
A Modular Cloning System for Standardized Assembly of
Multigene Constructs
Ernst Weber., Carola Engler., Ramona Gruetzner, Stefan Werner, Sylvestre Marillonnet*

Icon Genetics GmbH, Halle/Saale, Germany

Abstract

The field of synthetic biology promises to revolutionize biotechnology through the design of organisms with novel
phenotypes useful for medicine, agriculture and industry. However, a limiting factor is the ability of current methods to
assemble complex DNA molecules encoding multiple genetic elements in various predefined arrangements. We present
here a hierarchical modular cloning system that allows the creation at will and with high efficiency of any eukaryotic
multigene construct, starting from libraries of defined and validated basic modules containing regulatory and coding
sequences. This system is based on the ability of type IIS restriction enzymes to assemble multiple DNA fragments in a
defined linear order. We constructed a 33 kb DNA molecule containing 11 transcription units made from 44 individual basic
modules in only three successive cloning steps. This modular cloning (MoClo) system can be readily automated and will be
extremely useful for applications such as gene stacking and metabolic engineering.
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Introduction

Synthetic biology promises to revolutionize biotechnology by

engineering organisms with novel phenotypes not found in nature.

Applications include the microbial production of chemical

precursors, novel antibiotics and biofuels [1], the creation of

synthetic attenuated viruses for use as vaccines [2] and the

engineering of a minimal free living cell [3].

An element essential for synthetic biology is the ability to

physically assemble complex DNA molecules containing large

numbers of natural or artificial genetic elements. Impressive

progress has been achieved in the past few years with the

development of methods that allow assembly of large pieces of

DNA of up to the size of entire bacterial genomes [4,5,6,7,8]. The

majority of these methods is based on the use of homologous

recombination (both in vivo and in vitro), which provides indepen-

dence from the presence of any restriction sites in the fragments to

assemble. Generation of organisms with novel phenotypes will

however not only require the ability to assemble large pieces of

DNA, but will also need methods that allow generation of many

construct variants for optimization of a desired phenotype. Indeed,

since a desired phenotype cannot be predicted directly from gene

sequences only, development of strains and optimization of

phenotypes will require the ability to generate multiple combina-

tions of various coding sequences as well as many variants of their

regulatory sequences. Such optimization does not necessarily need

to operate at genome scale, and in fact, work currently done for

metabolic engineering already belongs to this type of effort. In this

context, what is needed are methods that allow generation of

constructs or construct libraries containing enough genes for

pathway engineering, i.e. in the size range of 10 to 100 kb. Despite

considerable work done in metabolic engineering in the past few

years, methods currently used for construct assembly are still

limiting, as most of the work is still performed using standard DNA

construction techniques that require extensive planning and

multiple cloning steps.

To make such work more efficient, it is however useful to view

DNA construction not just as a process for assembly of raw pieces

of DNA, but rather as a process that allows assembly of discrete

functional genetic elements. Since synthetic biology can be viewed

as a form of engineering, it should be able to learn from existing

mature technologies such as mechanical engineering. An essential

factor for fast and reliable engineering of complex devices is

standardization of their basic parts. In the case of synthetic

biology, standardization would allow to reuse previously validated

genetic elements from one application to the next, and allow the

free exchange between different users. It should also allow the

development of standardized construct assembly strategies that

would help simplify the planning of cloning strategies and

minimize the number of cloning steps required to obtain a desired

construct.

The first attempt to standardize DNA construction, NOMAD,

was made 15 years ago [9]. The authors proposed that libraries of

modules of defined structure could be built and shared by the

community. NOMAD modules are flanked by sites for the

restriction enzyme StyI, which make them compatible with a

specifically designed destination vector. Modules can be combined

together in any order, but are cloned sequentially one module at a

time to form a composite module, which can then be further

subcloned. A major step forward was the development of the
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BioBrick standard, which allows assembly of constructs from basic

biologic parts such as promoter, ribosome binding site and

terminator [10]. Assembly of two basic BioBrick parts results in a

composite part that has the same structure as the basic parts in

terms of flanking restriction sites (the basic and composite parts are

idempotent). This feature allows the same procedure to be

repeated again to obtain larger constructs. Since the first BioBrick

standard, various standards and assembly protocols have been

developed in order to optimize the sequence junctions between

parts or make cloning more efficient [11,12]. However, both

NOMAD and the various BioBrick standards are limited in their

ability to assemble multiple DNA fragments in a single step, and

still rely on procedures that limit their potential for automation

such as extraction of DNA fragments from gels or the requirement

for the design of custom primers for specific constructs [13].

We present here a modular and hierarchical cloning system that

allows any desired eukaryotic multigene construct to be assembled

from sets of pre-made standardized genetic modules, including

promoters, 59 untranslated regions, signal peptides, coding

sequences and terminators. This cloning system is based on the

Golden Gate cloning technology, a method that allows highly

efficient directional assembly of multiple DNA fragments in a

single reaction [14]. In order to prove the general feasibility of this

modular cloning system and to show its potential, a 33 kb

construct encoding 11 transcription units (made from 44

individual basic modules) was generated in only three successive

one-pot cloning steps.

Results

Technological background and general considerations
The principle of Golden Gate cloning is based on the special

ability of type IIS restriction enzymes to cleave outside of their

recognition site [15]. When these recognition sites are placed to

the far 59 and 39 end of any DNA fragment in inverse orientation,

they are removed in the cleavage process, allowing two DNA

fragments flanked by compatible sequence overhangs to be ligated

seamlessly. Since type IIS restriction sites can be designed to create

different overhangs, which are referred to as fusion sites from here

on, directional assembly of multiple fragments is feasible [16]. For

assembly, all DNA fragments can be simply provided as uncut

plasmids, and are combined with the destination vector, T4 DNA

ligase and the type IIS restriction enzyme in a single reaction mix.

The use of restriction-ligation allows the assembly of multiple

fragments with extremely high efficiency: we have shown earlier

that up to 10 DNA fragments can be assembled with 95-100% of

colonies obtained containing the expected construct [14].

We have now developed a general modular cloning strategy

(MoClo) to allow the systematic assembly of complete eukaryotic

transcription units and of multigene constructs from basic pre-

made standardized modules (Fig. 1A). Five basic module types

(level 0 modules) were defined that include promoters, 59

untranslated regions, signal peptides, coding sequences, and

terminators. To enable assembly with the Golden Gate technol-

ogy, each level 0 module type is flanked by specific fusion sites

(Fig. 1B). Fusion sites overlapping with coding sequences were

chosen so as to minimize changes to encoded proteins: the fusion

site at the start codon was chosen to be AATG, while the fusion

site between the signal peptide and the coding sequence was

chosen to be AGGT, with GGT encoding a glycine, which is a

common amino acid in signal peptides at position -1 [17]. Since

the four remaining fusion site sequences (GGAG, TACT, GCTT

and CGCT) are all positioned in non-translated sequences, they

were selected with the only requirements as to be unique and non-

palindromic to guarantee efficient cloning. For cytosolic proteins,

which do not contain a signal peptide, the coding sequence can be

cloned as a module flanked by AATG and GCTT fusion sites

(Fig. 1C); such module type replaces the two modules SP and

CDS of secreted proteins in assembly reactions. Since all level 0

modules from the same type are flanked by identical fusion sites,

they are freely interchangeable, allowing any desired transcription

unit to be created by simply choosing the modules needed. An

assembled transcription unit represents a module again, albeit one

of a higher order (level 1 module), which can be directionally

assembled into a multigene construct (level 2) (Fig. 1A).

Module generation: the level 0 and level 1 modules
In order to allow efficient cloning of the level 0 modules, a set of

level 0 destination vectors was created (Fig 2A). Beside level 0

destination vectors for the five standard elements (pL0-P, pL0-U,

pL0-S, pL0-C and pL0-T) further variants were included to

provide the possibility to clone two or more genetic elements as a

single module, for example promoter and 59 untranslated region

can be cloned as a single module using destination vector pL0-PU

(Fig. 2A). Also, for cytosolic proteins that do not have a signal

peptide, the coding sequence is cloned in vector pL0-SC rather

than in vector pL0-C. All level 0 destination vectors are based on a

pUC19 backbone, confer spectinomycin resistance (SpR) and

encode a lacZa fragment for blue/white selection. On both sides of

the lacZa fragment two different type IIS recognition sequences -

here BsaI and BpiI - are positioned in inverse orientation relative

to each other, but creating the identical fusion site as exemplified

by plasmid pL0-P in figure 3. This design allows cloning of the

DNA fragment of interest efficiently via BpiI - removing the BpiI

recognition sites and lacZa in the process - but provides the

possibility to release the cloned fragment with BsaI creating the

identical fusion sites it was cloned in. For cloning of level 0

modules, the designated sequences are PCR-amplified, adding the

respective fusion site and a BpiI recognition site as part of the

primers used for amplification, and cloned via a BpiI Golden Gate

cloning reaction. Any internal type IIS recognition site for

enzymes used in the MoClo system (BsaI, BpiI and later Esp3I)

can be removed from the cloned fragment during this step by

using primers overlapping but containing a single silent nucleotide

mismatch in the recognition site (Fig. 2B).

Compatible sets of sequenced level 0 modules (for example

promoter, 59 untranslated region, signal peptide, CDS and

terminator) are then assembled into a level 1 destination vector

with a second Golden Gate reaction using the enzyme BsaI,

leading to creation of a level 1 module, which contains a

eukaryotic transcription unit (TU1, Fig. 3 and 4A). In contrast to

the level 0 modules, the level 1 destination vectors confer

ampicillin resistance, allowing efficient counter selection against

level 0 module backbones. Similar to the level 0 destination

vectors, a lacZa fragment is flanked on each side by two different

type IIS recognition sites; however, here, the fusion sites defined

by the two type IIS restriction enzymes are not identical (Fig. 3
and 4A). If, as for level 0 destination vectors, the cleavage sites of

the two different type IIS enzymes (BsaI and BpiI) overlapped, all

level 1 modules would be flanked by the same GGAG and CGCT

fusion sites, making further directional cloning impossible.

Therefore a series of 7 level 1 destination vectors was designed

in which the BpiI restriction sites generate two fusion sites with

new specificities for each plasmid (for example sites TGCC and

GCAA for level 1 vector position 1, pL1F-1, Fig. 3, 4A and 5).

These sites are compatible from one vector to the next so that

multiple level 1 modules can be (again) directionally cloned into a

level 2 destination vector. However, to avoid the construction and

Modular Cloning System

PLoS ONE | www.plosone.org 2 February 2011 | Volume 6 | Issue 2 | e16765



consideration of too many level 1 destination vectors, the spatial

order of overhangs was designed to be circular instead of linear, as

the first fusion site at position 1 (TGCC) is also the final site at

position 7. So a level 1 module for position 1 can be reused later at

a virtual position ‘‘8’’ (Fig. 4B). Due to this design, a maximum of

6 transcription units can be cloned in one step. A second set of

level 1 destination vectors (pL1R-1 to 7, Fig. 5) was also created

for cloning of transcription units in the reverse orientation using

the same sets of level 0 modules. The combination of the two sets

allow cloning of transcription units in either orientation at any

position in level 2 constructs (Fig. 4B), giving the experimenter

maximum freedom of design.

Design of multigene constructs: level 2 and end-linkers
To provide flexibility in the design of multigene level 2

constructs, a set of seven level 2 destination vectors was made

(Fig. 5). All level 2 destination vectors confer resistance to

kanamycin and encode a red color selectable marker (CRed,

containing an artificial bacterial operon responsible for cantha-

xanthin biosynthesis; see Material and Methods) which is

flanked by two BpiI sites. The upstream fusion site of each level 2

destination vector is compatible with the upstream site of a

corresponding level 1 module (for example TGCC in pL2-1). This

design reduces the need for extensive recloning of the same

transcription unit for different positions. For example, a level 1

module made for position 3 can easily be shifted to the relative first

position when the level 2 destination vector pL2-3 is used, virtually

deleting positions 1 and 2 (Fig. 5). The downstream fusion site,

however, is unique to level 2 destination vectors (GGGA). The

connection of the GGGA fusion site with the fusion site of the last

assembled transcription unit in the DNA fragment is then realized

by a set of end-linkers (pELE-n) (Fig. 5). Like the level 1 modules,

the end-linker plasmids confer ampicillin resistance, and the end-

linkers are flanked by BpiI sites. The desired multigene level 2

constructs are then assembled with BpiI from the chosen level 1

modules, a matching end-linker and a level 2 destination vector

(Fig. 3 and 4A).

The use of a basic end-linker (pELE-n), however, limits the

maximal number of transcription units that can be cloned in a

level 2 construct to six, because no type IIS restriction sites are left

in the final construct, preventing further rounds of cloning (Level

2-1 construct; Fig. 4A). To provide an option for the addition of

Figure 1. General overview of the hierarchical and modular cloning system. (A) Libraries of basic (level 0) modules contain cloned and
sequenced genetic elements such as promoters (P), 59 untranslated regions (U), signal peptides (SP), coding sequences (CDS) and terminators (T).
Transcription units are assembled from selected level 0 modules using a one-pot one-step cloning reaction. Multigene constructs are then assembled
in a second cloning step (and optionally further steps) from the transcription units. (B) Level 0 modules of different classes are flanked by compatible
fusion sites. Each fusion site consists of 4 nucleotides of choice (boxed) flanked by a type IIS enzyme recognition site on the left or right side (vertical
box drawn under the fusion site). (C) Examples of assembled transcription units for secreted or cytosolic proteins. The transcription unit for the cytolic
protein was assembled from 4 modules rather than 5, using a CDS module cloned between fusion sites AATG and GCTT.
doi:10.1371/journal.pone.0016765.g001
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more transcription units, two additional end-linker sets were

designed. These sets, pELB-n and pELR-n, provide two new type

IIS recognition sites (BsaI for pELB-n and Esp3I for pELR-n) and

a color selectable marker (lacZa fragment for pELB-n and CRed

for pELR-n) to the assembled construct. The use of a pELB-n end-

linker rather than a basic end-linker in the first round of assembly

results into a level 2i (intermediate) construct (Level 2i-1; Fig. 4A),

which contains, in addition to the cloned transcription units, two

BsaI restriction sites for a next round of cloning and a lacZa
fragment as selectable marker. The use of a pELR-n end-linker at

the next step would lead to a level 2i-2 construct containing two

Esp3I restriction sites and CRed selectable marker. The alternate

use of end-linkers from the two sets pELB-n and pELR-n for

successive cloning steps allows the process to be repeated

indefinitely from the stand point of the cloning strategy (Fig. 6),

but will ultimately be limited by construct size for transformation

in standard bacterial hosts such as E. coli.

Assembly of 11 transcription units in three steps
To test the system, we cloned a number of level 0 modules,

removing at the same time all internal interfering type IIS

recognition sites from the cloned sequences. These include 11

ORFs representing a wide spectrum of biological functions like

immunoglobulins (IgG1 heavy and light chain), structural viral

Figure 2. Level 0 destination vectors and principle for removal of internal sites from level 0 modules. (A) Level 0 destination vectors.
Level 0 modules are made by amplification of selected sequences with primers adding flanking BpiI sites, and cloning of the amplified fragment
(shown above the horizontal dotted line) via BpiI into the designated level 0 destination vectors (shown below). In addition to the 5 basic destination
vectors, pL0-P, pL0-U, pL0-S, pL0-C and pL0-T, additional destination vectors allow cloning several genetic elements in one module. For example,
plasmid pL0-SC can be used to clone sequences encoding cytosolic proteins, which do not contain a signal peptide. (B) Strategy for removing
internal type IIS recognition sequences. Removal of a BsaI site in a fragment of interest is done by amplifying two fragments with primers pr1 and 2
and primers pr3 and 4. Primers pr2 and pr3 span the BsaI recognition site and introduce a single nucleotide mismatch (indicated by an arrow). As all
primers have BpiI recognition sites in their 59 extensions, the PCR fragments are cloned with a BpiI-based Golden Gate cloning reaction in the
appropriate level 0 destination vector.
doi:10.1371/journal.pone.0016765.g002
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proteins from BTV (Blue tongue virus) and PVX (Potato virus X),

the silencing inhibitor p19, the bar resistance marker and GFP.

Since the number of commonly used promoters and terminator

sequences available for expression of heterologous proteins in

plants is low (our laboratory uses plants as expression host), and to

avoid repetitive sequences in the planned multigene construct, we

also cloned several Arabidopsis thaliana promoter and terminator

sequences from genes which show a high expression level in leaves

[18]. A summary of all level 0 modules used in this study is

presented in Table S1.

Step one: Construction of level 1 modules. As a first step

towards a construct encoding 11 transcription units, the level 0

modules were assembled into 11 artificial transcription units.

Promoters and terminators were randomly assigned to ORFs

without consideration for potential level of expression, since all

constructs described next were made purely as an exercise to

demonstrate the ability of the MoClo system to clone multigene

constructs. The designated transcription units were also randomly

assigned to one of the seven level 1 positions (Fig. 7A). In 11

independent cloning reactions, the level 0 modules were combined

with the respective level 1 destination vectors, T4 DNA ligase and

the restriction enzyme BsaI in a one-tube one-step reaction. The

different antibiotic resistances of level 0 and level 1 destination

vectors used in combination with the blue/white selection provide

a convenient way to screen for correctly assembled level 1

modules. After transformation, the reactions were spread on plates

containing ampicillin and X-Gal and the numbers of white and

blue colonies were counted. The number of white colonies

(expected for the correct constructs) varied from approximately

16,000 to 180,000, whereas a few blue colonies (,1%) were

present in only two out of eleven reactions (constructs level 1 cL1-1

to cL1-11; Fig. 8A). Plasmid DNA from two white colonies from

each reaction were analyzed by an analytical endonuclease

cleavage with BpiI (which cleaves on both sides of the assembled

transcription unit). All 22 tested plasmids contained a fragment of

the expected size (not shown).

Step two: Assembly of up to six level 1 modules into a level

2 construct. As a next step, we analyzed how efficiently

multiple level 1 modules could be assembled into a level 2

construct. Therefore, five BpiI-based Golden Gate cloning

reactions were set up, including two to six level 1 modules, the

appropriate end-linker (pELE-2 to pELE-6) and the level 2

destination vector (pL2-1) (constructs level 2 cL2-1 to cL2-5,
Fig. 8A). The kanamycin resistance and the CRed color selection

marker of the level 2 destination vector permits an effective

counter-selection against the level 1 module plasmids and a red/

white color selection for correctly assembled level 2 constructs.

The number of white colonies obtained per transformation, which

Figure 3. Arrangement of type IIS restriction sites and fusion sites for all assembly levels. A detailed overview of the organization and
orientation of the type IIS restriction sites and the fusion sites at the different levels of the MoClo system is shown. A PCR product containing a
promoter flanked by BpiI recognition sites and promoter-specific fusion sites (highlighted with color) is cloned via BpiI into the level 0 destination
vector pL0-P. The promoter fragment in the resulting level 0 module is still flanked by the same fusion sites, but can now be released with BsaI. The
level 0 promoter module and the other level 0 modules required to form a complete transcription unit (not shown) are then assembled via BsaI into a
level 1 destination vector. As the fusion sites created by BsaI and BpiI do not overlap, the assembled level 1 module (here TU1) is equipped with two
level 1-specific fusion sites (TGCC and GCAA). The level 1 module TU1 and other level 1 modules of choice (TU2 and not shown) can then be
assembled via BpiI into the final level 2 construct in which no type IIS recognition sites are left. n indicates that any nucleotide can be used. CRed, red
color selectable marker; P, promoter module; TU, assembled transcription unit.
doi:10.1371/journal.pone.0016765.g003
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is a measure of cloning efficiency, decreased from approximately

33,000 (for two level 1 modules plus end-linker) to 150 (six level 1

modules plus end-linker), and the percentage of incorrect red

colonies increased from 0.02% to 10% (Fig. 8A and B). Six white

colonies were analyzed from each level 2 construct assembly by

analytical endonuclease cleavage of plasmid DNA and all were

correct (not shown).

As shown above, the assembly of a 24 kb construct (cL2-5)

encoding six transcription units can be done in a single one-step and

one-tube reaction from level 1 modules. However the final level 2

constructs are in a ‘‘closed’’ status as no type IIS restriction sites are

left, prohibiting the insertion of additional genes. In order to extend

the number of transcription units beyond six, new type IIS

recognition sites have to be incorporated into the level 2 constructs.

Therefore constructs cL2-4 and cL2-5 were recreated, but using

end-linkers pELB-5 and pELB-6 instead of pELE-5 and pELE-6.

These new end-linkers provide two new BsaI restriction sites and a

lacZa fragment to the final constructs cL2-6 and cL2-7. In contrast

to the red/white selection used for pL2-4 and pL2-5, red/blue

selection is used. In addition to correct blue and incorrect red

colonies, dark green colonies were also obtained; these contain

incorrect plasmids with both the CRed operon and a lacZa fragment

(Fig. 7B). Although the efficiency dropped for the last construct,

correct constructs were obtained for both reactions. The correctly

assembled constructs were used for a further round of assembly.

3rd step: Assembly of the final 33 kb construct. Level 2i-1

plasmid cL2-6 was chosen as a destination vector for the

introduction of up to six additional transcription units. In

contrast to the previously described assembly steps, two type IIS

restriction enzymes have to be used in the same mix. BsaI reopens

the level 2i-1 backbone and provides defined fusion sites which are

compatible with the level 1 modules released by BpiI. Since two

type IIS restriction enzymes have to be used at the same time and

since the level 2i-1 destination vector cL2-6 has already a size of

20 kb, we tested again the efficiency of the Golden Gate cloning.

One to six additional modules were assembled with the

appropriate end-linkers resulting in constructs cL2-8 to cL2-13.

The cloning efficiency decreased with increasing number of

incorporated modules (Fig. 8A). Interestingly, the rate with which

the cloning efficiency drops is similar to the earlier analyzed set of

Figure 4. Modular cloning strategy. (A) Constructs are assembled by mixing in one tube all module plasmids (or PCR fragments for level 0) and a
destination vector together with the appropriate type IIS enzyme (indicated above the arrows) and ligase. ++ indicates that only one of several
modules was drawn due to space limitation. Each fusion site is shown as a box indicating its 4 nucleotides; the two boxes below show which type IIS
recognition sites flank the fusion sites on the left and/or right sides. P1-a/b, promoter fragment a or b; U, 59 untranslated region; SP, signal peptide;
CDS, coding sequence; T, terminator; CRed, red color selectable marker; LacZ, lacZa fragment, blue color selectable marker; L2E, end-linker 2; ApR,
ampicillin resistance; KmR, kanamycin resistance; SpR, spectinomycin resistance. (B) General structure of level 2 constructs. Transcription units are
located between the sequences GGAG and CGCT (remnants of fusion sites used for assembly of transcription units in forward orientation) or AGCG
and CTCC (for transcription units cloned in reverse orientation). The number above the transcription units indicates the relative position of the
transcription units in the final construct (indicates which of the 7 level 1 destination vectors shown in figure 5 was used for assembly of this
transcription unit). The construct is terminated at the right end by an end-linker (EL) that joins the downstream fusion site of the last transcription
unit (NNNN) with the downstream fusion site of the destination vector (GGGA).
doi:10.1371/journal.pone.0016765.g004

Modular Cloning System
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level 2-1 plasmids (cL2-1 to cL2-5) despite the different destination

vector size of 22 kb versus 4 kb. In case of the largest construct

(cL2-13), no positive clone was identified. The cloning reaction

was repeated using different Golden Gate cloning conditions with

a program providing alternating cycles optimal for restriction and

ligation. These conditions increased the total number of white

colonies, and all six tested cL2-13* constructs were correct (the

final construct is shown in Fig. 7B).

Figure 5. Vector set required for the MoClo system. All level 1 destination vectors (forward and reverse), level 2 destination vectors and the
different end-linker sets are shown. Dotted arrows indicate the linear relationships between fusion sites in level 1 destination vectors. Compatible
fusion sites are labeled with the same color.
doi:10.1371/journal.pone.0016765.g005

Figure 6. The MoClo cloning principle can be repeated indefinitely. Every cloning step relies on three elements that are different from one
level to the next: antibiotic selectable marker, type IIS enzyme(s), and color selectable marker. Cloning after level 2i-1 requires the simultaneous use of
two type IIS enzymes: BpiI/BsaI or BpiI/Esp3I.
doi:10.1371/journal.pone.0016765.g006

Modular Cloning System
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To verify that the transcription units assembled with this system

are functional, we tested expression of GFP from all level 2

constructs (pL2-1 to pL2-13). All were introduced into Agrobacterium

tumefaciens and inoculated into Nicotiana benthamiana. As expected,

GFP under control of a 35S promoter is expressed for all

constructs (Fig. 9).

Discussion

We have shown here that complex constructs containing many

transcription units (here 11, consisting of 44 individual basic

modules) can be assembled by a series of three one-pot Golden Gate

cloning reactions. The construction principle exemplified in this

work can theoretically be repeated indefinitely to add more

transcription units, until the constructs become simply too large to

be transformed or propagated in standard hosts such as E. coli. As

outlined in figure 6, it is necessary to create a destination vector at

each level 2 cloning step for further rounds of cloning (level 2i-2 to

level 2i-3, etc…). This is done by the alternating use of end-linkers

providing different type IIS restriction sites (for example Esp3I or

BsaI) and allowing convenient color selection from blue to red and

vice versa (Fig. 6). The expansion, for example, of the largest

construct made in this study (cL2-13, level 2-2, 33 kb) would require

its reconstruction, but with an end-linker that adds two Esp3I

restriction sites to the construct (end-linker pELR-4, Fig. 5). One or

more genes could then be added to this level 2i-2 destination vector

using an Esp3I/BpiI Golden Gate cloning reaction (Fig. 6).

Beside the construction of large and complex constructs

encoding entire pathways, the high cloning efficiency also allows

the creation of construct libraries. Instead of using one specific

module for each component of a transcription unit, a module

library can be used instead. In case a library of promoters is used,

constructs obtained would contain a coding sequence under

control of different promoters. Since nearly all constructs are

correct, the library can be screened directly for optimal expression

level for this particular gene, or be used for the next level of

cloning in which several genes or again gene libraries are

assembled. This application is of particular interest for the

optimization of biochemical pathways for metabolic engineering

where several genes not only have to be co-expressed, but also,

their expression ratios have to be balanced to obtain optimal yield

of the desired product.

The advantages of using standardized modules do not lie

exclusively in the ability to easily create complex constructs.

Figure 7. Structure of the eleven level 1 modules (A) and the final level 2 construct cL2-13 (B). All transcription units were assembled
from 5 plasmids: 4 level 0 modules (promoter, 59 untranslated region, CDS, and terminator) and a destination vector. All proteins are cytosolic except
the two from constructs cL1-8 and 9 which are secreted. For both of these, the coding sequence module already contained the signal peptide. LB, T-
DNA left border; RB, T-DNA right border; V, tobacco mosaic virus 59 untranslated region; genetic elements used are listed in Table S1.
doi:10.1371/journal.pone.0016765.g007
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Already, the simple definition of a general cloning standard will

result in tremendous synergistic effects, since the validated

modules or module libraries created by different scientific groups

can be reused from the whole scientific community. An impressive

example is the widely used standard proposed by the BioBrick

foundation [10,19]. Here, researchers from all over the world have

already contributed thousands of compatible modules to a freely

available module collection. In contrast to MoClo, Biobrick

modules are flanked by standard type II restriction enzymes, and

assembly of two BioBricks via restriction and ligation results in an

idempotent new Biobrick module. However, the two modules are

separated by a scar sequence, and the process is unsuitable for the

assembly of multiple fragments in one step.

The principle that a huge community contributes to a standardized

system requires however that the standard shows some flexibility.

Although the MoClo system described here is based on five basic

modules, it is very versatile since each of these modules can be

subdivided in smaller modules that would still be compatible with the

Figure 8. Cloning efficiency of level 1 and 2 constructs. (A) Assembled transcription units are schematically represented as boxes annotated
with the name of the CDS they contain. Transcription units shown in grey were cloned in the previous step (in construct cL2-6). The respective
cloning position of each transcription unit is indicated on the top. For level 2 constructs, the end-linker is shown as a circle. The number of colonies
obtained per transformation is shown by color type, with the first number corresponding to the expected correct constructs (for cL2-6, wrong clones
could be either red or green). (B) Plates from transformation of constructs for level 2-1 (cL2-2, cL2-4 and cL2-5) and level 2i-1 (cL2-6). Since level 2-1
cloning uses red/white selection, the correct constructs should be white, while colonies containing the original destination vector construct should
be red. Level 2i-1 uses a blue/red selection, with colonies containing correct constructs expected to be blue, whereas incorrect ones can be red or
green (contain both the canthaxanthin operon and the lacZa fragment).
doi:10.1371/journal.pone.0016765.g008
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existing ones. For example, a terminator can be split in two modules

consisting of 39 untranslated region and actual terminator sequences

by definition of a new fusion site separating both modules. The

transcription unit would be assembled with the two new modules

replacing the original terminator. In case of more sophisticated

cloning applications, like the shuffling of an ORF consisting of several

protein modules, it may be favorable to define an entire new level.

These level -1 modules have to follow the same principles as all other

modules: a set of compatible overhangs, where the first and the last

are compatible to the next level, a specific color selection and a

specific antibiotic selection marker have to be defined.

The data presented here show that all elements required for the

design of a completely automated cloning system are now in place.

Operations that are required for cloning using the MoClo system

consist of preparation of plasmid DNA, liquid handling and

incubation to perform restriction-ligation, plating of transformation

on plates, picking of colonies, and digestion and analysis of plasmid

DNA. The last step can even be replaced by DNA sequencing of a

single colony, because the system is so efficient. A further advantage

in terms of automation is that no sophisticated construction

strategies are needed since the design is automatically defined by

the number and the order of modules that a user wants to assemble.

The cloning strategy can be easily and unambiguously determined

by a simple computer program, which could also be directly linked

to the automation robots that would make the construct.

Materials and Methods

Molecular biology reagents
Restriction enzymes used in this study were purchased from New

England Biolabs (Frankfurt, Germany) and Fermentas (St. Leon-

Rot, Germany). T4 DNA ligase was purchased from Promega

(Mannheim, Germany). Plasmid DNA preparations were made by

using the NucleoSpin Plasmid Quick Pure kit (Macherey-Nagel,

Dueren, Germany) following the manufacturer protocol. Plasmid

DNA concentration was measured using a Nano DropH Spectro-

photometer ND-2000 (Peqlab, Erlangen, Germany).

MoClo cloning protocol
Restriction-ligations were set up by pipetting in one tube

approximately 40 fmol (,100 ng of DNA for a 4 kb plasmid) of

each DNA component (PCR product or plasmid), 10 U of the

required restriction enzyme (BsaI or BpiI) and 10 U T4 DNA

ligase (using high concentration ligase, 20 U/ml) in Promega

ligation buffer in a final reaction volume of 20 ml. The reaction

was incubated in a thermocycler for 5 hours at 37uC, 5 min at

50uC and 10 min at 80uC. The reaction mix was then added to

100 ml chemically competent DH10b cells, incubated for 15–

30 min on ice and transformed by heat shock. 800 ml of liquid LB

was then added to the transformation, and the cells were let to

recover 45 min at 37uC. Different aliquots of the transformation

were plated on LB plates containing the appropriate antibiotic.

The number of colonies was counted for one or two selected plates

(containing countable number of colonies), or from a section of the

plates when very high number of colonies were obtained even for

the lowest volume plated. The number of colonies was then

extrapolated for the entire transformation.

For level 2-2 cloning, two type IIS enzymes were required, BpiI

and BsaI. The same protocol was used as described above except

that 10 U and 2.5 U were used for the enzymes BpiI and BsaI,

respectively. To optimize efficiency of the restriction-ligation for

the final construct containing 11 transcription units (cL2-13*), a

variation of this protocol was used as follows. The reaction mix

was set up containing 20 U ligase, 5 U BpiI and 5 U BsaI, in a total

reaction volume of 20 ml. The mix was incubated in a

thermocycler with the following parameters: incubation for 2

minutes at 37uC, 5 minutes at 16uC, both steps repeated 45 times,

followed by incubation for 5 minutes at 50uC and 10 minutes at

80uC. The reaction mix was transformed in E. coli chemically

competent cells as described above.

Cloning of the canthaxanthin biosynthesis operon
A DNA fragment containing genes for canthaxanthin biosyn-

thesis was made by PCR amplification of 4 genes from Pantoea

ananatis that are necessary for biosynthesis of b-carotene (genes

crtE, crtY, crtI and crtB) [20] and of one gene from Agrobacterium

aurantiacum (crtW) necessary to convert b-carotene to canthaxanthin

[21]. crtW is used in addition to the 4 Pantoea genes because the

orange/red color of canthaxanthin is more visible on agar plates

than the yellow color of b-carotene. The Pantoea ananatis strain was

obtained from the DSMZ (cat. DSM 30080), and a fragment

containing crtW was synthesized by Mr. Gene GmbH (Regens-

Figure 9. Expression of GFP by level 2 constructs. Level 2 constructs in Agrobacterium tumefaciens were inoculated into N. benthamiana leaves.
GFP expression was observed at 5 dpi under UV light. The number in parenthesis indicates the number of transcription units in each infiltrated
construct.
doi:10.1371/journal.pone.0016765.g009
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burg, Germany). An artificial operon containing crtE-W-Y-I-B

under control of the P. ananatis native promoter was made by

ligation of three fragments derived from PCR: fragment 1

containing the promoter and crtE was amplified from P. ananatis

genomic DNA with primers 59-ttt ggtctc a ggag ggtaccgcacggtctgc-

caa and 59-ttt ggtctc a tcatgcagcatccttaactgacggcag, fragment 2

containing crtW was amplified from a synthetic DNA fragment

(sequence identical to the native sequence) with primers 59-ttt

ggtctc a atgagcgcacatgccctgcc and 59-ttt ggtctc a tcact-

catgcggtgtcccccttggt, and fragment 3 containing crtY-I-B was

amplified from P. ananatis DNA using primers 59-ttt ggtctc a

gtgacttaagtgggagcggctatg and 59-ttt ggtctc a atgtagtcgctctttaacgat-

gag. The fragments were assembled by Golden Gate cloning in a

target vector using BsaI. Two BpiI and one Esp3I site present in

crtY were removed using primers containing silent mutations in the

recognition sites.

Supporting Information

Table S1 Level 0 modules used in this study.
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