
The Affective Impact of Financial Skewness on Neural
Activity and Choice
Charlene C. Wu1*, Peter Bossaerts2, Brian Knutson1

1 Psychology and Neuroscience, Stanford University, Stanford, California, United States of America, 2 Computation and Neural Systems, California Institute of Technology,

Pasadena, California, United States of America

Abstract

Few finance theories consider the influence of ‘‘skewness’’ (or large and asymmetric but unlikely outcomes) on financial
choice. We investigated the impact of skewed gambles on subjects’ neural activity, self-reported affective responses, and
subsequent preferences using functional magnetic resonance imaging (FMRI). Neurally, skewed gambles elicited more
anterior insula activation than symmetric gambles equated for expected value and variance, and positively skewed gambles
also specifically elicited more nucleus accumbens (NAcc) activation than negatively skewed gambles. Affectively, positively
skewed gambles elicited more positive arousal and negatively skewed gambles elicited more negative arousal than
symmetric gambles equated for expected value and variance. Subjects also preferred positively skewed gambles more, but
negatively skewed gambles less than symmetric gambles of equal expected value. Individual differences in both NAcc
activity and positive arousal predicted preferences for positively skewed gambles. These findings support an anticipatory
affect account in which statistical properties of gambles—including skewness—can influence neural activity, affective
responses, and ultimately, choice.
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Introduction

Winning the lottery and contracting a life-threatening illness are

both life-changing but unlikely outcomes. Most people will never

experience either event, yet the profits of casinos and insurance

companies indicate that individuals are willing to pay a high

premium for the potential to win big or to cheat death. Although

traditional economic theories have little to say about how skewed

(i.e., large and asymmetric but unlikely) outcomes motivate choice,

skewed outcomes may influence not only individual fortunes but

also movements of the market [1].

An improved understanding of individuals’ responses to skewness

can inform financial theory as well as practice. Traditional economic

models assume that people seek to maximize value. For instance,

Blaise Pascal initially proposed that the expected value of an outcome

could be calculated by multiplying its magnitude with its probability.

Thus, expected value can be statistically approximated with the mean

(the first statistical moment) of repeated gamble outcomes. Current

financial models also imply that while individuals are attracted to

expected value, they are instead repelled by risk. These mean-variance

models thus approximate risk as the mathematical variance (the

second statistical moment) of repeated gamble outcomes [2].

Behavioral research, however, suggests that mean-variance models

cannot fully account for individuals’ financial choices [3]. As a result,

researchers have suggested that some choice anomalies (e.g., the lack

of diversity in investors’ portfolios) might result from preferences for

skewness (the third statistical moment) [4]. Despite behavioral

evidence that skewness can influence preferences [5,6] either by

enhancing [7] or interacting with risk [8,9], only a few models of

financial choice consider skewness. Cumulative prospect theory [10]

and rank-dependent utility models [11] have attempted to account

for skewness by overweighting unlikely extreme positive or negative

events, but do so by sacrificing the ability to explain tolerance for

variance [12].

From a psychological standpoint, statistical properties of gambles

may influence choice by altering affective states [13,14]. According to

an anticipatory affect model, statistics can influence how individuals feel

about a financial option, which can then increase or decrease their

willingness to choose that option [15]. Specifically, cues signaling

uncertain future gains elicit positive arousal and correlated neural

activity in the nucleus accumbens (NAcc) that promotes approach.

Conversely, cues signaling uncertain future losses elicit negative

arousal and correlated neural activity in the anterior insula that

promotes avoidance. The anticipatory affect model predicts that

skewed gambles might elicit distinct patterns of self-reported affect

and neural activity relative to symmetric gambles, such that positively

skewed gambles (i.e., high magnitude, low probability gains) elicit

greater positive arousal and NAcc activation, but that negatively

skewed gambles (i.e., high magnitude, low probability losses) elicit

greater negative arousal and anterior insula activation. These changes

in affect and correlated neural activity may lead individuals to prefer

positively skewed gambles to negatively skewed gambles.

Accumulating evidence from neuroimaging studies indicates that

expected value elicits NAcc activity [16,17], whereas expected risk

elicits anterior insula activity [18–23]. However, no studies have

controlled expected value and variance to focus on the impact of

skewness on financial choice. In the present study, nineteen subjects
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participated in a gambling game while being scanned with

functional magnetic resonance imaging (FMRI), and subsequently

indicated their affective reactions to and preferences for each

gamble. During scanning, subjects played a series of repeated

gambles that counted for actual money (Figure 1). ‘‘Low-Variance’’

gambles yielded an equal probability (50%) of winning or losing a

small amount (6$1.00), while ‘‘High-Variance’’ gambles yielded an

equal probability (50%) of winning or losing a moderate amount

(6$2.75). ‘‘Positive-Skew’’ gambles yielded a low probability

(12.5%) of winning a large amount (+$7.00) coupled with a high

Figure 1. Gambling task. On each trial, subjects viewed a gamble cue, waited as the wheel spun, observed and reported the outcome (selecting
‘‘gain’’ or ‘‘loss’’ presented randomly on either side of the screen), and saw trial and cumulative earnings. Trials were separated by a centrally
presented fixation cross (variable inter-trial interval; 2–6 s).
doi:10.1371/journal.pone.0016838.g001
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probability (87.5%) of losing a small amount (2$1.00). ‘‘Negative-

Skew’’ gambles conversely yielded a low probability (12.5%) of

losing a large amount (2$7.00) coupled with a high probability

(87.5%) of winning a small amount (+$1.00). Importantly, expected

value was equated across all gambles and set to $0.00 to avoid

framing effects [24], while variance was equated across High-

Variance, Positive-Skew, and Negative-Skew gambles, and skew-

ness was manipulated in opposite directions for Positive- versus

Negative-Skew gambles. Post-scan ratings of valence, arousal, and

perceived risk were collected for each gamble type. Gamble

outcome distributions ensured that all subjects received equal

exposure to all gambles and experienced identical outcomes at the

indicated probabilities before reporting their affective responses and

preferences at the end of the experiment. To assess preference,

subjects ranked their preference for the gambles and chose to play

their favorite gamble again. Thus, this research represents an initial

attempt to examine the influence of financial skewness on

anticipatory affect, neural activity, and subsequent choice.

Results

Behavior
Different gambles elicited different levels of self-reported

positive arousal, negative arousal, and perceived risk (Figure 2).

With respect to anticipatory affect, positive arousal varied, F(1,

3) = 10.78, p,0.001, such that all higher variance (High-Variance,

Positive-Skew, Negative-Skew) gambles elicited more positive

arousal than Low-Variance gambles (p,0.001), and Positive-Skew

gambles elicited more positive arousal than High-Variance

(p,0.05) and Negative-Skew gambles (p,0.05). Negative arousal

also varied, F(1, 3) = 14.97, p,0.001, such that all higher variance

gambles (High-Variance, Positive-Skew, Negative Skew) elicited

more negative arousal than Low-Variance gambles (p,0.001), and

Negative-Skew gambles elicited more negative arousal than High-

Variance (p,0.001) and Positive-Skew gambles (p,0.05). As with

negative arousal, subjects’ perceived risk varied, F (1, 3) = 12.07,

p,0.001, such that all higher variance gambles (High-Variance,

Positive-Skew, Negative Skew) were considered riskier than Low-

Variance gambles (p,0.001), and Negative-Skew gambles were

considered riskier than both Positive-Skew (p,0.05) and High-

Variance gambles (p,0.01).

Different gambles also elicited different preference rankings,

F(1, 3) = 11.17, p,0.001, such that subjects preferred High-

Variance to Low-Variance gambles (p,0.01), and preferred all

other gambles to Negative-Skew gambles (p,0.01). Nonparamet-

ric analyses of rankings yielded similar results. Comparison of

High-Variance versus Low-Variance gamble rankings using a

Wilcoxon Signed-Ranks test confirmed that subjects preferred

Figure 2. Behavioral data. Low-Variance (LV), High-Variance (HV), Positive-Skew (PS), Negative-Skew (NS) gambles. * p,0.05; ** p,0.01;
*** p,0.001 differences between higher variance gambles. Lines represent standard errors of the mean. A. Negative arousal. B. Positive arousal. C.
Risk. D. Preference.
doi:10.1371/journal.pone.0016838.g002
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High-Variance to Low-Variance gambles (Z = 2.66, p,0.01).

Contrasts of Positive-Skew and Negative-Skew gamble preferences

revealed that subjects preferred Positive-Skew to Negative-Skew

gambles (Z = 2.59, p,0.01) and High-Variance to Negative-Skew

gambles (Z = 3.68, p,0.001). Subjects were indifferent between

the two highest-ranked gambles (i.e., High-Variance and Positive-

Skew; Z = 1.20, n.s.).

Brain Activation
Whole-brain analyses revealed that anticipatory activation (i.e.,

the first 4 s of each trial) in predicted regions differed in response

to variance and skewness (at a whole-brain corrected threshold of

p,0.05) (Table S1). High variance versus low variance gambles

(i.e., the contrast of High-Variance + Positive-Skew + Negative-

Skew . Low-Variance) elicited increased activation in the anterior

insula. Among high variance gambles, skewed versus symmetric

gambles (i.e., the contrast of Positive-Skew + Negative-Skew .

High-Variance) elicited even greater activation in the anterior

insula (Figure 3). Among skewed gambles, positively versus

negatively skewed gambles (i.e., the contrast of Positive-Skew .

Negative-Skew) elicited greater bilateral NAcc activation, but at a

targeted (a priori small volume-corrected) threshold (TC: 612, 11,

21; Z = 2.30, p,0.05), which was further verified with timecourse

analyses. Beyond group differences, individual difference analyses

also indicated a link between NAcc activation and preference for

Positive-Skew gambles (described below).

Activation timecourses were extracted from predefined ana-

tomical NAcc and anterior insula volumes of interest (VOI) to

verify neural responses to the gambles indicated by the whole-

brain analyses (Figure 3 and Figure 4). Repeated-measures

ANOVAs revealed significant main effects of gamble type in

anterior insula (F = 12.03, df = 3, p,0.001) and NAcc (F = 5.03,

df = 3, p,0.05) activation during anticipation. Post-hoc t-tests (one-

tailed) confirmed significant pairwise differences, such that both

Positive- and Negative-Skew gambles elicited more anterior insula

activation than High-Variance (p,0.001; p,0.05) and Low-

Variance gambles (p,0.001; p,0.001); while Positive-Skew

gambles elicited more NAcc activation than Low-Variance

(p,0.01), High-Variance (p,0.05), and Negative-Skew gambles

(p,0.05).

Consistent with previous findings indicating that NAcc

activation correlates with positive arousal [25], NAcc activation

selectively increased for Positive-Skew gambles. Anterior insula

activation, however, increased for both Positive- and Negative-

Skew gambles. Since previous research indicates that brain

activation outside the context of choice can predict preference

[26,27], we examined whether individual differences in NAcc

activation and anticipatory affect could account for subsequent

preferences for Positive-Skew gambles. Regression models exam-

ined whether peak brain activation alone, anticipatory affect

alone, and a combination of both could account for individual

differences in preferences for Positive-Skew gambles. Both NAcc

activation (R2 = 0.27, p,0.05) and positive arousal (R2 = 0.59,

p,0.001) separately predicted preference. Combining both

measures significantly improved the explanatory power of the

model to account for individual differences in preference for

Positive-Skew gambles (R2 = 0.84, p,0.001). Specifically, includ-

ing neural (NAcc) activation explained additional variance over

and above reported positive arousal (DR2 = 0.12, p,0.05).

Anterior insula activation and reported negative arousal, however,

were not significant predictors of preference for Positive-Skew

gambles in this model (R2 = 0.01, n.s.; R2 = 0.13, n.s.).

Discussion

The present study examined how financial skewness influences

neural activity, affect, and choice. Although previous behavioral

research has explored preferences for skewness [28,29], we

Figure 3. Skewness increases Anterior Insula activation. A. Skewed versus Symmetric; p,0.001 uncorrected, p,0.05 whole-brain corrected.
(Table S1). B. Time courses extracted from anterior insula for gambles (*Positive- and Negative-Skew vs. Low- and High-Variance, p,0.05). Lines
represent standard errors of the mean. The white bar highlights the anticipatory period (shifted by 6 s to account for the hemodynamic lag).
doi:10.1371/journal.pone.0016838.g003

Affective Impact of Financial Skewness

PLoS ONE | www.plosone.org 4 February 2011 | Volume 6 | Issue 2 | e16838



acquired both affective and neuroimaging measures as individuals

anticipated the outcomes of skewed gambles. Beyond expected

value and variance, skewness differentially elicited affect, such that

positively skewed gambles increased positive arousal, but nega-

tively skewed gambles increased negative arousal and perceived

risk. Subjects also preferred positively skewed and high variance

gambles to negatively skewed gambles.

These behavioral findings demonstrate that skewness influences

choice in a way not accounted for by normative economic or

financial models. Expected value and mean-variance approaches do not

predict preference for variance and positive skewness. Further,

prospect theory [30] also does not predict preference for variance,

because loss aversion implies aversion to variance. The presently

observed preference for variance is consistent with other studies of

risky choice [31,32], but further research is needed to determine

when increasing the magnitude of monetary outcomes induces

aversion to variance. Above and beyond variance, though,

skewness elicited affect (indexed by positive and negative arousal)

that may have promoted subsequent approach to positively skewed

gambles and avoidance of negatively skewed gambles.

Previous neuroimaging studies of financial risk-taking have not

systematically investigated skewness. The current findings repre-

sent a logical but novel extension of a growing neuroimaging

literature examining the influence of statistical moments on choice

[33,34]. Critically, even after holding expected value and variance

constant, skewed gambles elicited increased anterior insula

activation. Positive skewness additionally increased NAcc activa-

tion. Further, individual differences in both positive arousal ratings

and NAcc activation predicted subsequent preference for posi-

tively skewed gambles. Together, these findings imply that the

impact of positive versus negative skewness may not be localized to

a single brain region. Rather, skewness may act through distinct

neural circuits previously implicated in anticipatory affect to

influence preferences.

To systematically manipulate skewness (while holding expected

value and variance constant), we used mixed gambles with an

expected value of zero. Since investigators have observed

differences in the attractiveness of gambles with positive and

negative expected values [24], future studies that shift gambles’

expected value into either gain or loss domains may determine

whether behavioral and neural responses to skewness remain

constant under different value frames. To collect sufficient

repeated measurements for stable FMRI assessment, we examined

a limited set of four gambles. Future research exploring parametric

manipulations of skewness may further establish the generalizabil-

ity of skewness preferences. To control for order and learning

effects by ensuring that subjects had identical experiences, all

gambles were initially presented and evaluated passively (i.e., in

the absence of active choice). Although many previous neuroim-

aging studies of financial decision-making have similarly controlled

expected value when manipulating risk-related variables (e.g.,

variance), the present findings imply that researchers might

consider also controlling for skewness.

Together, these findings provide initial neural and behavioral

evidence for an independent influence of skewness on financial

preferences. At both group and individual levels of analysis,

skewness elicited affect and neural activity that predicts future

choice. Contrary to normative models that specify that higher-

order moments (e.g., skewness) should influence decisions less than

lower-order moments (e.g., mean, variance), these findings suggest

that skewness has a disproportionately large impact on reported

affective experience, neural activity, and choice. Eventually, choice

may be best modeled instead by a flexible multi-attribute

framework that incorporates the affective impact of gambles [35].

Because people are willing to pay a premium for positively

skewed financial investments and receive a premium for

shouldering negatively skewed investments [36], skewness prefer-

ences may generalize to the real world, and even influence market

valuation at the aggregate level [37]. An improved understanding

of how skewness preferences influence financial decision-making

holds potential relevance not only to individuals who purchase

lottery tickets or insurance, but also to societal reactions to

improbable financial events – and by extension, to economic

policy. Broadly, these findings support a dynamic and componen-

tial neuroeconomic account that may eventually connect statistical

experience to affect, and ultimately, choice.

Figure 4. NAcc activation predicts Positive-Skew preference. A. Timecourses extracted from NAcc for different gambles (*Positive-Skew vs.
Low-Variance, High-Variance and Negative-Skew, p,0.05). Lines represent standard errors of the mean. The white bar highlights the anticipatory
period (shifted by 6 s to account for the hemodynamic lag). B. NAcc percent signal change plotted with preference for Positive-Skew gambles
(r = 0.53, p,0.01).
doi:10.1371/journal.pone.0016838.g004
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Methods

Subjects
Nineteen healthy native English-speaking adults (nine females;

right-handed, mean age 22.063.28 SD) participated in the study.

Subjects had no history of neurological or psychiatric disorders.

Written informed consent was obtained from all subjects, under a

protocol approved by the Institutional Review Board of the

Stanford University School of Medicine. In addition to the 19

subjects included in the analysis, two were excluded for excessive

head motion (i.e., greater than 2 mm from one whole-brain

acquisition to the next) and two more were excluded for not

complying with experimental instructions. In addition to a flat fee

of $40.00 for two hours of participation and a $25.00 endowment,

subjects’ payments were determined by the outcomes during the

gambling task as well the outcome of their chosen gamble at the

end of the experiment (M = $66.006 SD $3.00).

Behavioral Task and Analysis
Subjects received spoken and written instructions and complet-

ed a brief training session prior to the first experimental run in the

scanner. In the gambling task, subjects played a series of repeated

gambles that counted for real money. On each trial, subjects

viewed the gamble (2 s), followed by a spinning wheel (2 s), and

the outcome highlighted in yellow (2 s). They then pressed a

button to verify the gamble outcome (2 s), and observed the

cumulative total for the run (2 s). Presentation of all gambles and

response prompts were counterbalanced on both right and left

sides of the screen. To ensure a high response rate, failures to

respond within 2 seconds resulted in an automatic loss of $0.10 in

addition to the gamble outcome for that trial (i.e., a win of $1.00

would result in +$0.90 and a loss of $1.00 would result in 2$1.10),

consistent with methods of previous studies [21,23,38]. Trials were

separated by brief but variable inter-trial intervals (2–6 s). The

gambling task consisted of 196 total trials, during which all

gambles were evaluated according to their probabilistic outcomes.

Thus, this passive gambling task was designed to ensure that all

subjects played the same gambles an equal number of times and

experienced identical outcomes.

After completing the gambling task in the scanner, subjects rated

their affective responses as they anticipated each of the gamble

outcomes. Previous studies have demonstrated high concordance

and reliability between online anticipatory and cued retrospective

affective ratings [39]. Ratings indexed affective arousal and valence,

as well as perceived risk during the anticipation phase of each

gamble (first 4 seconds of a trial). All three ratings used a seven-point

Likert scale, with left and right buttons indicating a continuum

ranging from ‘‘not at all aroused’’ to ‘‘very aroused’’ for arousal,

‘‘very negative’’ to ‘‘very positive’’ for valence, and ‘‘not risky at all’’

to ‘‘very risky’’ for perceived risk. Ratings of gamble-elicited arousal

and valence were mean-deviated within subject and plotted within a

Euclidean two-dimensional space. These dimensions were then

rotated by 45 degrees to derive measures of positive arousal (PA)

[i.e., PA = arousal/sqrt(2) + valence/sqrt(2)] and negative arousal

(NA) [NA = arousal/sqrt(2) – valence/sqrt(2)] [16,40]. Subjective

ratings of gambles were analyzed with repeated-measures analysis of

variance (ANOVA), after which significant main effects were

submitted to post-hoc pairwise t-tests to verify significant differences

between gamble types, using SPSS 16.0.

fMRI Acquisition and Analysis
Images were acquired with a 1.5T General Electric MRI

scanner (General Electric, Milwaukee, Wisconsin, USA) and a

standard quadrature head coil. Twenty-four contiguous axial 4-

mm-thick slices (in-plane resolution 3.7563.75 mm) extended

axially from the mid-pons to the top of the skull. Functional scans

were acquired with a T2*-sensitive spiral in/out pulse sequence

(repetition time = 2 s, echo time = 40 ms, flip = 90 degrees) [41].

High resolution structural scans for localization and coregistration

of functional data were acquired with a T1-weighted spoiled grass

sequences (repetition time = 100 ms, echo time = 7 ms, flip = 90

degrees).

Analyses of neural data utilized AFNI software (National

Institute of Health, Bethesda, Maryland, USA) [42]. For

preprocessing, data were sinc-interpolated to correct for nonsi-

multaneous slice acquisition, corrected for three-dimensional

motion, high-pass filtered to remove slow trends (.0.01 Hz),

and normalized to percent signal change relative to the voxel

mean across the task. Visual inspection of motion correction

estimates confirmed that no subject’s head moved more than

2 mm in any dimension from one volume acquisition to the next.

Analyses proceeded through three stages: whole-brain localiza-

tion, volume of interest (VOI) time course verification, and

individual difference regressions. Localization analyses utilized a

multiple regression model that included independent (i.e.,

uncorrelated) regressors modeling anticipation of gamble out-

comes: (i) high versus low variance, (ii) skewed versus symmetric,

and (iii) positive versus negative skew. The model also included

regressors of noninterest indexing residual motion (n = 6) and

anticipation versus the rest of the trial (n = 1, unit-weighted). Maps

of contrast coefficients for regressors of interest were coregistered

with structural maps, spatially normalized by manually warping to

Talaraich space, spatially smoothed to minimize effects of

anatomic variability (FWHM = 4 mm), and collectively submitted

to a one-sample t-test against the null hypothesis of no activation

in order to test for group differences while controlling for random

effects. The threshold for statistically significant foci activation in

group maps was set at p,0.001 with a cluster of 16 contiguous

2.00 mm cubic voxels (i.e., minimum cluster criterion for p,0.05

whole-brain corrected threshold specified by AFNI’s AlphaSim)

[42].

For activation time course analyses, VOIs were specified as 8 mm

diameter spheres centered on previously identified foci (NAcc, TC:

611, 12, 21; anterior insula, TC: 631, 23, 6) and confirmed by

localization analyses. Activation time courses were spatially

averaged within each VOI and then divided by the average

activation over the course of the entire experiment to derive

measures of percent signal change. To separately examine the

influence of each gamble on activation in each region, VOI time

courses were averaged into four conditions representing each type of

gamble (i.e., Low-Variance, High-Variance, Negative-Skew, and

Positive-Skew). VOI peak activations during the anticipatory period

(lagged by 6 s to match the hemodynamic peak) were submitted to

repeated-measures ANOVA. VOI peak activations from regions

showing significant main effects were then submitted to post-hoc

pairwise t-tests to verify differences between types of gambles.

For individual differences analyses, timecourse data during

anticipation of Positive-Skew gambles were extracted from the

NAcc and anterior insula for each individual. Regression analyses

examined whether individual differences in peak neural activation

during anticipation as well as cue-induced affect predicted

subsequent preference for Positive-Skew gambles.

Supporting Information

Table S1 Regressors of interest Z-scores and Talaraich
coordinates for peak activation foci. Variance contrast

compared high variance versus low variance gambles (High-
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Variance + Positive-Skew + Negative-Skew . Low-Variance).

Skewness contrast compared skewed versus symmetric gambles of

equal variance (Positive-Skew + Negative-Skew . High-Variance).

Positive Skewness contrast compared positively skewed versus

negatively skewed gambles (Positive-Skew . Negative-Skew).

Regions surpassed threshold of Z.3.28 (p,0.001, uncorrected;

p,0.05, whole-brain corrected; * p,0.05, small-volume corrected).

(DOC)
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