size

following permanent focal cerebral ischemia in rats. J Cereb Blood Flow Metab

15: 953–959.

49. Welsh J, Yuen G, Placantonakis D, Vu T, Haiss F, et al. (2002) Why do Purkinje

cells die so easily after global brain ischemia? Aldolase C, EAAT4, and the

cerebellar contribution to posthypoxic myoclonus. Adv Neurol 89: 331–359.

50. Fonnum F, Lock E (2000) Cerebellum as a target for toxic substances. Toxicol

Lett 112-113: 9–16.

51. Fonnum F, Lock E (2004) The contributions of excitotoxicity, glutathione

depletion and DNA repair in chemically induced injury to neurons: exemplified

with toxic effects on cerebellar granule cells. J Neurochem 88: 513–531.

52. Zhang L, Himi T, Morita I, Murota S (2000) Hepatocyte growth factor protects

cultured rat cerebellar granule neurons from apoptosis via the phosphatidyli-

nositol-3 kinase/Akt pathway. Journal of Neuroscience Research 59: 489–496.

53. Shimoke K, Yamagishi S, Yamada M, Ikeuchi T, Hatanaka H (1999) Inhibition

of phosphatidylinositol 3-kinase activity elevates c-Jun N-terminal kinase activity

in apoptosis of cultured cerebellar granule neurons. Brain Research Develop-

mental Brain Research 112: 245–253.

54. Barski J, Hartmann J, Rose C, Hoebeek F, Morl K, et al. (2003) Calbindin in

cerebellar Purkinje cells is a critical determinant of the precision of motor

coordination. J Neurosci 23: 3469–3477.

A Cyanine Dye as a Treatment for Neurodegeneration

PLoS ONE | www.plosone.org 12 February 2011 | Volume 6 | Issue 2 | e17137


