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Abstract

Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the
major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about
drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of
identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth
anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine
predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and
ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally
showed strong positive associations with human population size. Although this association has been widely posited, this is
one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results
emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors,
even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and
environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted
only perhaps by declines in host density below thresholds required for disease establishment.
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Introduction

Coral reefs represent some of the most biologically diverse

ecosystems on the planet, but these important habitats are

declining worldwide due to human overexploitation, land-based

pollution, global climate change, and disease outbreaks [1–6].

While the situation is most severe in the Caribbean, coral reefs are

also in decline across the Indo-Pacific, where an annual loss in

coral cover of approximately 1% has occurred over the last 20

years, increasing to 2% between 1997 and 2003 [7]. Coral diseases

contribute to this decline by causing a loss of live coral cover [8–

10] that, under extreme circumstances, can lead to complete

community phase-shifts (e.g. from coral-dominated to alga-

dominated) [11]. The causes of most coral diseases are unknown.

However, understanding how coral disease prevalence relates to

changes in reef environmental quality may provide clues to disease

etiology. Coral disease increases are associated with local

anthropogenic stressors such as poor water quality [12–17], as

well as global stressors such as sea-surface temperature anomalies

[18] and resultant coral bleaching events [19–22]. Effects of

environmental co-factors may vary between disease types [23] but

few efforts have been made to model individual coral diseases with

multiple, possibly interacting, environmental cofactors, but see

[17,18,22].
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As a step towards understanding disease dynamics, statistical

modeling techniques have recently been used over small spatial

scales (individual reefs) to examine multiple coral disease-

environment associations [17]. In the present study we used

statistical modeling to examine the prevalence of two coral

diseases, Acropora growth anomalies (AGAs) and Porites growth

anomalies (PGAs) (Fig. 1) across the Indo-Pacific region. Growth

anomalies appear as distinctive protuberant masses on corals and

thus are easily distinguished in the field. These lesions do not suffer

from confounding interpretations, as do lesions involving tissue

loss (e.g. white syndrome), which may be confused with predation

or vice versa. Growth anomalies have been reported to affect a

variety of coral genera from both the Caribbean and the Indo-

Pacific [24,25] and have been relatively well characterized at the

gross and microscopic levels [26–34]. Although the causes of GAs

in corals are unknown, they are associated with reduced colony

growth [26,27], partial colony mortality [28,33] and decreased

reproduction [30,33], and therefore could negatively impact the

fitness of host populations. Acroporids appear to be the most

susceptible to GAs; they have been recorded in over 17 species

[25,28,33,34]. Porites GAs are less common and have been

described from seven species [22,25,32,34,35].

Our objective was to model the prevalence of growth anomalies

in Porites spp. and Acropora spp. in relation to a range of

environmental parameters at several hundred sites across the

Indo-Pacific Ocean. Disease data were collected from reefs in

regions that ranged from heavily populated (and therefore

potentially more intensely impacted by local stressors), such as

the main Hawaiian Islands [36] and Central Philippines [37], to

relatively pristine remote reefs with minimal direct human impact,

although still vulnerable to global stressors, such as Palmyra Atoll

National Wildlife Refuge in the northern Line Islands [38,39].

This enabled comparative analyses of disease prevalence across

multiple gradients for each of our predictors of interest: biological

factors (coral host abundance); anthropogenic factors (human

population size); and environmental factors (thermal stress events,

surface ultra-violet radiation). Our overall aim was to determine

the environmental conditions associated with the prevalence of

AGAs and PGAs across the Indo-Pacific, while accounting for

confounding effects such as variations in survey effort and timing

of the disease surveys.

Methods

Prevalence of Acropora and Porites growth anomalies,
and potential biological, environmental and
anthropogenic predictors

Our analyses were based upon 937 quantitative coral disease

surveys from 13 regions from across the Indo-Pacific between 2002

and 2008 (Fig. 2; Table 1; Table S1). Our response variable was

disease prevalence (proportion of colonies surveyed affected by

GAs) within the survey areas. Biological predictors were host

(Porites spp. or Acropora spp.) density and percent cover.

Belt transects were used to quantify disease and biological

predictors, but the number, length and width of transects differed

among regions and researchers. Hence, both survey effort (area of

reef surveyed (m2)) and timing of the surveys (year) were included

as predictors in the models. Global environmental predictors

included frequency of weekly sea surface temperature anomalies

(WSSTA) and frequency of erythemal surface ultraviolet (UV)

radiation anomalies, while human population size served as a

proxy for the impact of anthropogenic effects. Coral disease survey

locations were imported as geo-referenced points into the GIS and

predictor values were extracted for each survey. Human

population counts were raster data of 2.5 arc-minutes resolution

adjusted to match UN totals for 2005 [40]. Human population size

was summed within circular buffers of 1 and 100 km around each

survey site. Data were included for all grid cells that intersected a

buffer. The mean annual WSSTA values for the four years prior to

the year of the survey were extracted for each coral survey

location. The frequency of weekly sea surface temperature

anomalies (WSSTA) was defined as the number of times over

the previous 52 weeks that the weekly sea surface temperature

(SST) minus the weekly climatological SST, equaled or exceeded

1uC [41]. SSTA data were approximately 4 km resolution

Pathfinder AVHRR raster data on a weekly time scale from

1985 through 2005. The frequency of erythemal surface ultraviolet

(UV) radiation anomalies were the number of times between 2000

and 2004 that the monthly average exceeded the climatological

mean plus one standard deviation [42]. These values were

summed across the 12 months to provide a single value, ranging

from 0–19, representing the number of anomalous values for each

coral survey location over the entire 5 years. The erythemal

surface UV data were measured as part of the GSFC TOMS EP/

TOMS satellite program at NASA [43]. These data were

processed by NASA to isolate the amount of erythemal ultraviolet

(UV) light that reaches Earth’s surface. Data were reported as the

average Joules (J) per m2 per month at one-degree cell (,110 km

by 110 km) resolution. Figure S1 shows how GIS data were used

in the analyses for the main Hawaiian Islands, as an example.

These data were prepared and geoprocessed with ArcGIS 9.2 and

Matlab 7.1.

Figure 1. Picture of Porites growth anomaly (top) and Acropora
growth anomaly (bottom).
doi:10.1371/journal.pone.0016887.g001

Coral Growth Anomalies across the Indo-Pacific
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Statistical analyses. To investigate associations between

prevalence (proportion of colonies affected by GAs) of AGAs

and PGAs with each of the predictor variables (Table 2), we used a

permutational distance-based multiple regression technique

(DISTLM) [44]. DISTLM is robust to zero-inflated data sets,

such as ours, and makes no assumptions about the distribution of

the response variable (i.e. normality does not have to be satisfied).

No two predictors exceeded the recommended cut-off inter-

correlation value of 0.95 [45]. In fact, the highest Pearson’s

correlations between predictors did not exceed 0.65 and 0.44 for

AGA and PGA, respectively. Predictors were normalized and were

fitted conditionally in a step-wise manner, with tests based on 9999

permutations of the residuals under the reduced model [44,45].

Model selection (to obtain the best-fit model while maintaining

model parsimony) was based on a Bayesian Information Criterion

(BIC) [46]. BIC is similar to the more commonly used Akaike’s

Information Criterion (AIC), however BIC includes a more severe

penalty for the inclusion of extraneous predictor variables [45]. To

visualize each best-fit model, distance-based redundancy plots

(dbRDA) [44] were created based on the prevalence patterns

between independent observations. The optimal predictor variable

vector(s) (model base variables) was then overlaid as a bi-plot [45].

DISTLM cannot handle missing values within the predictor

variable data sets, therefore disease surveys with missing data

points for any of the nine predictor variables had to be deleted

from the analyses, leaving 304 and 602 surveys for AGA and PGA

prevalence, respectively. All prevalence modeling analyses were

based on zero-adjusted Bray-Curtis similarity matrices [47] and

conducted in PRIMER v6 [48] and PERMANOVA+ [45].

Results

Between 2002 and 2008, AGAs were recorded within

approximately 16% of the surveys (n = 534) and PGAs were

recorded within 18% of the surveys (n = 855) (Table S2).

Prevalence of AGAs (all years and surveys combined) ranged

from 0 to 9.4% (Avg. = 0.14%, SD60.6) and the prevalence of

PGAs ranged from 0 to 16.7% (Avg. = 0.2% SD61.1) (Table S3).

AGA prevalence was positively associated with Acropora cover,

Figure 2. Map showing survey sites across the Indo-Pacific used in the analyses.
doi:10.1371/journal.pone.0016887.g002

Table 1. Numbers of disease surveys conducted at each
region by year.

Survey region 2002 2004 2005 2006 2007 2008 Total

Great Barrier Reef 38 42 36 6 12 134

Papua New Guinea 4 4

Indonesia 5 5 10

Philippines 22 11 33

American Samoa 11 19 57 58 145

Palau 6 19 25

Marshall Islands 4 4

Marianas 7 66 73

Line Islands 36 46 82

Phoenix Islands 12 8 20

Johnston Atoll 12 25 6 43

Wake 12 12

Hawaiian Islands 57 82 100 113 352

Total 937

doi:10.1371/journal.pone.0016887.t001

Coral Growth Anomalies across the Indo-Pacific
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which explained 16.6% of the variability in disease prevalence

(Table 3). No other predictor explained a significant proportion of

the variability in AGA prevalence (Table 3, Fig. 3). PGA

prevalence was positively associated with higher regional

(100 km) human population sizes and with higher Porites colony

densities, with the two predictors significantly explaining 28.8% of

the variability in disease prevalence. UV input also significantly

explained 12.4% of the variability in disease prevalence and

increased levels of UV were associated with lower levels of PGA

prevalence (Table 3, Fig. 3). The nine predictors explained a

greater proportion of the variability in PGA prevalence than in

AGA prevalence, with total explained variability equaling 41.2%

and 16.6%, respectively (Table 3).

Discussion

Growth anomalies (GAs) in Acropora (AGAs) and Porites (PGAs)

were widespread across the Indo-Pacific occurring in eleven of the

thirteen survey regions. GAs were relatively common with the

overall frequency of occurrence (percentage of surveys containing

GAs) across the Indo-Pacific being 16% for AGAs and 18% for

PGAs. Some regions had an even higher disease occurrence, such

as the Philippines where PGAs were found in 58% of the surveys

(n = 33) and in Palau where AGAs were found in 32% (n = 25). In

contrast to the Indo-Pacific, GAs are much less frequent within the

Caribbean. For example, no GAs were reported from 160 stations

surveyed across the Florida Keys [49], 13 reef areas off the coast of

Colombia [50] and 23 sites off Mexico [51]. In fact, there have

only been two published reports of AGAs from the Caribbean

[27,28] with no published reports of PGAs.

Although both diseases (AGA and PGA) were widespread on

reefs throughout the Indo-Pacific, their average total prevalence

was low (,1%). These values are consistent with reports of other

diseases within the Indo-Pacific. For example, mean black band

disease prevalence at 19 reefs across the GBR equaled 0.1% [52]

and white syndrome and GA prevalence in southeast Sulawesi,

Indonesia equaled 0.42% and 0.15%, respectively [53]. In Guam,

total GA prevalence averaged 1.4% and that of skeletal eroding

band, 1.2% [54], in American Samoa, the prevalence of 12 coral

diseases was each less than 1% [55], and finally at Palmyra Atoll

overall disease prevalence equaled less than 0.4% [56]. However,

on some reefs within the Indo-Pacific coral diseases can be quite

prevalent. Prevalence of skeletal eroding band from the reefs of

Aqaba, Red Sea, ranged from 4 – 41% [57] and the average

prevalence of Porites ulcerative white spot disease in the Philippines

was 22% [58]. In Guam, white syndrome is, by far, the most

prevalent disease (8.9%) [54] and this has remained consistent for

several years (Raymundo and Kim unpubl. data). However, while

these comparisons provide a snapshot view of regional variability,

they do not take into account the possibility that some of these

high values may represent seasonal outbreak conditions at

surveyed sites and differences in the amount of reef area surveyed.

The emergence of coral disease occurs from a complex interplay

between the host, causative agent and environment [23]. Hence,

one would expect high variability between sites, as found in this

and other studies of coral disease [8,14,17,37,38,54,59–61]. The

prevalence of AGAs and PGAs varied greatly among survey sites

and survey regions. The reefs within the regions we examined

represented a range of environmental conditions, differing in water

temperature, exposure to ultraviolet radiation, coral host abun-

dance and human population sizes. Using statistical modeling, we

found relatively distinct environmental associations between the

prevalence of AGAs and PGAs throughout the Indo-Pacific. To

sum, the prevalence of AGAs was most positively associated with

host abundance, while PGA prevalence showed strong positive

association with both increased human population sizes and host

abundance. In addition, low prevalence of PGAs on reefs (as

opposed to zero prevalence) was associated with increased

frequencies of ultraviolet radiation anomalies. These results

emphasize that individual coral diseases can show relatively

distinct patterns of association with environmental predictors [17]

even in the case of similar diseases (GAs) found on different host

genera (Acropora vs. Porites). Therefore, future efforts to predict

impacts and manage coral diseases on reefs should consider this

Table 2. Response and predictor variables used in the analyses with their codes and units.

Variable Code Description and units Min Max

Response

Acropora GA AGA prevalence 0 9.38

Porites GA PGA prevalence 0 16.67

Predictor

Acropora cover AcropCov % cover 0.40 75.1

Acropora density AcropDen # colonies/m2 0.01 37.8

Porites cover PorCov % cover 0.2 90.8

Porites density PorDen # colonies/m2 0.03 41.1

Depth Depth m 0.5 18.3

WSSTA during prior 4 years WSSTA mean number 1.5 20

Human numbers within 1 km HumPop1 number of people 0 50,362

Human numbers within 100 km HumPop100 number of people 0 7,705,440

UV input UV rating scale 0 15

Year Year year of survey 2002 2008

Survey effort Area m2 of reef 60 1200

Min/Max, minimum and maximum predictor values between independent observations across the entire data set. GA, growth anomaly. WSSTA, weekly sea-surface
temperature anomaly. UV, ultraviolet radiation.
doi:10.1371/journal.pone.0016887.t002

Coral Growth Anomalies across the Indo-Pacific
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finding and treat analyses separately for each disease, rather than

combining all diseases into a single response variable.

Model performance was good for PGAs, with 41.1% of the

variability in prevalence explained. Therefore, we predict that

within the Indo-Pacific one would encounter PGAs on reefs with

higher Porites cover near high human population centers. In

contrast, less variability (16.6%) was explained by modeling AGAs,

suggesting that additional variables we did not test may be

implicated in driving prevalence patterns. For our analyses, disease

data were collected at the genus level, which does not take into

account potential species specific differences in susceptibility to

GAs. For example, across the Indo-Pacific, the genus Acropora is

very species-rich (.160 species) [62]. If species within the genus

were differentially susceptible to AGAs then this could partially

explain the poor model fit, as our taxonomic resolution did not

account for host density differences below the genus level. The

prevalence of AGAs in American Samoa, NWHI and Johnston

Atoll was higher in plating Acropora sp. (n = 29) as compared to

branching (n = 8), encrusting (n = 2) and corymbose (n = 15)

morphologies, suggesting that plating colonies may be more prone

to GA formation [33]. Many coral species are difficult to identify

in the field but including information such as morphological types

within genera during surveys may provide more resolution and

better explain prevalence patterns.

While it is likely the performance of our models would be

improved with species level data, we still found that generic host

abundance was an important explanatory variable for the

prevalence of both AGAs and PGAs. A positive association

between a disease and its host is consistent with disease ecology

theory [63], and often reflects the increased horizontal transmis-

sion of a disease throughout a population as the population

increases in size and distance between individuals decreases

[64,65]. Many examples of relationships between host abundance

and disease prevalence exist throughout a wide range of

ecosystems and taxa, governed by both density-dependent and

frequency-dependent processes [66–71]. Host abundance thresh-

olds occur for other coral diseases; for example white syndrome

outbreaks along the GBR require, in part, host cover values in

excess of 50% [18]. On reefs in Guam and Palau, total disease

prevalence was significantly positively associated with coral host

abundance or cover [54] and, in Hawaii, Porites trematodiasis and

Montipora white syndrome prevalence are both strongly associated

with coral host cover [17,72,73]. Thus, diseases causing significant

mortality and reduced fecundity are likely to have major effects on

community structure, as spatially-dominant species will be more

impacted by disease.

Only PGA prevalence, and not AGA, showed strong positive

associations with human population size suggesting that they are

related, directly or indirectly, to some environmental co-factor

associated with increased human population size at regional spatial

scales. Human activities can result in increased disease levels

within wildlife populations, as a result of human-induced

environmental degradation caused by pollution, eutrophication,

habitat fragmentation, and direct introduction of novel pathogens

into ecosystems [74–79]. For example, the Hawaiian green sea

turtle showed elevated rates of a tumor disease in watersheds with

a high nitrogen-footprint reflective of coastal eutrophication [80].

Diseases of corals in tropical ecosystems are proving no exception,

with human impacts suggested to affect disease prevalence [81]. If

we are to conserve our coral reef resources, it is critical that we

determine which components of human impacts may be affecting

disease levels. Increased nutrients and reduced water quality have

been linked to increased prevalence and severity of coral diseases

such as black band disease (caused by a microbial consortium)

[13–15,82], and aspergillosis, a sea fan disease caused by the

terrestrial soil-borne fungus Aspergillus sydowii [12,15,16,83,84].

Direct influx of potential pathogens into the marine environment

(e.g. through sewage effluent disposal), has been suggested as a

causal mechanism for white pox which affects elkhorn Acropora

corals in the Caribbean [85]. Although not well-studied, viruses

have also been proposed as potential agents of coral disease [86]

and marine virus-like particles (VLPs) have been found in

increased abundance with proximity to populated coastal areas

[87].

While our understanding of coral disease etiology has

advanced considerably in recent years [88–93], the cause of

coral GAs remains largely unknown [33]. For AGAs, damage to

cells from ultraviolet (UV) radiation [29] and stressors such as

high levels of sedimentation, turbidity and seasonal temperature

extremes [28] have been suggested as playing a role in triggering

GA formation. Our analyses suggest a link between PGA

prevalence and ultraviolet radiation anomalies in areas where

human population sizes are lower, however, no such associations

were found for AGAs. The link between PGA development and

ultraviolet radiation was not supported manipulatively on Porites

compressa in Hawaii [94] and no explanations have yet been

presented regarding the etiology of PGAs, but one study did find

them to be transmissible suggesting an infectious agent [35].

Viruses have been found associated with tumor formation in

other animals such as turtles [95,96] and fish [97]. Given the

known positive association between human numbers and

densities of marine viruses [87,98], the common association of

viruses with the coral holobiont [99,100] and the strong

association we found between PGAs and human population size,

investigations into a potential viral etiology of PGAs would seem

a logical next step.

Increases in temperature, like other stressors such as poor

water quality, can alter host susceptibility to disease or pathogen

virulence [6,101,102], ultimately shifting the balance in favor of

one or the other [103]. Many coral diseases show positive

associations with temperature, for example black band disease

in the Caribbean, the Florida Keys and the GBR [104–107],

Porites tissue loss syndrome in Hawaii [17], and white syndromes

along the GBR [18]. However, we found that host abundance

Table 3. Summary results of a distance-based permutational
multiple regression analysis for the association of the
prevalence of two coral diseases (Acropora and Porites growth
anomalies) with 9 predictor variables across surveys (304 and
602, respectively) throughout the Indo-Pacific Ocean.

Disease n Predictor BIC
Pseudo-
F P value

%
variability

%
total

Acropora
GA

304 AcropCov 1925.5 21.18 0.0001 16.6 16.6

Porites
GA

602 HumPop
100

4349.2 36.88 0.0001 15.8

PorDen 4335.9 19.98 0.0001 13.0

UV 4325.8 16.57 0.0002 12.4 41.2

The optimal predictors of each disease and the proportion of variability (%) in
the data set they explained are shown. Predictor variable codes and units are as
per Table 2. Model development was based on step-wise selection and a
Bayesian Information Criterion (BIC), with the total variation (r2) explained by
each best-fit model shown (% total). Analyses based on 9999 permutations of
the residuals under a reduced model.
doi:10.1371/journal.pone.0016887.t003

Coral Growth Anomalies across the Indo-Pacific
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and human population size were the optimal predictors for

variations in prevalence of AGAs and PGAs, respectively, with

WSSTAs showing no such association. It may be that chronic

diseases, such as GAs, are less influenced by short-term changes

in temperature as compared to the tissue loss diseases, many of

which are caused by pathogenic bacteria with virulence factors

that may be enhanced at higher temperatures [85,90,91,93].

Many bacteria thrive in warm temperatures and so bacterial

diseases could be influenced more by temperature [108].

Understanding the disease-specific responses to environmental

and anthropogenic stressors is critical if we are to protect and

conserve our reefs from the inevitable threat of future

environmental change.

In summary, AGAs and PGAs showed relatively distinct

patterns with the predictors tested throughout the Indo-Pacific.

While GAs in both genera showed positive associations with host

abundance, PGAs additionally showed strong positive associations

with human population size. GAs are often progressive and can

result in host mortality [33] and so represent a threat to coral reef

health worldwide. As human densities and environmental

degradation continue to increase across the globe [78], the

prevalence of diseases such as PGAs that are associated with these

factors may similarly increase throughout the Indo-Pacific, halted

only perhaps by declines in host density below thresholds required

for disease establishment. Increases in coral disease prevalence and

outbreaks, in combination with mass coral bleaching events and

other disturbances associated with climate change, pose a great

threat to the future survival of coral reef environments on our

planet. Future efforts should focus on determining the etiology of

AGAs and PGAs so that the environmental associations identified

in the present study are put into a better ecological context, thus

increasing our understanding of their ecology and ultimately

granting us the knowledge to mitigate an increase in their

prevalence.

Figure 3. Distance-based multiple regression analyses relating Acropora (top) and Porites (bottom) growth anomaly prevalence to 9
predictor variables across surveys throughout the Indo-Pacific. Number of surveys where data for all predictor variables was obtained equals
304 and 602 for Acropora GAs and Porites GAs, respectively. Graphs modified from distance-based redundancy plots. The bubbles represent the
proportion of corals displaying signs of the disease (% of the population affected) at each survey site. The overlaid bi-plot shows the correlation of the
disease prevalence with the optimal predictor(s) forming the best-fit model. The vector line indicates the direction of the relationship with disease
prevalence. The length of vector line indicates the relative importance of the predictor. X represents a cluster of sites where the disease prevalence
equaled zero. Predictor variable codes and units are as per Table 2.
doi:10.1371/journal.pone.0016887.g003

Coral Growth Anomalies across the Indo-Pacific
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Supporting Information

Figure S1 Example of GIS data used in the analyses.
Shown are data for the sites included from the main Hawaiian

Islands.

(TIF)

Table S1 Islands surveyed for Acropora and Porites growth

anomalies within each of the regions analyzed.

(DOC)

Table S2 Frequency of occurrence (FOC) of Acropora growth

anomalies (AGAs) and Porites growth anomalies (PGAs) across the

Indo-Pacific.

(DOC)

Table S3 Average prevalence of Acropora growth anomalies

(AGAs) and Porites growth anomalies (PGAs) across the Indo-

Pacific.

(DOC)
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