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Abstract

Chronic fatigue syndrome (CFS) is a clinically defined illness estimated to affect millions of people worldwide causing
significant morbidity and an annual cost of billions of dollars. Currently there are no laboratory-based diagnostic methods
for CFS. However, differences in gene expression profiles between CFS patients and healthy persons have been reported in
the literature. Using mRNA relative quantities for 44 previously identified reporter genes taken from a large dataset
comprising both CFS patients and healthy volunteers, we derived a gene profile scoring metric to accurately classify CFS
and healthy samples. This metric out-performed any of the reporter genes used individually as a classifier of CFS. To
determine whether the reporter genes were robust across populations, we applied this metric to classify a separate blind
dataset of mRNA relative quantities from a new population of CFS patients and healthy persons with limited success.
Although the metric was able to successfully classify roughly two-thirds of both CFS and healthy samples correctly, the level
of misclassification was high. We conclude many of the previously identified reporter genes are study-specific and thus
cannot be used as a broad CFS diagnostic.
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Introduction

Chronic fatigue syndrome (CFS) is a clinically defined illness

with a broad range of symptoms including severe and debilitating

fatigue, muscle pain, sleep disruption, difficulties with concentra-

tion, memory impairment and headaches. It is estimated to affect

0.4% of the population in Europe and North America [1] and cost

$9 billion annually in lost productivity in the USA alone [2]. The

cause and pathogenesis of CFS remain poorly understood,

although various infectious triggers have been proposed.

There are currently no specific laboratory-based tests that provide

a robust diagnosis of CFS. However, previous studies indicate

significant differences in the patterns of gene expression in peripheral

blood leukocytes between patients with CFS and healthy individuals

[3–10]. Although many of these studies have not detailed predictive

sets of genes that could be used to make a diagnosis of CFS on the

basis of their expression, we showed previously that the expression

levels of 88 ‘‘CFS reporter genes’’, identified using microarrays, could

assign individuals to CFS disease or healthy control groups following

quantitative PCR of PBMC RNA [7,8].

Microarray analysis has been used frequently to identify groups of

genes associated with various diseases, including infectious diseases

[11], autoimmune diseases and cancer [12]. In such studies, a

microarray dataset featuring tens of thousands of genes is

computationally reduced to several hundred genes found to be

significantly differentially expressed between healthy and diseased

individuals, or between different stages of disease. Computational

methods, such as support vector machines (e.g. [13]), artificial neural

networks (e.g. [14]) and simple selective naı̈ve Bayes classifiers [15],

are able to identify such gene sets for disease classification. These

methods require training the underlying statistical models on data

representative of diseased and healthy phenotypes in order to make

such predictions. Ideally, models are trained on a well-characterised

dataset and evaluated using a separate, preferably blinded, test set

consisting of new samples from diseased and healthy individuals. The

use of different non-array based methods for quantification of gene

expression, such as reverse transcription polymerase chain reaction

(RT-PCR) is also desirable. On this basis, a gene profile can be

formally assessed as a multiplex diagnostic tool.

Here, we have undertaken such an analysis to determine the

predictive power of our ‘CFS signature genes’ identified previously

[7,8]. We have assessed the CFS disease predictive genes in the

original study data and in a new blinded sample set of CFS disease

and healthy control samples. We show, using a variety of methods,

that these genes do not identify robustly patients with CFS disease.

Results

CFS class prediction using a 44 gene classifier
To develop a robust CFS diagnostic metric, we used as a

training set the mRNA relative quantities (RQ, defined as

22DDCT) for the 44 most discriminating reporter genes identified
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previously by us [7,8] (Table S1). The data were normalised to

GAPDH and to a calibrator sample. Initially, we assessed the

ability of each of the individual reporter genes to be used as an

accurate predictor of CFS disease in this dataset of PBMC gene

expression, determined for 56 patients suffering from CFS and 75

healthy volunteers.

Figure 1. A boxplot illustrating the distribution of log2(RQ) values for each of the reporter genes in the training set. Distributions for
CFS samples are shown in red, healthy samples in white. The boxes represent the inter-quartile range (25–75%) of the data with the median being
shown as a solid horizontal line within each box. Whiskers extend to 1.5 times the inter-quartile range. The data is log2 scaled and outliers omitted for
purposes of clarity.
doi:10.1371/journal.pone.0016872.g001

Figure 2. ROC curves obtained when using (A) ARL4C and (B) NUFIP2 as CFS predictors on the training set. The graphs are coloured
according to the scale bar on the right hand y-axes to indicate the RQ value cut-offs associated with each pair of sensitivity and specificity values at
that particular point in the ROC curve. The AUCs were found to be: (A) 0.94 and (B) 0.67.
doi:10.1371/journal.pone.0016872.g002
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For each of the 44 reporter genes, we assessed the distribution of

RQ values, finding that each of the genes was expressed at higher

levels in the CFS samples than controls (Figure 1). In some cases,

the RQ values of the reporter genes were clearly separate and the

mean RQ differed significantly between CFS and controls, for

example ANAPC11. For other classifier genes, although the mean

RQ values differed significantly between CFS and control samples,

the separation of the individual RQ values was not so distinct, for

example MRRF.

For each of the genes we performed receiver operator curve

(ROC) analysis, using different RQ value cut-offs to produce ROC

curves and a corresponding assessment of sensitivity, specificity, true

Figure 3. Area under the curve (AUC) values for each of the reporter genes when used as CFS predictors on the training set. All
perform better than random (AUC = 0.5).
doi:10.1371/journal.pone.0016872.g003
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and false positive rates (TPR, FPR) for each gene. We used the

results of the ROC analyses to identify an RQ value cut off for each

gene that maximised the true positive, and minimised the false

positive, classification of CFS samples. A sample was classified as

CFS-positive if its RQ value was greater than the calculated cut-off.

Consistent with the distribution of RQ values for each gene

(Figure 1) the area under the curve (AUC) from the ROC analysis for

the 44 reporter genes varies substantially, from 0.67 to 0.94 (Figures 2,

3 and Table S2). ARL4C was found to be the best CFS predictor

(AUC = 0.94), whilst NUFIP2 performs poorly (AUC = 0.67); thus,

NUFIP2 performs only marginally better than a random predictor

(AUC = 0.5). Consequently, the individual 44 reporter genes vary

considerably in their ability to predict CFS in the training set

accurately, although all perform better than a random predictor

(Figure 3). Those with high AUCs yield fewer false positives at low

RQ cut-offs and fewer false negatives at higher RQ cut-offs.

Using individual genes as classifiers is often problematic due to

missing data, where gene expression levels are not available for all

patients and individual variation of single gene expression

confounds predictive power. Thus, in principle, no single reporter

gene would be able to classify CFS accurately across all samples.

We therefore explored the data structure of the 44 gene expression

set using unsupervised hierarchically clustering of the PCR-

derived RQ gene expression levels in the training set using

Euclidean distance (Figure 4). Although there is clearly an

underlying structure to the data, with many of the CFS and

control samples clustering in distinct groups, there is also clearly

overlap between the two groups. This is most likely due to missing

data and occasionally large RQ outliers skewing the clustering.

Consistent with this observation, the 44 reporter genes could not

produce a CFS classifier using support vector machines by training

on a subset of the training set and assessing the predictive power

on a separate subset (data not shown). To minimise the effect of

missing gene expression levels in each sample, we filtered the

training set to include only samples for which there were at least 22

different RQ gene expression values (i.e. 50% of the reporter

genes). However, this did not improve the ability to predict CFS

cases using hierarchical or k-means clustering, or SVMs.

Gene Profile Score Metric
Because standard clustering and classification methods were

unable to classify the training set, we developed a scoring metric

based around a gene-profiling approach. For each sample, a gene

profile was generated using a binary classification of CFS or

control for each reporter gene: a sample with a RQ value greater

than the defined gene specific cut-off corresponding to a 5% false

positive rate determined from the earlier ROC analysis was

assigned a ‘1’ (‘‘present’’), or otherwise a ‘0’ (‘‘absent’’). Any

missing data values were assigned a ‘0’. The per gene score is

summed over the 44 genes, resulting in a profile score of between 0

and 44 for each sample. Samples with high scores should be over

represented for CFS disease whilst samples with low scores all

should be healthy controls.

We assessed the ability of this metric to differentiate between

CFS and healthy samples in the training set again using ROC

analysis on the profile score, obtaining true and false positive rates

for a range of profile score cut-offs (Figure 5). This method results

in an AUC of 0.95, with 47 CFS (84%) and 72 healthy controls

(96%) correctly predicted in the 131 sample training set. This

therefore represents a better predictor of CFS than any of the

genes used individually (Figure 3).

We applied this gene profile score metric to analyse a blind

study dataset, selecting a profile score cut-off of 5, above which

samples were classed as CFS disease and equal to or below were

classed as healthy controls. At this level of score threshold, the

training set gave a FPR of 5%. Under these criteria, our predictor

Figure 5. ROC curves for the gene profile score metric using a false positive rate (FPR) on the training set of (A) 5% and (B) 10%. For
more detail, see Materials and Methods. The graph is coloured to indicate the gene profile score cut-offs associated with each pair of true and false
positive rates at that particular point in the ROC curve. The range of profile cut-off scores are coloured on the right hand y-axes of each graph. The
profile score cut-offs used to classify the test set were derived by selecting scores yielding FPR’s of (A) 5% and (B) 10%, as indicated by the dashed
lines.
doi:10.1371/journal.pone.0016872.g005

Figure 4. Hierarchical clustering across samples of RQ values from the training set by Euclidean distance with average linkage.
Reporter genes are arranged in columns, samples in rows. Missing values are shown in grey.
doi:10.1371/journal.pone.0016872.g004
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assigned from the 128 blinded samples, 32 CFS positive samples,

of which 22 were true-positives (69%) and 10 were false-positives

(31%) (Table 1). Correspondingly, it predicted 96 healthy samples

of which 51 were true negatives (53%) and 45 were false negatives

(47%). Overall, this resulted in 73 (58%) correct classifications

(TP+TN), based on our gene expression scoring metric. An

empirical assessment of the blinded test set based on expert

assessment of the RQ values resulted in the correct class prediction

of 79 of 128 samples (61%).

To determine if the predictive power that was evident in the

training data was lost on the test data due to a subset of poorly

performing genes we looked at the number of correctly predicted

samples per gene (Figure 6). This showed that except for 3 genes

(MRPL23, PKN1 and ARL4C) all other genes had significantly

lower predictive power in the test set. Although a number of reporter

genes are good CFS predictors in the training set, the majority

perform no better than random, 32 of the 44 making more incorrect

than correct predictions on the test set (Tables S3, S4). Those that are

good CFS predictors in the training set are not necessarily good

predictors in the test set: there is no correlation between the number

of correct predictions made by each reporter gene individually across

the two data sets (Pearson’s correlation coefficient = 0.07).

To determine if the calibrator reference sample confounded the

RQ-based analysis we investigated the properties of normalized

real time DCT values. Performing ROC analysis and generating

profile scores for the DCT values, we found no significant

difference in predictive outcome for the 44 reporter genes in terms

of their ability to classify CFS and healthy samples, either when

used as individual classifiers or by combining them to generate

profile scores (Figure S1, Tables S5, S6).

For the training set, mean RQ values are significantly higher in

CFS than healthy samples for each of the 44 reporter genes (Welch

2-sample t-test, P,0.01). However, no significant difference is

observed between the means for any of these genes in the test set

(Welch 2-sample t-test, all P.0.01). Thus, although the reporter

genes could be used (either by profile score or, to a lesser extent,

individually) to classify CFS in the original study, they are not

robust in a new sample population.

Discussion

Here we have assessed the ability of a proposed 44 gene

classifier [8] to discriminate between CFS patients and healthy

control individuals. This classifier was able to discriminate

correctly between CFS and healthy control samples in 95% of

the training samples. However, when assessed on a new, blinded

128 sample test set only 58% of samples were predicted correctly.

Importantly, a high number of false-positive predictions were

made, with 31% of CFS-positive predictions being from healthy

volunteers. In addition, a high number of false negative predictions

were made, 57% of the CFS samples being predicted as healthy

controls. Therefore, with the methods used here we cannot predict

CFS disease based on the analysis of expression of 44 classifier

genes in the peripheral blood.

There may be several reasons for the poor performance on the

blinded test set for what, as far as the training set is concerned,

would otherwise be considered a good predictive metric. Firstly,

the low 5% FPR per gene in the development of cut-off scores for

the scoring metric may have resulted in over-fitting to the training

set. This seems unlikely, however, as similar results were observed

based on a more relaxed training set FPR of 10% with the training

set still producing a classifying AUC of 0.94 (Figure 5). Although

roughly two-thirds (43/67, 64%) of the CFS samples from the

blinded test set were classified correctly using a profile score cut-off

corresponding to a FPR of 10%, the rate of misclassification was

Figure 6. Percentage of predictions made correctly by each of the reporter genes using cut-offs corresponding to a FPR of 5% on
the training set (blue) and the test set (red).
doi:10.1371/journal.pone.0016872.g006

Table 1. The performance of the gene profile score metric in
classifying samples in the test set.

Method Positive Negative

5% FPR True text 22 51

False text 10 45

10% FPR True text 43 37

False text 24 24

Cut-offs were used on the test set corresponding to false positive rates (FPR) of
5% and 10% on the training set.
doi:10.1371/journal.pone.0016872.t001
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higher (24/67, 36%; Table 1). Secondly, there may be

fundamental biological differences between the training and test

set due to for example, population stratification, age, onset of CFS

or other factors which confound both clustering and gene-profiling

approaches. In the worst case, the 44 reporter genes may not be

representative beyond the small study in which they were

identified [7].

The determination of microarray study specific gene classifiers has

lead to the proposed identification of various CFS reporter genes,

based on microarray analysis of gene expression [3–10]. There is little

overlap in the gene sets, a reflection of the difference between studies.

Larger CFS microarray studies, together with analysis by comparison

with different control groups, may help in identify CFS disease-

classifying gene sets. Alternatively, a meta-analysis of existing CFS

data sets would provide a valuable extension with the potential to

identify gene expression signatures for formal assessment as disease

classifiers in new samples, as outlined here.

Materials and Methods

Datasets
Two datasets of quantitative real time RT-PCR values pre-

processed as mRNA relative quantities (RQ), defined as 22DDCT

for 44 reporter genes were used in this study. The first dataset, was

generated from PBMC samples taken from 57 CFS patients and

75 healthy volunteers and had previously been reported [8]. This

was used as a training set. The second study was from a blinded

study and was used as a test set. This comprised PBMC samples

from 64 CFS patients and 64 healthy volunteers. This sample set

was blinded and the disease classification was not assessed until the

classes were predicted computationally. The data for the blinded

study was collected via clinical questionnaires as outlined

previously [8]. The patients were provided with paper copies for

completion at home and subsequent return by post to the clinical

centre. Data from the questionnaires was collated and used for

clinical characterisation. The diagnosis of CFS was based on the

Fukuda criteria and this diagnosis was made by CFS clinical

experts. The blinded study was approved by the Wandsworth

Research Ethics Committee, St George’s Hospital, London, SW17

0QT. Verbal consent was given by all subjects for their

information to be stored and used for this study.

Analysis
Hierarchical and k-means clustering of RQ values was

performed using the TIGR MeV software suite [16]. Support

vector machines (SVM) were also created using MeV, using the

training set to train the SVM and the test set to evaluate the

accuracy of SVM classification.

Receiver operator curve (ROC) analysis was performed using

the ROCR library [17] within R/BioConductor [18]. Individual

reporter genes were used as CFS predictors for the training set, the

corresponding sensitivity, specificity, true and false positive rates

were determined for all possible RQ cut-offs (from the smallest to

largest RQ value). Areas under the curve were determined for

each of the reporter genes as a measure of prediction accuracy.

The same procedure was used to evaluate the gene profile score

metric, outlined below.

Gene profile score metric
A gene profile score metric was generated as follows. Firstly, RQ

cut-offs were determined for each reporter gene such that the

associated false-positive rate of CFS prediction in the training set,

using that gene alone, was 5%. These cut-offs were used to create

binary profiles (44 digits in length) for each sample, with a ‘1’

indicating that particular sample had an RQ greater than the cut-

off and a 0, otherwise (either a lower RQ or a missing value).

The norm of the profile was then calculated by summing all 44

scores to give the ‘‘gene profile score’’. Thus, if the reporter genes

are accurate predictors of CFS, samples from CFS patients would

yield a higher profile score than those from healthy volunteers.

The gene profile score metric itself was evaluated using ROC

analysis using the training set. From this analysis. a profile score

cut-off was generated at which level of the metric yielded a 5%

false positive rate when classifying the training set. Profile scores

were then generated for the blinded test set and samples were

classified as ‘‘CFS’’ or ‘‘healthy’’ according to this cut-off.

We assessed the effect of altering the RQ cut-off score such that

the false positive rate for both individual reporter genes and for the

resultant gene profile score metric was 10% in terms of classifying

CFS and healthy samples in the training set.
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