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Abstract

Random mutagenesis and phenotype screening provide a powerful method for dissecting microbial functions, but their
results can be laborious to analyze experimentally. Each mutant strain may contain 50–100 random mutations, necessitating
extensive functional experiments to determine which one causes the selected phenotype. To solve this problem, we
propose a ‘‘Phenotype Sequencing’’ approach in which genes causing the phenotype can be identified directly from
sequencing of multiple independent mutants. We developed a new computational analysis method showing that 1. causal
genes can be identified with high probability from even a modest number of mutant genomes; 2. costs can be cut many-
fold compared with a conventional genome sequencing approach via an optimized strategy of library-pooling (multiple
strains per library) and tag-pooling (multiple tagged libraries per sequencing lane). We have performed extensive validation
experiments on a set of E. coli mutants with increased isobutanol biofuel tolerance. We generated a range of sequencing
experiments varying from 3 to 32 mutant strains, with pooling on 1 to 3 sequencing lanes. Our statistical analysis of these
data (4099 mutations from 32 mutant genomes) successfully identified 3 genes (acrB, marC, acrA) that have been
independently validated as causing this experimental phenotype. It must be emphasized that our approach reduces mutant
sequencing costs enormously. Whereas a conventional genome sequencing experiment would have cost $7,200 in reagents
alone, our Phenotype Sequencing design yielded the same information value for only $1200. In fact, our smallest
experiments reliably identified acrB and marC at a cost of only $110–$340.
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Introduction

High-throughput sequencing is a potentially powerful tool for

analyzing microbial mutant strains with interesting phenotypes,

because it can quickly identify their complete set of mutations.

However, unless one has prior knowledge that all or most of the

mutations must contribute to the phenotype, these data can be

hard to interpret. The fewer the mutations, the more likely it is

that a given mutation contributes to the observed phenotypic

difference. From this point of view, the easiest cases appear to be

strains evolved without artificial mutagenesis, which typically

contain only 10–20 mutations per bacterial genome [1] [2] [3] [4]

[5] [6], with in some cases as few as 3 mutations per strain [7] [8]

or more than 40 [9]. These data present two kinds of problems:

how to identify which mutation makes the dominant contribution

to the phenotype, and how to filter out mutations that are either

neutral or simply not relevant to the desired phenotype. Both kinds

of problems may necessitate extensive functional experiments to

determine which mutations actually cause the selected phenotype.

These problems grow more difficult if mutants are generated via

random mutagenesis, since each mutant strain may contain 50 to

100 or more random mutations [10] [11], out of which perhaps

only one is responsible for the phenotype.

Simple numerical considerations can illustrate this problem. For

the E. coli genome (4244 genes), assuming that mutations in ten

different genes can give rise to the desired phenotype, the

probability of picking one of these genes purely by random

chance is about 0.25%. If we generate a mutant strain with the

desired phenotype, sequence it, and identify 100 mutated genes,

our chances of picking a gene that causes the phenotype rise only

nominally, to 1%.

However, if we can obtain multiple independent mutant strains

from our phenotype screen, the statistics of independent selection

events will quickly help distinguish the true target genes. Even in

the worst case (only a single one of the 100 mutations in each

strain is required to be in a true target gene, split with equal

probability among the ten target genes), the mutation frequency in

true target genes (approximately one in ten) is expected to be four
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times greater than that expected in non-target genes (approxi-

mately one in forty). As more mutant strains are sequenced, true

target genes are guaranteed by the Law of Large Numbers to rise

above the background noise. This suggests the possibility of

identifying true target genes automatically, directly from sequenc-

ing data. We will refer to this approach as ‘‘phenotype

sequencing’’.

In this paper we present a combination of bioinformatic and

experimental analysis of the phenotype sequencing problem. We

begin by formulating a mathematical model of phenotype

sequencing, analyzing the parameters that determine the likeli-

hood of success. We next present a high-throughput sequencing

design optimized for phenotype sequencing. It uses a combination

of library-pooling and tag-pooling to reduce the cost of a

phenotype sequencing experiment many-fold relative to a

standard mutant genome resequencing design, while fully

retaining the information needed for identifying the genetic causes

of the phenotype. We then demonstrate the method via

sequencing of a set of 32 E. coli mutants selected for increased

isobutanol biofuel tolerance. We show that our phenotype

sequencing bioinformatic tools successfully identify a number of

genes directly from the sequencing data, and have been validated

by independent experiments. Finally, we assess the broad

applicability of phenotype sequencing by analyzing its yield vs.

cost both experimentally and computationally, in terms of a

number of key factors such as mutagenesis density, sequencing

error rates, and sequencing cost. These results indicate that

phenotype sequencing can become a rapid, inexpensive and

automatic method applicable to a wide variety of microbial

phenotypes.

Results

Mathematical analysis of Phenotype Sequencing
We begin by analyzing the probability of successfully identifying

the genetic causes of a phenotype. We have constructed a

mathematical model of the phenotype screening and sequencing

process (see Materials and Methods for details). This analysis

reveals the critical importance of several parameters in the overall

process of phenotype sequencing (shown in schematic outline in

Fig. 1): the average density of mutations in each mutant strain (m);

the number of genes where mutations can cause the phenotype (t;

we will refer to these as ‘‘target genes’’); and the number of

independent mutant strains that pass the phenotype screen and are

sequenced (s). We first analyze the most difficult form of the

problem, by adopting the conservative assumptions that only a

single target gene mutation is required to produce the phenotype,

and that such phenotype-causing mutations are split with equal

likelihood among the possible target genes. This poses the

challenge of identifying the single causal mutation in a strain out

of its 100 or so total mutations. For simplicity, we assume that

synonymous mutations will not cause the phenotype, and therefore

restrict our analysis to non-synonymous mutations.

We used our mathematical analysis to calculate the average

yield of true target genes discovered among the top-scoring hits at

a specified false discovery rate (FDR). Concretely, this means we

randomly generate s mutant strains with an average density of

random mutations m, under the requirement that each mutant

strain must include at least one mutation in a true target gene. We

then score each gene by calculating a p-value based on its total

number of mutations in the s strains (see Materials and Methods),

sort the genes by score, and determine the number of true target

genes found among the top-scoring genes at an FDRƒ0:67 (i.e.

out of every three genes reported, at least one must be a true

target). To measure the average yield, we repeated this process

1000 times. Thanks to speed optimizations, our phenoseq software

can model over 600,000 mutant genomes per second on a single

core of a 2.5 GHz Core 2 Duo CPU (early 2008 MacBook Pro).

These results show that phenotype sequencing will work well

with a modest number of sequenced strains, even under our most

challenging assumptions, for a range of typical target sizes. For

example, if the phenotype-causing mutations are split equally

among 5 genes (i.e. t~5), and each mutant strain contains 50–100

total mutations (of which, by random chance, only 30–70 would

be non-synonymous), sequencing of 10 strains on average

successfully identifies 2 of the five true target genes among the

top-scoring genes at an FDRƒ0:67 (Fig. 2A). If the phenotypic

signal is split over an even larger number of genes, the problem

grows harder. For t~10 genes, sequencing of 10 strains detects on

average 1–2 of the ten true target genes (Fig. 2B). If we sequence

30 strains, the expected yield rises to 4–6 true target genes. For

t~20 genes, sequencing 30 strains will on average identify 2–4 of

the 20 true target genes (Fig. 2C).

These data also show an approximately linear relationship

between the number of mutations per strain and the number of

strains that must be sequenced to attain a given yield. In all cases,

increasing the density of mutagenesis means that the number of

strains sequenced must increase proportionately, in order to

maintain the same average yield of target gene discovery. This

makes intuitive sense: if only one mutation per strain is signal

(actually causes the phenotype), then increasing the number of

irrelevant mutations per strain will reduce the signal-to-noise ratio.

These data indicate that where possible, investigators should

reduce the density of mutagenesis to a smaller number of

mutations per strain, to maximize the yield of target gene

discovery and minimize the number of strains that must be

sequenced. They also suggest that naturally evolved mutant

strains, which tend to have a smaller number of mutations

(typically 10–20 mutations per bacterial genome), will be easier,

more successful targets for phenotype sequencing (as always,

assuming that it is possible to obtain a sufficient number of

independent mutant strains with the desired phenotype).

Analysis of Phenotype Sequencing via Pooling. Since

phenotype sequencing requires sequencing complete genomes of

multiple mutant strains, and is potentially expensive, we wish to

optimize the information yield per cost. Ordinarily, mutant

genome sequencing is performed by preparing individual DNA

libraries and sequencing each library separately. Since the goal of

phenotype sequencing is to identify the genes that actually cause

the phenotype, we will consider the sequences of the individual

mutant strains as merely a means toward this goal, and not an end

in themselves. For phenotype sequencing, the key piece of

information is just the number of times a gene is independently

mutated; the exact sequence of each mutant strain is not needed.

From this point of view, we can dramatically reduce costs by

pooling multiple mutant strains in two distinct ways: 1. library-

pooling: mixing equal amounts of DNA from multiple mutant

strains into a single library preparation. This sacrifices the ability

to reconstruct the exact sequence of each mutant strain, but retains

our ability to identify how many distinct mutations occur in each

gene; 2. tag-pooling: if each library is tagged with a unique DNA

sequence, multiple libraries can be combined into a single

sequencing lane. Pooling has been shown to be an effective way

of reducing costs of population genetics studies (e.g. estimation of

population allele frequencies) using next-generation sequencing

[12] [13] [14]. Since microbial genomes are small, many copies of

a genome can be sequenced in a single lane. For example, an

Illumina GA2x sequencing lane with 1500 Mb sequencing
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capacity can sequence the 4.6 Mb E. coli genome at approximately

323x coverage. This is sufficient to sequence five libraries

simultaneously at about 65x coverage each.

To analyze the effects of pooling, we extended our model of

phenotype sequencing to take sequencing error into account.

Sequencing error can cause two kinds of problems: false positives,

i.e. a mutation is reported where none actually exists; false negatives,

i.e. a real mutation present in the DNA is not reported. False

positives make phenotype sequencing much harder by spuriously

increasing the apparent mutation density per genome. False

negatives can also reduce success rates, by diminishing mutation

counts in true target genes. For a given average sequencing

coverage level c, two key parameters determine the false positive

and false negative rates: the sequencing error probability e and the

number of strains P pooled together in one library. For example,

for pooling P~4 strains, a real mutation in one strain is expected

to occur in approximately 25% of the reads that cover that

position, much higher than the fraction of a single alternate base

expected from sequencing errors at that position (we use a

conservative estimate of 1% for this rate). However, in practice we

Figure 1. Schematic diagram of phenotype sequencing and key parameters. Overview of phenotype sequencing stages: mutagenesis,
screening, and sequencing. Conventional unpooled sequencing of individual strains (left), is contrasted with pooled sequencing of multiple strains
per library (right), comparing the expected frequency of observation of a real mutation in each case.
doi:10.1371/journal.pone.0016517.g001

Figure 2. Target discovery yield as a function of mutations per strain and number of strains sequenced. A. For five target genes. Gray
color (upper-left corner) represents discovery of all 5 targets; red = zero targets. B. For ten target genes. Gray represents discovery of all 10 targets. C.
For twenty target genes. Gray represents discovery of all 20 targets.
doi:10.1371/journal.pone.0016517.g002
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must discriminate these two cases using discrete counts of the

number of reads that report an alternate letter. For a single

nucleotide site, these two cases are very easy to distinguish

(Fig. 3A). For genome-wide analysis the problem is much harder;

we wish to keep the total number of false positives (over all 4.6

million sites in the genome) to less than one, while keeping the

total number of false negatives over the whole genome also to less

than one (Fig. 3B). For a standard coverage level of c~75, this

restricts us to a fairly narrow ‘‘ideal zone’’ for the mutation call

threshold. It is evident that if we pooled a much larger number of

strains Pww4, it would simply not be possible to achieve both low

false positive and low false negative rates.

To analyze this effect, we computed the false positive and

negative rates for every possible cutoff, over a wide range of

pooling values, and used them to compute the average target gene

discovery yield at each point (Fig. 3C). Each yield curve for a given

pooling value is bounded on the left by a sharp cutoff value; this

occurs because cutoff values that are too low give high false

positive rates, quickly reducing the yield to zero. At higher cutoff

values, the false positive rate goes to zero, and the yield saturates.

However, if the cutoff value approaches c=P, the false negative

rate increases gradually, and consequently the yield drops.

These computations show that at their optimal cutoff values,

pooling values of 2–5 give almost exactly the same yield as no

Figure 3. Effects of sequencing error and pooling on average target gene discovery yields. A. The probability of reporting a SNP at a
single site as a function of the mutation call threshold (read counts) assuming a coverage of c = 75, due either to sequencing error (red), or a real
mutation (green), assuming a 1% sequencing error rate and a 25% true mutation fraction (i.e. library-pooling factor of P = 4). Circles indicate the
expected mean read counts on each plot. B. The expected number of total mutation calls per genome as a function of the mutation call threshold,
due either to sequencing error (red), or a real mutation (green), assuming a 4 Mb genome size. The dashed red line indicates the lowest mutation call
threshold at which the number of false positive mutation calls falls below one. The dashed green line indicates the maximum mutation call threshold
at which the number of false negatives remains less than one. C. The average number of true target genes discovered (at an FDR ,0.67) as a function
of the mutation call threshold, for different library-pooling levels P = 2 to P = 9, assuming sequencing of 80 mutant strains with a mutation density of
50 mutations per genome, and 20 true target genes.
doi:10.1371/journal.pone.0016517.g003
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pooling at all (P~1). Thus pooling at these levels fully retains the

information important for phenotype sequencing while dramati-

cally reducing cost. For example, pooling five strains per library

reduces the total cost by a factor of five, with little information loss

in terms of the yield of true target genes discovered.

Experimental Results
Based on these encouraging bioinformatic results, we designed a

phenotype sequencing experiment based on library-pooling and

tag-pooling. We isolated DNA from 32 mutant strains with

increased isobutanol biofuel tolerance, obtained from independent

phenotype screening experiments. We prepared a total of ten

libraries from these DNA samples, by pooling 3 strains each in

eight libraries, and 4 strains each in the remaining two libraries.

The ten libraries were each uniquely tagged, mixed, and

sequenced as a single pool on an Illumina GA2x sequencer in

single-end mode. This same mixture was sequenced on three

replicate lanes, to assess the effect of different coverage levels on

our results. The resulting approximately 90 million reads were

filtered, aligned to the reference E. coli K-12 substr. MG1655

genome sequence, and scanned for sequence variants.

Among the three replicate lanes, each lane reported an average

of 3988 SNPs, of which 3702 (92.8%) were called identically in all

three lanes, 265 (6.6%) were called in two out of three lanes, and

21 (0.5%) were called in only one lane. We restricted our analysis

to the 4099 high confidence single nucleotide polymorphism

events that were called identically in at least two out of three lanes.

Of these, 3596 mapped to 1808 E. coli annotated gene coding

regions, including a total of 2379 non-synonymous SNPs in 1426

genes. The raw observations of these SNPs occurred at the

expected frequency for a mutation in a single strain in a given

library (i.e. approximately one-third of the reads covering that

position in that library). An additional 23 mutations were reported

at 100% allele frequency in all 10 libraries, and were identical in

each of the ten libraries; these were excluded from subsequent

analysis as mutations that were evidently present in the parent

strain prior to mutagenesis. The 4099 SNPs showed a strong bias

to occur at GC sites (GC/AT ratio of approximately 36),

consistent with previous reports on NTG chemical mutagenesis

[10]. Accordingly, we parameterized our calculations to take this

bias into account (see Materials and Methods for details).

Two genes (acrB and ydfJ) were observed to be mutated in most

of the strains, and several more were observed to be mutated in

approximately a third of the strains (Table 1). Our p-value analysis

(Table 2, 3) revealed a set of nine genes above the Bonferroni-

corrected 95% confidence cutoff based on non-synonymous SNPs,

two of them very strong (acrB, marC). Restricting the analysis to

non-synonymous SNPs appeared to improve the p-value’s

significance several-fold. Consistent with the fact that the

individual strains were generated in independent mutagenesis

experiments, the mutations observed within a given gene were

different in each library, except for four mutations in acrB that

were each observed twice (at genomic positions 480611, 480674,

480931, 482319).

Independent of this work, Atsumi et al. analyzed a single mutant

strain SA481 with increased isobutanol tolerance, generated via

growth in gradually escalating levels of isobutanol through 45

sequential transfers [15]. Sequencing of this mutant strain

identified 25 IS10 insertions and a large deletion. Repair of each

of these regions identified 5 genes as responsible for nearly all of

the increased isobutanol tolerance in this strain: including acrA,

marC; their data also indicated that acrB was inactivated in this

strain. Atsumi et al. also validated the five genes’ direct

contribution to the phenotype by constructing individual and

combination gene deletion strains.

Thus three of the top 20 genes identified by our phenotype

sequencing analysis are experimentally validated as causing this

phenotype. Others of our top scoring genes may also be real

targets, but have not yet been tested via individual gene deletions.

It is interesting that three pairs of genes appear to be from the

same pathways: acrA/acrB, ykgC/ykgD, yaiH(ampH)/yaiP.

Experimental Yield Analysis
Because our experiment was designed to split the 32 strains into

10 different tagged libraries (each containing 3–4 strains), it is

possible to analyze the average true target gene discovery yield

over all possible combinations of these 10 libraries, using the 10

separate tagged library datasets of reads. This constitutes a set

of 210{1~1023 different possible experiments ranging in size

from 3 to 32 sequenced strains. We ran our bioinformatic analysis

separately on each of these 1023 experimental datasets to obtain

the list of top 20 genes identified in each, and counted how many

of the three validated true targets (acrB, marC, acrA) were identified.

We consider one of these genes to be easy to discover (acrB,

mutated in most strains), one somewhat harder (marC, mutated

in a quarter of the strains), and the third hardest (acrA, mutated in

less than a fifth of the strains). We then averaged the yields

from different experiments that contained the same number of

total strains. For example, eight different experiments contained

just 3 strains; we averaged their yields. We plotted these average

yield data (as a function of the number of strains sequenced)

versus the total experiment cost (Fig. 4B), based on our actual

reagent costs: $50 per library prep, and $700 per sequencing

lane. For single lane sequencing, then, the cost per strain was

(10|50z700)=32~$37:50.

These experimental data indicate that experiments costing

$110–$150 (i.e. 3–4 strains) reliably identified one true target gene,

and experiments costing $340–$525 detected two of the three

target genes (Fig. 4B). In general, reliable detection of all three

target genes was only obtained with the full set of 32 strains (total

cost $1200). These results and costs were based on a single lane of

sequencing with an average of 32x coverage per library. The

added expense of triplicate sequencing (i.e. three lanes of

sequencing yielding an average of 96x coverage per library) did

not produce any significant increase in target gene discovery yields

(Fig. 4B). These data indicate to us that at the level of pooling we

used (3 to 4 strains per library), 32x coverage per library was

adequate to obtain reliable detection of SNPs, so that the primary

limiting factor for the target gene yield was simply the number of

strains sequenced.

Table 1. Phenotype sequencing of 32 isobutanol tolerant E.
coli strains (top 21 hits by raw SNP counts).

#SNP events Genes

32 acrB

27 ydfJ

12 cusA, entF

11 nfrA, prpE

10 febA, rhsD, sbcC

9 aesA, bscC, marC, mdlB, paoC, ykgC, yneO

8 ampH, kefA, yagX, ybaE, ybaL

doi:10.1371/journal.pone.0016517.t001

Phenotype Sequencing of Independent Mutants

PLoS ONE | www.plosone.org 6 February 2011 | Volume 6 | Issue 2 | e16517



These experimental results match our bioinformatic model

reasonably well (Fig. 4A). We modeled the expected target yield

for a 3 target gene case, as a function of the number of strains

sequenced, and plotted these yields against the experiment cost.

The experimental data deviate from this model mainly in two

respects: acrB appears to be considerably easier to find (mutated in

most strains), whereas our model assumed an equal split among

the three target genes (implying each would be found mutated in

approximately a third of the strains); conversely, acrA appears to be

harder to identify (mutated in less than a fifth of the strains).

Bioinformatic Analysis of Experiment Optimization
To assess future prospects for improving phenotype sequencing,

we considered a variety of factors. Since the success and yield of

phenotype sequencing is limited fundamentally by the number of

strains sequenced, the primary goal of phenotype sequencing design

optimization is to maximize the number of strains that can be

sequenced for a given experiment cost, i.e. to reduce the cost per

strain. We used our bioinformatic model to analyze the effect of three

different ways for achieving this: reducing the mutagenesis density;

reducing the sequencing error rate; reducing the cost of sequencing.

As figure 5A shows, although reducing the mutagenesis density

does not directly affect the cost of the sequencing experiment, it does

increase the average yield of true targets discovered. Across a range

of experiment sizes from 6 to 33 strains, reducing the mutagenesis

density from 100 mutations per genome to 20 mutations/genome

produced a target yield equivalent to that of sequencing

approximately nine to twelve more strains, a cost savings of around

$500. Given that the total cost of these experiments was $400–

$1000, this is a dramatic improvement in yield per cost.

We next examined the effect of pooling different numbers of

tagged libraries per sequencing lane, for a phenotype sequencing

experiment of 32 strains. The number of tagged libraries per lane

Pt determines the effective coverage level per library; for the

4.6 Mb E. coli genome, the coverage per library is approximately

c~323=Pt. This in turn constrains the optimal number of strains

that can be pooled per library (P), since increasing P reduces the

expected read count for a real mutation (c=P) closer and closer to

that expected for random sequencing error (ce), resulting in higher

false positives and reduced target discovery yield. For each value of

Pt we determined the maximum value of P that maintained a high

target discovery yield. Since the target discovery yield is primarily

a function of the number of strains sequenced, the optimized yield

was approximately the same for all the different tag-pooling values.

Finally, we computed the total experiment cost, based on the

number of tagged libraries that must be prepared (32=P) and the

fractional number of sequencing lanes required to sequence all 32

strains.

These data show that at current costs ($700 per lane; $50 per

library, October, 2010) and sequencing error rates (1%), the total

experiment cost shows no clear trend as a function of the amount

of tag-pooling Pt (Fig. 5B). At higher levels of tag-pooling (e.g. we

used Pt~10 in our validation experiment), the reduced effective

coverage per library means that only a smaller library-pooling

factor can be used (e.g. we used P~3 in our validation

experiment). This results in higher library preparation costs, since

the total number of libraries grows as 32=P. Conversely, as we

reduce the tag-pooling factor Pt, the effective coverage per library

c increases, allowing us to use a higher library-pooling factor P.

Unfortunately, the sequencing error rate e constrains how much

we can increase P, since the expected read count for real

mutations (c=P) must be strongly distinguishable from that for

sequencing errors (ce). As a result, the total number of strains that

can be sequenced per lane drops, and the resulting increase in

sequencing cost offsets the reduced library preparation costs.

Table 2. Top 20 hits ranked by Bonferroni corrected p-value computed on all SNPs.

p-value Genes Description

4:2|10{19 acrB multidrug efflux system protein

2:6|10{5 marC inner membrane protein, UPF0056 family

6:4|10{4 aes acetyl esterase; GO:0016052 - carbohydrate catabolic process

0.0032 ykgC predicted pyridine nucleotide-disulfide oxidoreductase

0.0035 stfP e14 prophage; predicted protein

0.0095 prpE Propionate–CoA ligase

0.032 apt adenine phosphoribosyltransferase

0.039 ampH penicillin-binding protein yaiH

0.052 yihA GTP-binding protein required for normal cell division

0.053 ispA geranyltranstransferase

0.060 yceH conserved protein, UPF0502 family

0.13 fepA iron-enterobactin outer membrane transporter

0.14 cusA copper/silver efflux system, membrane component

0.15 mdlB fused predicted multidrug transporter subunits of ABC superfamily: ATP-binding components

0.20 ybbJ inner membrane protein that stimulates the ftsH htpX mutant suppressor activity of QmcA

0.30 sfmH predicted fimbrial-like adhesin protein

0.33 nfrA bacteriophage N4 receptor, outer membrane subunit

0.34 yahB putative transcriptional regulator LYSR-type

0.40 gsk inosine/guanosine kinase

0.40 ybaE fused deaminase and uracil reductase

doi:10.1371/journal.pone.0016517.t002
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To assess future paths for improving phenotype sequencing

yield and cost, we evaluated two different strategies: reduced

sequencing error rate, and reduced sequencing cost per read.

Improved sequencing approaches (such as multibase encoding

schemes) may substantially reduce the sequencing error rate. We

tested the effect of a ten-fold reduction in sequencing error (from

1% to 0.1%; Fig. 5B). This resulted in two effects. First, because

this enabled pooling more strains per library (P), the total

experiment cost was reduced by about $400–$800 across the range

of tag-pooling levels. Second, a trend emerged for lower cost at

lower tag-pooling levels. The reduced sequencing error rate made

library preparation costs a dominant factor in the total cost;

reduced tag-pooling enabled greatly increased library-pooling and

dramatically reduced library preparation costs. We also tested the

effect of reduced sequencing cost (reduced from $700 per lane to

$350 per lane; increasing the number of reads per lane while

keeping the cost per lane unchanged would have the same effect).

Again, this had the effect of making library preparation costs the

dominant factor in the total cost, resulting in a trend towards lower

total cost at lower tag-pooling levels (Fig. 5B). Combining both

strategies (reduced sequencing error rate and reduced sequencing

cost) made this trend stronger: under these conditions, eliminating

tag-pooling altogether (i.e. running a single library Pt~1 in each

sequencing lane) reduced the total experiment cost by about a

third relative to a high tag-pooling level (Pt~10), to a total

experiment cost of about $500 (for sequencing 32 strains).

Discussion

Taken together, these bioinformatic and experimental results

suggest that phenotype sequencing can be a practical and effective

method for identifying the genetic causes of a phenotype, provided

several requirements are met: 1. a sufficient number of mutant

strains with the desired phenotype, independently generated from

a common ancestor, with a low density of random mutations; 2. a

small enough genome (or region of genetic interest) to enable

sequencing of this number of mutant strains at an acceptable cost;

3. a reference genome sequence that closely matches the ancestral

genome, with gene annotations. We now discuss each of these

requirements in turn.

The statistical power of phenotype sequencing depends entirely

on the number of independent selection events (producing the same

phenotype) that are sequenced. This can be achieved by

performing independent mutagenesis experiments starting from

a single parental strain, and screening each experiment for the

desired phenotype. This both ensures that each mutant strain

constitutes an independent mutation event, and permits control

over the density of mutagenesis. Lowering the density of

mutagenesis reduces the number of mutant strains that are needed

to obtain a desired target gene discovery yield (but may also

increase phenotype screening costs, due to the larger number of

mutants that must be screened to find the desired phenotype).

Phenotype sequencing may also be applicable to mutant strains

isolated from wild populations, tissue samples, or laboratory

evolution under specific conditions [16] [17] [8]. Existing

examples illustrate that it is possible to obtain a sufficient number

of independent mutant strains from such sources [8]. However,

naturally occurring mutant strains may require more costly

sequencing analysis. Unless it is previously known that a given

set of mutant strains form a star topology (i.e. their sequences are

conditionally independent given the sequence of their most recent

common ancestor (MRCA)), it would be necessary to reconstruct

their detailed phylogeny, which is not possible using library-

pooling. Instead, it would require a pure tag-pooling design,

tagging each strain in a given lane uniquely, to obtain its individual

sequence. In this case, target genes can be identified by calculating

Table 3. Top 20 hits ranked by Bonferroni corrected p-value computed on non-synonymous SNPs.

p-value Genes Description

9:5|10{20 acrB multidrug efflux system protein

1:4|10{5 marC inner membrane protein, UPF0056 family

1:8|10{4 stfP e14 prophage; predicted protein

0.0011 ykgC predicted pyridine nucleotide-disulfide oxidoreductase

0.0035 aes acetyl esterase; GO:0016052 - carbohydrate catabolic process

0.017 ampH penicillin-binding protein yaiH

0.038 paoC PaoABC aldehyde oxidoreductase, Moco-containing subunit

0.039 nfrA bacteriophage N4 receptor, outer membrane subunit

0.044 ydhB putative transcriptional regulator LYSR-type

0.12 yaiP predicted glucosyltransferase

0.17 acrA multidrug efflux system

0.25 xanQ xanthine permease, putative transport; Not classified

0.25 ykgD putative ARAC-type regulatory protein

0.35 yegQ predicted peptidase

0.35 yfjJ CP4-57 prophage; predicted protein

0.37 yagX predicted aromatic compound dioxygenase

0.46 pstA phosphate transporter subunit

0.48 prpE propionate–CoA ligase

0.50 mltF putative periplasmic binding transport protein, membrane-bound lytic transglycosylase F

0.63 purE N5-carboxyaminoimidazole ribonucleotide mutase

doi:10.1371/journal.pone.0016517.t003
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p-values based on the number of independent mutation events in

each gene, inferred from the phylogenetic tree. Furthermore, we

note that if a subset of mutant strains are believed to be

conditionally independent given their MRCA, that subset can be

pooled as a single library, reducing the cost without loss of

information.

It should be emphasized that evidence of such phylogenetic

structure (i.e. non-independence among mutant strains) can be

easily detected even in library-pooled sequence data. Since

independent mutation events are very unlikely to hit the exact

same nucleotide site, each observed mutation should be found in

only a single mutant strain. By contrast, if different strains share

common ancestry subsequent to the MRCA (i.e. are not

independent), by definition they will share some fraction of their

mutations. Thus, detection of the exact same mutations in two or

more strains constitutes a signature of non-independence. This can

be detected either qualitatively, if the same mutations are

separately detected in two different libraries, or quantitatively (if

the two strains are in the same library, their shared mutations will

be observed on average at double the expected read count). It

should be noted that in some cases observation of the same

mutation in two different strains might be due to selection (e.g. if a

specific mutation is much more likely to cause the phenotype than

other mutations are, or if only a small number of different

mutations in the genome are capable of causing the phenotype),

rather than due to common inheritance.

The cost of phenotype sequencing scales according to the size of

the genome (or region of interest) being sequenced. Thus, it is

clearly most useful for microbial and other small genomes.

Increasing genome size proportionally increases not only the

Figure 4. Modeled vs. experimental target gene yield as a function of increasing number of strains sequenced. A. Bioinformatic model
of expected yield for discovery of 3 target genes, as a function of increasing number of strains sequenced, plotted vs. experiment cost, assuming one
lane of sequencing at a cost of $37.50 per sequenced strain. B. Experimentally measured target gene discovery yields as a function of number of
strains sequenced, plotted vs. experiment cost. Each data point is the average of all sub-experiments containing that number of strains; the error bar
gives the standard error for this average from that set of sub-experiments. red line (inverted triangles): one lane of sequencing (32x coverage per
library); blue line (+ signs): three lanes of sequencing (96x coverage per library, resulting in a total cost of $81.25 per strain).
doi:10.1371/journal.pone.0016517.g004
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baseline sequencing cost, but also the genome-wide false positive

rate due to sequencing error. This means that when the

sequencing error rate per nucleotide site e is held constant, a

larger genome requires reducing the pooling factor P (in order to

raise the mutation-call threshold enough to suppress false

positives). This implies that for phenotype sequencing of larger

genomes, it will be very valuable to reduce the per-nucleotide

sequencing rate e, as discussed below.

Local variations in sequencing coverage might also raise the

sequencing cost needed for obtaining a desired target discovery

yield. Systematic studies of existing next-gen sequencing platforms

have shown that they robustly detect .95% of SNPs despite local

variations in coverage, with anomalously low coverage at

approximately 0.1% (Illumina) to 1% (SOLiD) of nucleotide

positions [18], especially AT-rich repeats. If poor coverage regions

constitute only 5% of each gene region, they will not degrade

target discovery yield significantly, since 95% of mutations in a

target gene will still be detected. On the other hand, if a large

fraction of each target gene fell into a poor coverage zone, that

would reduce the target discovery yield proportionally. If an

experiment gives poor discovery yield and suffers poor coverage

across a large fraction of potential candidate genes, using a

different sequencing platform would probably resolve the problem

by supplying improved coverage in these regions (because the

platforms differ markedly in their coverage biases [18]). However,

existing data suggest that such problematic cases are likely to be

uncommon.

To interpret the results of phenotype sequencing requires a

reference genome sequence annotated with gene regions. Al-

though it is possible to obtain results from phenotype sequencing

Figure 5. Effects of mutagenesis density, sequencing error, and sequencing cost on target yield and experiment cost. A. Average
target discovery yield (y-axis) as a function of experiment cost (x-axis), at different mutagenesis densities: 20 mutations per genome (green circles); 50
mutations/genome (blue +); 100 mutations/genome (red triangles). B. Total experiment cost for analyzing 32 mutant strains (y-axis), as a function of
the number of tagged libraries pooled per sequencing lane (x-axis), for different levels of sequencing error (1% vs. 0.1%) and different sequencing
costs ($700 per lane vs. $350 per lane): 1% error, $700 per lane (blue circles); 0.1% error, $700 per lane (red squares); 1% error, $350 per lane (green +);
0.1% error, $350 per lane (cyan triangles).
doi:10.1371/journal.pone.0016517.g005
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without this, that would both require extra work, and dilute the

biological meaningfulness of the results. First of all, it is not strictly

necessary to have a reference genome sequence that exactly

matches the actual parent of the mutant strains. Mismatches

between the reference and the parent will simply be observed in

each tagged library with an apparent allele frequency of 100%,

and can be automatically excluded from consideration. For

example, in our phenotype sequencing experiment we detected

23 mutations observed with 100% allele frequency in at least one

library, and each such mutation was detected identically (at 100%

frequency) in all ten libraries. We excluded these parental

mutations from our analysis. Thus, the primary value of a

reference genome sequence is that it greatly facilitates and

accelerates phenotype sequencing, by enabling rapid alignment

of reads and detection of mutations. In the absence of a reference

genome, one would first have to assemble the reads ab initio, a

considerably more complicated task. Similarly, accurate gene

annotations with meaningful functional information are required

not so much for obtaining phenotype sequencing results, but for

biological interpretation of the results. In principle, for a

completely unannotated genome, one could predict open reading

frames (ORFs) and detect clustering of multiple mutations within

individual ORFs just as effectively as with annotated gene regions.

However, it might be harder to interpret the biological meaning of

a discovered target gene, if little or no functional information could

be found for it.

While phenotype sequencing can be useful for well-established

microbial systems such as E. coli, it may have special value for

genetically intractable organisms like Chlamydia, an important

human pathogen. For example, in Chlamydia, researchers have

identified a variety of potentially revealing mutant phenotypes, but

deeper understanding of their genetic causes is impeded by the

lack of powerful genetic systems for these bacteria [19]. For such

organisms, phenotype sequencing can open up a fast path for

directly identifying a phenotype’s genetic causes, for any

phenotype where a good screen exists for generating multiple

independent mutant strains.

Our mathematical model of phenotype sequencing makes a

number of assumptions that may be overly conservative relative to

real-world phenotype sequencing experiments. We deliberately

chose our model to represent the hardest possible case for

phenotype sequencing, via the following conservative assumptions:

1. a maximum entropy split of the selection signal between all

target genes; 2. only a single mutation is required to produce the

phenotype; 3. a relatively high mutagenesis density and effective

number of target genes. We now discuss each of these in turn. (We

also note that while we only analyzed our experimental data for

single nucleotide substitutions, in principle the same p-value

scoring approach could be applied to other types of mutation

events, e.g. deletions or insertions).

In our initial analysis, we assumed that each target gene is

equally likely to be mutated, and equally likely to produce the

phenotype. Both of these assumptions could be wrong. Splitting

the selection signal equally among all target genes ensures that no

target gene is any more detectable than any other target gene, and

thus minimizes the detectability of the most detectable target gene.

Introducing variability in either the probability of mutation or the

probability of producing the desired phenotype increases the

probability of detecting the top target gene. It seems unlikely that

real-world phenotype sequencing targets will exactly match the

hardest-case category. Many sources of gene variation are likely to

create variability in the effective target size for a given phenotype.

Empirically, we know that genes vary widely in size. We also

expect that the contributions of different proteins to a given

phenotype are likely to vary: whereas one protein might be

absolutely central to that phenotype, such that a large fraction of

amino acid mutations could cause the phenotype, in a protein that

participates in only part of that function, perhaps only a small

fraction of mutations could cause that specific phenotype. In our

isobutanol tolerance mutants, we observed that one gene (acrB)

showed a dramatically higher detectability than the other two

validated targets (marC, acrA). Finally, whereas loss-of-function

mutations may be possible in many genes within a pathway, gain-

of-function mutations may be possible at only a subset of sites in a

specific gene. Thus, a gain-of-function phenotype may display

much stronger selection bias to a subset of target genes, making

such target(s) easier to detect. Overall, we expect that real-world

phenotype sequencing experiments will be easier (and more

successful) than the estimates we have reported here from our

uniform target size model.

We also assumed that the phenotype is produced via only a

single mutational step from the parental strain. In other words, if a

given mutant strain contains 100 mutations relative to the parent,

we assume that only one of those mutations is causal (i.e. needs to

be in a true target gene). This minimizes the ‘‘signal-to-noise’’ ratio

(in this example, to just one causal mutation out of 100 total

mutations), making the signal harder to detect. By contrast, if two

or more mutations are required to produce the phenotype, that

would multiply the signal-to-noise ratio proportionally, by two-fold

or more. Our assumption of a single causal mutation means that

the probability that each target gene is mutated in a given strain

should sum to 1.0 (100%) over all the target genes. Empirically, in

our isobutanol tolerance mutants we observed a target gene

mutation probability sum much larger than 1.0: one gene (acrB)

was itself mutated in nearly all the strains, and several more

statistically significant genes were mutated in a third to a fifth of

the strains each (marC and acrA, experimentally validated, plus stfP,

ykgC, aes, not yet tested experimentally). Furthermore, Atsumi et al.

have independently dissected the genetic causes in a single mutant

strain, and found that five different mutations (in five genes) were

responsible for the observed phenotype [15]. Similarly, Conrad et

al. found that enhanced E. coli growth in lactate minimal media

typically arose in each mutant strain via 5 to 8 contributory

mutations in different genes [8]. Thus, we think that real-world

phenotype sequencing experiments are likely to contain a higher

signal-to-noise ratio than assumed by our single-causal-mutation

model.

Our values for the mutagenesis density and total target gene

number may also be larger than necessary. For example, our

t~20 target gene model assumes that the selection signal is split

equally over 20 genes, making each true target gene 20-fold harder

to detect than turned out to actually be the case for acrB in our

validation experiment. Are there really phenotypes in which 20

different genes can each cause the phenotype with equal

probability? This seems like an extreme, difficult case, yet our

results show that even it can be solved by sequencing a practical

number of mutant strains (see Fig. 2C). Similarly, in our

bioinformatic analyses and our experimental validation, we

considered mutagenesis densities of greater than 100 mutations

per strain. It should first be noted that such a density of potentially

functional mutations (in our case, we restricted our analysis to non-

synonymous mutations), corresponds to an even higher total

mutation density (e.g. for 100 non-synonymous mutations, we

might expect 150 total mutations). Since the experimenter can

control the mutagenesis directly by reducing the concentration or

time of mutagenesis, we suggest that future phenotype sequencing

experiments should use a substantially lower mutagenesis density

than we employed, to boost the signal-to-noise ratio.
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Two additional trends appear to favor successful phenotype

sequencing. First, the ongoing trend of decreasing sequencing cost

per read (or equivalently, increased reads per unit cost) appears

likely to continue for some time. We have sought to project the

effect of this cost reduction on phenotype sequencing in Fig. 5B,

which considers the effect of a two-fold reduction in sequencing

cost. Second, sequencing technologies offer several ways to reduce

the baseline sequencing error rate. For example, multibase

encoding schemes can greatly increase the ability to distinguish

real mutations from sequencing errors [20], assuming that the

reference sequence is known. As shown in Fig. 5B, reducing the

sequencing error rate to 0.1% has a similar effect on phenotype

sequencing as reducing the sequencing cost two-fold.

To demonstrate the utility of phenotype sequencing, we have

applied it to an important real-world problem in biofuels research,

namely the production of long chain alcohols from well-

characterized fermentation bacteria (in this case, E. coli). Recently,

the UCLA-DOE Lab has engineered strains of E. coli that produce

long-chain alcohols such as isobutanol and isopropanol [21] [22].

We believe phenotype sequencing brings several advantages to this

work and to biofuels research in general: 1. It makes no

assumptions about exactly what genes or pathways affect the

yield, and can experimentally discover the factors that actually

improve biofuel yield. 2. It utilizes the organism’s own ability to

evolve under externally applied selection pressure, to produce the

desired result. 3. It employs an inexpensive, highly scalable

technology (next-gen sequencing) to rapidly identify genes that

actually cause the phenotype. In principle, this approach has an

exciting ability to survey the factors that can improve yield of a

desired biofuel.

Materials and Methods

A Mathematical Model of Phenotype Sequencing
To model independent phenotype selection events, we need

probability distributions for the number of mutations in target genes

(genes where mutations can cause the desired phenotype) and for

non-target genes. First we consider a simple model in which genes

are assumed to have uniform size, and then extend it to variable

gene sizes. Note that we treat ‘‘size’’ as a general parameter

combining the many factors that affect the probability of observing

a mutation in a given region, including not only its length in the

genomic sequence, but all other factors such as its base

composition, mutational biases, and selection biases.

Independent mutations occurring over a genome are commonly

modeled using the Poisson distribution. Specifically, if the

expectation value for the number of mutations expected in a

region is l, the probability of observing exactly k mutations in that

region is given by

p(kjl)~
e{llk

k!

Now consider the following simple model of a phenotype selection

screen. Assume that mutations at a subset of sites in the genome

can cause the desired phenotype; call this the ‘‘target region’’ and

designate its total size as t. Defining the density of mutations

resulting from mutagenesis as m, the expected number of

mutations in the target region is l~mt. For convenience we

express m in terms of the number of mutations per gene, and t as

simply the number of target genes. To model the effect of the

phenotype selection screen, we require that at least one mutation

be present in the target region, which alters the conditional

mutation probability:

p(kjk§1,m,t)~
p(kjm,t)

1{p(k~0jm,t)
~

e{mt(mt)k

(1{e{mt)k!
~

(mt)k

(emt{1)k!

Thus, for a set of s independent mutant strains that pass the

phenotype screen, the distribution of the total number of

mutations in the target region simply follows the sum of s
independent draws from this conditional distribution. We model

this as follows: we extract the vector of values pk~p(kjk§1,m,t)
for a confidence interval kmin,kmax such that

Pkmax

k~kmin
pk§1{d

for a stringent confidence threshold d, construct a multinomial

distribution from this probability vector, and draw samples of s
counts each from this multinomial. Specifically, each draw is a

vector of fnkg observation counts for each possible outcome k,

such that
P

k nk~s. This yields a sample distribution for the total

number of mutations m~
P

k knk observed in the target region.

Given m mutations in the target region, we model the

distribution of mutation counts in individual target genes as

follows. Assuming that there are t total genes in the target region,

we construct a multinomial based on a probability vector of

uniform gene probabilities pi~1=t, and draw a sample of m
counts, i.e. a vector fnig such that

P
i ni~m. The ni represent the

individual mutation counts in each target gene. We then count the

number of target genes gk with a specified number of mutations k.

We sample their distribution by generating n~1000 replicates of

the above process, for any specific set of input parameters (m,t,s,

etc.).

We modeled the distribution of mutation counts in non-target

genes by a similar methodology. If m is the expected number of

mutations per non-target gene in a single mutant strain, the

distribution of total mutations per gene in s independent strains is

itself just a Poisson with mean sm:

p(kjs,m)~
e{sm(sm)k

k!

Again, we extract a probability vector of values pk~p(kjs,m) for a

confidence interval kmin,kmax such that
Pkmax

k~kmin
pk§1{d, and

construct a multinomial distribution from this probability vector.

The distribution of the number of genes gk0 that contain exactly k
mutations is given by drawing g{t counts from this multinomial,

where g is the total number of genes in the genome, and t is the

number of target genes in the genome.

We implemented these calculations in an open source Python

module, phenoseq. Using optimized numerical libraries such as

Numpy and Scipy [23], phenoseq can model over 600,000 mutant

E. coli genomes per second on a single core of a 2.5 GHz Core 2

Duo CPU (early 2008 MacBook Pro). All of our code is available

under an open source license at https://github.com/cjlee112/

phenoseq.
Target Yield. We define the target yield as the number of

true targets that can be discovered at a specified false discovery

rate w. This is obtained by finding the smallest value Kmin such that

Pkmax
k~K gk0Pkmax

k~K (gkzgk0 )
ƒw

for all values of K§Kmin, where gk,gk0 are respectively the

number of true target genes with exactly k mutations, and the

number of non-target genes with exactly k mutations. Then the
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yield y is just

y~
Xkmax

k~Kmin

gk

We computed average yields by sampling 1000 replicates of a

given set of input parameters (m,t,s,g, etc.).

Extension for non-uniform gene sizes. The above model

can be extended for non-uniform target and non-target gene sizes

as follows. We represent target size in terms of l, the mean

number of expected mutations in a gene. For the multinomial

representing target genes, instead of using a uniform probability

pi~1=t for each target gene, we instead compute each gene’s

target fraction based on its size li:

pi~
liP
i li

For non-target genes, we avoid the necessity of performing

individual computations for all 4244 E. coli genes by subdividing

the non-target genes into b bins based on size. We sort the non-

target genes by size, and assign each consecutive group of

(g{t)=b genes to a separate bin. Each bin is represented by the

average size of the genes it contains. Then, instead of constructing

a single Poisson for all non-target genes, we construct a separate

Poisson representing the distribution of total mutations per gene in

each bin with mean slj , where lj is the average gene size in bin j.

We then perform a separate multinomial calculation for each bin,

and obtain the total number of genes nk that contain exactly k

mutations simply by summing over the separate multinomials, i.e.

nk~
P

j nk,j , where the fnk,jg counts are drawn from the

multinomial representing bin j.

Finally, we employ a simple definition of target size that takes

into account mutational biases based on GC content. Specifically,

we define a region’s effective target size as:

l~NGCmGCzNAT mAT

where NGC ,NAT are the counts of GC vs. AT nucleotides in the

region, and mGC ,mAT are the observed mutation probabilities per

base at GC vs. AT nucleotides, measured genome-wide.

Target Gene Candidate Scoring
To score the candidate genes, we first computed the p-value for

a gene’s observed mutation count kobs under the null hypothesis

that it is not a target gene, based on its size l:

p(k§kobsjnon� target,l)~
X?

k~kobs

e{llk

k!

To apply this to multiple hypothesis tests (i.e. all the genes being

analyzed) at some confidence level a, we applied the Bonferroni

correction [24]:

p(k§kobsjnon{target,l)ƒ
a

n

where n is the number of genes observed to be mutated at least

once during the experiment. To apply this correction, we

multiplied the p-value for each gene by the total number of genes

being tested (e.g. for non-synonymous mutations, n~1426 genes)

to generate the corrected p-values shown in Tables 2 and 3.

To compute yields for models with variable gene size, we

calculated the p-value for each gene, and sorted the genes by this

value. We then found the largest cutoff value h such that the

fraction of non-targets out of all genes with p-value less than h is

less than the specified false discovery rate w. Then the yield y is the

count of target genes with p-value less than h.

Analysis of Uniform vs. Variable Gene Size Models
We directly tested the effects of uniform vs. non-uniform gene

size models on the p-value scoring of non-target genes, using the

following procedure to produce a plot of the expected negative log-

survival-function ({ log of the p-value) versus the actual observed

negative log-survival-function (Fig. 6). We generated a sample of

hit counts under our non-target model with our default

assumptions (50 mutations/genome, 4244 genes, 80 strains

sequenced, 1000 replicates). For each gene we drew a count k
of how many times it was mutated in a sample of 80 strains, and

calculated its p-value as described above. We converted these p-

values to negative-log values. For 4244 genes times 1000

replicates, this gave about 4.2 million { log (p{value)) numbers.

We then sorted these negative log values in ascending order (i.e.

descending p-value). Finally we plotted each value against the

negative log-survival-function of its true rank in this list, i.e. for list

element i, we plotted a datapoint (-logP[i], { log (1{ i
4244000

)),
which should give a straight line on the x~y diagonal.

These data are shown in Fig. 6. For the uniform gene-size

model, the p-values calculated by our scoring method matched

exactly the actual survival-function observed in the sample. For the

variable gene-size distribution of the actual sizes of all 4244 E. coli

genes, the calculated p-value scores overall followed the actual

survival-function observed in the sample (i.e. a linear plot in our

graph), but were slightly shifted. Specifically, each p-value score (x-

axis value) was actually observed at a slightly lower survival-

Figure 6. Effect of uniform vs. non-uniform gene size
distributions on p-value scoring. Uniform gene-size model (blue
circles, dashed line); Variable gene-size model based on subdividing the
E. coli gene size distribution into ten size classes, each containing 424
genes represented by the average size within that class (green +
markers); Variable gene-size model based on the exact sizes of all 4244
E coli genes (red line).
doi:10.1371/journal.pone.0016517.g006
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function rank in the sample (y-axis value). (Since we plotted

negative log values, this manifests as a slight upwards shift, to

higher values on the y-axis).

These data indicate that our p-value scores have a slightly

conservative bias versus their actual frequency of occurrence.

Specifically, for calculations using the real, variable-length gene

sizes, a given p-value score (say, 10{5) will actually occur among

non-target genes at a lower frequency rank (approximately 10{5:3).

This means that a p-value score calculated using the real, variable-

length gene sizes is slightly more significant than its value implies.

Conversely, calculations using a uniform gene-size model (which

lack this bias) will produce non-target gene p-values of a given

significance strength more frequently than will actually occur in

real-world calculations using real, variable-length gene data. That

means that target gene discovery yields calculated using a uniform

gene-size model will slightly underestimate the actual yield that

will be obtained in real-world calculations using real, variable-

length gene data. These data also show that approximating the

exact gene size distribution with just ten size classes (green line in

Fig. 6) yields almost identical results as the exact size distribution

(red line in Fig. 6). On this basis, we used the ten size class

approximation to compute Fig. 2, and the uniform size model to

generate Figures 3, 4a, and 5.

As a minor technical point, we note that the slight upwards shift

in Fig. 6 for variable gene-size models has a simple explanation.

The p-value calculated for a single gene correctly predicts the

frequency at which it will occur when it is mixed with other genes

only if the other genes have exactly the same p-value distribution.

This is not true if the genes differ in size. This error shifts the plot

for variable gene-size models upwards beginning right at the origin

of Fig. 6. Recall that the p-value for a given hit count k is simply

one minus the sum of the probabilities of hit counts less than k; by

definition, the p-value for k~0 is exactly 1. Thus all occurrences

of k~0 will be sorted (by descending p-value) earlier in the list

than all kw0 occurrences. They will then be followed by k~1 hits

in very large genes, for which the probability of getting k~0 hits is

near zero, and whose p-value is therefore close to 1. However, this

large p-value is only valid for large genes, and doesn’t take into

account the fact that k~0 will occur very frequently among small

genes. Consequently, this p-value’s actual rank in the list will be

pushed significantly down the list (by the many occurrences of

k~0 in small genes), relative to where it ‘‘should’’ be based on its

p-value. This manifests in Fig. 6 as a vertical displacement right

from the origin; this vertical displacement explains most of the shift

across the entire line.

Pooling and Sequencing Error Modeling
To model the effects of pooling and sequencing error on

phenotype sequencing detection success rates, consider the

average sequencing coverage c (average number of reads

covering any given base), pooling factor P (number of strains

pooled into a single tagged library), and sequencing error rate e
(defined here as the probability of erroneously observing a specific

nucleotide, which is only a fraction of the total probability of

observing any of the three incorrect nucleotides). If one strain in a

pool contains a mutation at a specific site, the mutant nucleotide

is expected to be present in a fraction 1=P of the reads covering

that site. We adopt the conservative assumption that the

probability that this mutation will be called correctly in a given

read is 1{3e. Assuming that reads are sampled independently

from the different strains in the pool, the probability of fewer than

r observation counts out of c reads is drawn from a binomial with

mean c(1{3e)=P:

fr~p(ivrjc,P)~
Xr{1

i~0

c

i

� �
1{3e

P

� �i

1{
1{3e

P

� �c{i

We will refer to fr as the mutation detection failure rate associated with

a detection threshold r.

Similarly, consider the probability of observing at least r reads

with a given erroneous nucleotide as drawn from a binomial with

mean ce:

er~p(i§rjc,e)~
Xc

i~r

c

i

� �
ei(1{e)c{i

We refer to er as the mutation false positive rate associated with a

detection threshold r.

We then modify the target and non-target gene modeling as

follows. First, the multinomial probability vector representing the

probability of assigning a mutation to each target gene is rescaled

by 1{fr:

pi~
li(1{fr)P

i li

and an additional category with probability fr (representing

detection failure) is appended to this vector. Counts drawn for this

category from the multinomial are simply discarded. This models

the process of occasionally failing to detect real mutations. Second,

we draw counts of false positive mutation calls per target gene

according to a Poisson with mean li~Nier, where Ni is the

number of nucleotide sites in gene i. We simply add these counts

to the vector fnig of true mutation counts per target gene to obtain

the total ‘‘observed counts’’ per gene. For non-target genes, we

simply adjust the effective ‘‘gene size’’ to reflect both false negative

and false positive effects:

leff~lfrzNier;

other aspects of the non-target gene calculation are performed

identically. Note that the values of fr and er are based on the

average coverage level c. For our pooling model, we did not

explicitly compute local variations in coverage, since deviations in

regions with higher than average coverage will tend to cancel those

in lower coverage regions, yielding overall values for fr and er close

to those computed from the average coverage level c.

NTG mutagenesis and Isobutanol tolerance selection
Random mutagenesis was performed with N’-nitro-N-nitroso-

guanidine (NTG) as previously described [25], using as a parent

strain the E. coli JCL16 (BW25113/F’ [traD36, proAB+, lacIq

ZDM15]) strain described previously [26]. Briefly, exponential-

phase cultures of JCL16 were concentrated two-fold by centrifu-

gation and suspension in 0.1 M citrate buffer (pH 5.5) and exposed

to N’-nitro-N-nitrosoguanidine (NTG) at a final concentration of

50 mg=ml for 30 minutes at 37C to reach a percentage kill of

approximately 50%. The cells were washed twice with 0.1 M

phosphate buffer (pH 7.0) and grown in LB plus 4% glucose for

two hours. The outgrown cultures were then challenged in the

presence of 14 g/L isobutanol which is highly toxic to the wildtype

type strain JCL16, for 12 h and plated on LB agar plates

containing 25 mg=ml tetracycline. To select isobutanol tolerant
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mutants, isolated colonies were inoculated in 2 ml deep-96-well

plates containing 300 ml LB plus 8 g/L isobutanol per well and

incubated for 24 h at 30C in a rotary shaker (250 rpm) (VWR).

Bacterial growth was then determined by densitometry at 600 nm

using a microplate reader (BioTek instruments Inc.).

Library Preparation and Sequencing
Bacterial genomic DNA preparations from 32 strains were

isolated using QIAamp DNA mini kit (Qiagen) with RNase

treatment. Isolated genomic DNA was fragmented by sonication

using Bioruptor (Diagenode) to an average size of 100–500 bp and

confirmed by gel electrophoresis. 2 mg aliquots of fragmented

genomic DNA from each strain were mixed to create genomic

DNA pools. There were 10 pools created. Of these, 8 pools

contained 3 strains and 2 pools contained 4 strains, such that each

strain was in only one pool. 10 tagged genomic sequencing

libraries were constructed using the Multiplex Sample Prep Oligo

Kit following protocols provided by the manufacturer (Illumina). A

mean library fragment size of 200–250 bp (mean insert size of

100–150 bp) was achieved by gel purification relative to standard

sized markers. The purified library size distribution was confirmed

by capillary electrophoresis in a Bioanalyzer (Agilent). 10 libraries

were mixed in a proportion to maintain an equal amount of DNA

from each strain in the multiplexed sequencing library. Final

library concentration was determined by fluorescent based assay

on the Qubit (Life Technologies). 7pmol of each mixed library was

loaded onto each flow cell. The 76 base single end sequencing was

carried out on a Genome Analyzer IIx (Illumina) within the

UCLA DNA Microarray Facility using Single-Read Cluster

Generation Kit v4 and Sequencing reagent v5. Base and quality

calls were performed using RTA v1.8 (Illumina). All sequence data

are being submitted to the NCBI Sequence Read Archive (SRA);

accession numbers are pending.

Sequencing Data Analysis
We used standard methods for sequencing read alignment and

SNP detection. Each Illumina GA2x sequencing read file was first

split into separate files for each of the ten unique prefix tags. Each

file of tagged reads was aligned to the E. coli str. K-12 substr.

MG1655 genome sequence (Genbank accession NC_000913),

using the Novoalign software package (Novocraft, Selangor,

Malaysia) in single-end read mode with default parameters. To

analyze the alignments, we used the samtools software package [27]

to convert the file to the BAM format, and then to the BCF format

(binary encoding of the Genotype Likelihood format) via its

mpileup command. We then ran the samtools program bcftools
to search for single nucleotide polymorphisms and output them in

VCF text format (for details, see http://samtools.sourceforge.net/

mpileup.shtml). For our standard (3 lane) analysis, we filtered

candidate SNPs by requiring a bcftools estimated allele frequency

of 0.5 or less, and independent detection in two out three lanes; of

these 4099 SNPs, 90.3% were independently detected in all three

lanes. For our single-lane analyses, we only applied the allele

frequency filter. It should be noted that a total of only 62

additional SNPs were detected in only one out of three lanes; this

constituted only 0.5% of the SNPs detected by each individual

lane. Further analysis of these data were performed using our own

code written in Python, which mapped the SNPs to annotated

genes (based on the CDS annotations for Genbank accession

NC_000913.2); determined the specific amino acid substitution

associated with each SNP; and computed p-value scores for each

gene as described above. We used the Biopython module [28] to

read the Genbank annotation data, and the Pygr module [29] to

map SNPs to the CDS annotations and determine their associated

amino acid substitutions. We used statistical functions from the

scipy.stats module [23] as part of computing p-values. All of our

code is available under an open source license at https://github.

com/cjlee112/phenoseq.
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