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Abstract

Background: Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of insulin signaling and energy balance,
but its role in brown fat adipogenesis requires additional investigation.

Methodology/Principal Findings: To precisely determine the role of PTP1B in adipogenesis, we established preadipocyte
cell lines from wild type and PTP1B knockout (KO) mice. In addition, we reconstituted KO cells with wild type, substrate-
trapping (D/A) and sumoylation-resistant (K/R) PTP1B mutants, then characterized differentiation and signaling in these
cells. KO, D/A- and WT-reconstituted cells fully differentiated into mature adipocytes with KO and D/A cells exhibiting a
trend for enhanced differentiation. In contrast, K/R cells exhibited marked attenuation in differentiation and lipid
accumulation compared with WT cells. Expression of adipogenic markers PPARc, C/EBPa, C/EBPd, and PGC1a mirrored the
differentiation pattern. In addition, the differentiation deficit in K/R cells could be reversed completely by the PPARc
activator troglitazone. PTP1B deficiency enhanced insulin receptor (IR) and insulin receptor substrate 1 (IRS1) tyrosyl
phosphorylation, while K/R cells exhibited attenuated insulin-induced IR and IRS1 phosphorylation and glucose uptake
compared with WT cells. In addition, substrate-trapping studies revealed that IRS1 is a substrate for PTP1B in brown
adipocytes. Moreover, KO, D/A and K/R cells exhibited elevated AMPK and ACC phosphorylation compared with WT cells.

Conclusions: These data indicate that PTP1B is a modulator of brown fat adipogenesis and suggest that adipocyte
differentiation requires regulated expression of PTP1B.
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Introduction

The obesity epidemic has focused attention on adipose tissue

and adipocyte development (adipogenesis). Adipose tissue is an

important metabolic organ that integrates a wide array of

homeostatic processes and is crucial for whole-body insulin

sensitivity and energy metabolism [1]. White adipose tissue

(WAT) is the primary site for triglyceride storage and fatty acid

release in response to various energy requirements; whereas brown

adipose tissue (BAT) generates heat via mitochondrial uncoupling

of lipid oxidation [2]. Brown adipose is a key thermogenic tissue

with a well-established role in the defense against cold in a process

termed nonshivering thermogenesis [3]. In addition, BAT is

recognized for its anti-obesity properties with the increase in

brown adipose amount and/or function promoting a healthy

phenotype. Specifically, mice with higher amounts of BAT gain

less weight, are more insulin sensitive, and are protected from

diabetes [4,5,6,7]. Interest in the regulation and development of

BAT gained traction in recent years with the realization that adult

humans have distinct brown adipose tissue depots and that the

activity of BAT varies depending on adiposity, temperature,

gender and age [8,9,10,11].

Adipocyte differentiation is a complex process that requires

integration of a multitude of stimuli including nutrients and

hormones [12,13,14,15]. Despite differences in physiological

function and developmental origins of WAT and BAT, both

share similar canonical transcriptional cascades that control fat

differentiation [16]. Previous detailed studies of WAT differenti-

ation identified peroxisome proliferator-activated receptor gamma

(PPARc) and CCAAT/enhancer-binding proteins (C/EBPs) as

critical transcription factors regulating differentiation (reviewed in

[17]). PPARc is also necessary for brown fat cell development but

not sufficient to drive mesenchymal cells into a brown fat cell fate.

Recently, bone morphogenic protein 7 (BMP7) was identified as a

regulator of brown fat cell differentiation program [18]. In

addition, insulin and insulin-like growth factor 1 (IGF1) play
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important roles in brown adipocyte differentiation [19]. Brown

preadipocytes derived from insulin receptor (IR) and insulin

receptor substrates 1–4 (IRSs) knockout (KO) mice highlight the

relevance of upstream components in insulin signaling in BAT

differentiation [20,21,22,23].

Tyrosyl phosphorylation is a major regulator of insulin signaling

and is tightly controlled by the opposing actions of protein-tyrosine

kinases (PTKs) and protein-tyrosine phosphatases (PTPs) [24,25].

Protein-tyrosine phosphatase 1B (PTP1B) is an abundant, widely

expressed non-receptor tyrosine-specific phosphatase that is

localized on the cytoplasmic face of the endoplasmic reticulum

(ER) [26,27,28]. Whole-body PTP1B deficient mice are hyper-

sensitive to insulin, lean and resistant to high fat diet-induced

obesity [29,30]. The leanness is caused by increased energy

expenditure that is mediated, at least in part, by neuronal PTP1B

since neuron-specific PTP1B KO mice exhibit reduced body

weight and increased energy expenditure [31]. In contrast, muscle-

and liver-specific PTP1B deletion leads to improved insulin

sensitivity without alterations in body weight [32,33]. However,

the role of PTP1B in adipose tissue, specifically BAT is less clearly

defined. Of note, whole-body PTP1B deficient mice exhibit

increased AMP-activated protein kinase (AMPK) activity and

mitochondrial content in BAT [34]. In addition, it was recently

reported that PTP1B deficiency has a beneficial effect on brown

adipocyte differentiation and protection against apoptosis [35].

In the current study we investigated the role of PTP1B in brown

adipocyte differentiation and signaling. We utilized preadipocytes

from WT and PTP1B-deficient mice and reconstituted cells to

reveal that PTP1B modulates brown fat adipogenesis. In addition,

we demonstrated a role for PTP1B in regulating insulin and

AMPK signaling in brown adipocytes.

Results

Generation and characterization of PTP1B-deficient and
reconstituted brown adipocytes

To investigate the role of PTP1B in brown adipocyte

differentiation, we generated immortalized brown preadipocytes

from wild type (Con) and whole-body PTP1B KO mice as

described in Methods. To determine whether alterations in KO

cells were directly caused by PTP1B deficiency, we generated

isogenic cells by reconstituting KO cells with human (h) PTP1B

(WT) as described in Methods. Of note, hPTP1B shares a high

degree of homology to mouse (m) PTP1B, and we have previously

demonstrated that hPTP1B can rescue the effects of mPTP1B

deletion in mouse embryonic fibroblasts in response to growth

factors stimulation [36]. In addition, KO cells were reconstituted

with substrate-trapping hPTP1B D181A (D/A) mutant that

retains substrate binding but is catalytically impaired [37], and

sumoylation-resistant mutant hPTP1B K73, 335, 347, 389R (K/

R) [38]. PTP1B is progressively sumoylated after insulin

stimulation leading to inhibition of its catalytic activity and

suppression of its ability to downregulate the IR [38]. Immunoblot

analysis of cell lysates revealed that hPTP1B was expressed in all

reconstituted cells (WT, D/A, and K/R) while mouse (m) PTP1B

was expressed in Con cells and absent in KO cells (Fig. 1A). Given

the cross reactivity of mouse and human PTP1B antibodies [39],

we estimated that hPTP1B expression in reconstituted cells was

roughly comparable to mPTP1B in wild type cells (Con).

Differentiation of KO and reconstituted cells into brown

adipocytes was performed as described in Methods and outlined

in Fig. 1B. Cells were stained using the fat-specific dye oil red O to

monitor lipid accumulation at various days of differentiation

(Fig. 1B, C). Differentiation was quantitated by extracting oil red

O from stained cells and determining absorbance (from 9

independent experiments) (Fig. 1D). WT cells accumulated fat

droplets and exhibited a fully differentiated phenotype with .90%

of the cells containing multilocular fat droplets at day 8 (Fig. 1C).

KO and D/A cells exhibited a trend for enhanced differentiation

compared with WT cells, but did not reach statistical significance

(Fig. 1C, D). In contrast, K/R cells treated with the same protocol

failed to differentiate with only a small percentage of cells able to

accumulate fat. Together, our findings indicate that differentiation

of brown adipocytes requires a regulated expression of PTP1B and

that its sumolyation-resistant mutant dramatically inhibits differ-

entiation.

Patterns of differentiation correlate with expression of
adipogenic markers

To further investigate the role of PTP1B in brown adipose

differentiation, we determined the expression of adipogenic

markers PPARc, C/EBPa, C/EBPd, PPARc coactivator 1a
(PGC1a) and preadipocyte factor 1 (Pref1) mRNAs in KO and

reconstituted cells during differentiation. Consistent with previous

reports [23,40], PPARc exhibited a progressive increase in

expression during differentiation in WT cells (Fig. 2A). Notably,

KO and D/A cells revealed a comparable pattern of PPARc
expression, while K/R cells exhibited blunted expression through-

out differentiation. Similarly, C/EBPa exhibited comparable

expression pattern to that of PPARc. Transcripts of C/EBPa
peaked on day 4–6 in WT, KO and D/A cells, while K/R cells

exhibited blunted expression (Fig. 2B). In addition, PGC1a
mRNA expression pattern was comparable to that of PPARc
increasing progressively during differentiation in WT, KO and D/

A cells while K/R cells exhibited blunted expression (Fig. 2C). C/

EBPd levels were generally low in all cells and no apparent trend

was observed (Fig. 2D). On the other hand, expression of Pref1, an

inhibitor of adipocyte differentiation (reviewed in [41]), was

elevated in K/R cells compared with KO, WT and D/A cells

(Fig. 2E). Finally, protein expression of uncoupling protein 1

(UCP1), a marker of brown adipocyte differentiation, was elevated

in differentiated KO and D/A cells compared with WT and was

not detectable in K/R cells. This is in line with in vivo studies that

report increased UCP1 expression (by immuno-blotting and

immuno-histochemistry) in BAT of PTP1B KO mice compared

with wild type mice [34]. Therefore, K/R cells exhibited

attenuated differentiation, as indicated by lipid accumulation,

mRNA and protein expression.

Tyrosyl phosphorylation and differentiation of PTP1B-
deficient and reconstituted adipocytes

Overall tyrosyl phosphorylation inversely correlates with

adipocyte differentiation [23]; we reasoned that PTP1B deletion

and/or reconstitution will likely alter tyrosyl phosphorylation and

modulate differentiation. Overall tyrosyl phosphorylation was

determined in lysates of KO and reconstituted adipocytes at

various stages of differentiation (Fig. 3A). As differentiation

progressed, we detected a trend for mild decrease in tyrosyl

phosphorylation; however the overall pattern and levels were

comparable in KO, WT and K/R cells (Fig. 3A). In line with this,

we observed a trend of increased PTP1B expression in WT cells

during differentiation, but it did not reach statistical significance

(data not shown). Please note that enhanced tyrosyl phosphory-

lation in D/A cells likely reflects ‘‘trapped’’ PTP1B substrates that

are protected against dephosphorylation. Previous studies indicate

that Erk phosphorylation decreases during the progression of

differentiation [22,23]. Indeed, Erk phosphorylation declined in

PTP1B and Brown Fat Differentiation
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WT cells during differentiation, while KO, D/A and K/R cells

failed to attenuate Erk phoshorylation (Fig. 3B). Finally, PI3K and

its downstream effector, Akt play an important role in brown

adipocyte differentiation [20]. Akt (Ser473) phopshorylation,

adjusted to Akt expression, increased as differentiation proceeded

in all cells (Fig. 3C). In addition, Akt phosphorylation was higher

in KO, D/A and K/R cells compared with WT at day 0, but these

differences were not sustained at later stages of differentiation

(Fig. 3C). Thus, while some differences in Erk and Akt

phosphorylation were observed between cells during differentia-

tion, these are unlikely to account, on their own, for the altered

differentiation pattern in these cells.

Regulation of insulin signaling in brown adipocytes by
PTP1B

Insulin signaling is an important regulator of brown fat

adipogenesis with upstream components, IR [22] and IRS1/3

[20,23,42] playing crucial roles. PTP1B attenuates insulin signaling

by dephosphorylating IR [43,44] and possibly IRS1 [45,46]. Initially,

we determined alterations in insulin signaling in differentiated brown

adipocytes derived from wild type (Con) and KO mice. Cells were

starved overnight then stimulated with insulin for 5 minutes and

tyrosyl phosphorylation of IR and IRS1 was determined in

immunoprecipitates. Insulin-stimulated tyrosyl phosphorylation of

IR and IRS1 was significantly enhanced in KO cells compared with

controls (Fig. 4A, B). Enhanced insulin-induced IRS1 tyrosyl

phosphorylation in KO cells could be primary indicating that

IRS1 is a substrate of PTP1B, or secondary due to increased IR

phosphorylation in KO cells. To determine if PTP1B directly

interacts with IRS1 in differentiated brown adipocytes, we performed

substrate-trapping experiments as previously described [37].

hPTP1B was immunoprecipitated (using FG6 antibodies) from

lysates of WT and D/A cells then blotted using anti-phosphotyrosine

antibodies (Fig. 4C). Notably, a hyper-phosphorylated band, whose

size corresponds to IRS1 was detected in PTP1B immunoprecipi-

tates of insulin-stimulated D/A cells. Indeed, reprobing with IRS1

antibodies identified the protein as IRS1 demonstrating that it is a

direct target of PTP1B in brown adipocytes.

Next, we evaluated alterations in insulin signaling in isogenic

KO and reconstituted differentiated adipocytes. Insulin-stimulated

Figure 1. PTP1B regulates brown adipocyte differentiation. A) Immunoblots of human (h) and mouse (m) PTP1B expression in immortalized
brown adipocytes from wild type mice (Con), PTP1B knockout (KO) mice, and KO cells reconstituted with hPTP1B (WT), substrate-trapping (D/A), and
sumoylation-resistant (K/R) hPTP1B mutants. Blots were probed with anti-Tubulin antibodies as a control for loading. B) Schematic depicting timeline
of cell differentiation and oil red O staining. C) Brown adipose precursor cells were grown to confluence, then differentiation was induced as
described in Methods. At various stages of differentiation, cells were fixed and stained with oil red O, then the dye was extracted and its absorbance
(520 nm) quantitated (D). Graph represents data from nine independent experiments, and data are expressed as mean 6 SEM. (**) indicates
significant difference between K/R and WT, KO and D/A cells.
doi:10.1371/journal.pone.0016446.g001
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IR tyrosyl phosphorylation, normalized to its expression, was

elevated in KO and D/A cells compared with WT cells (Fig. 4D).

By contrast, IR phosphorylation was significantly decreased in K/

R cells consistent with the inability of insulin to suppress activity of

PTP1B K/R [38]. Similarly, insulin-stimulated IRS1 tyrosyl

phosphorylation, normalized to its expression, was elevated in

KO and D/A cells compared with WT cells, and K/R cells

exhibited comparable IRS1 phosphorylation to WT cells (Fig. 4E).

Downstream insulin signaling was assessed by determining basal

and insulin-stimulated Erk and Akt phosphorylation in differen-

tiated adipocytes. Erk phosphorylation was significantly induced

5 mins after insulin stimulation compared with basal, but no major

differences were observed between cells (Fig. 4F). Similarly, Akt

phosphorylation was significantly induced after insulin stimulation

compared with basal, but no major differences were observed

between cells (Fig. 4G). Together, our findings indicate that

PTP1B is a regulator of IR signaling and that IRS1 is a direct

PTP1B substrate in brown adipocytes.

Regulation of AMPK signaling in brown adipocytes by
PTP1B

AMPK is a fuel sensing enzyme complex and a regulator of

brown adipose differentiation [47]. BAT from whole-body PTP1B

KO mice exhibit increased a1 and a2 AMPK activation, as well as

increased phosphorylation of a1 subunit at Thr172 compared with

controls [34]. In line with these observations, phosphorylation of

AMPKa (Thr172), adjusted to AMPKa expression was elevated in

KO and D/A cells compared with controls (Fig. 5A). In addition,

K/R cells exhibited elevated AMPKa phosphorylation compared

with controls. AMPK activation leads to phosphorylation of its

downstream target acetyl-CoA carboxylase (ACC) at Ser79 and

ACC inhibition [48,49]. Consistent with AMPKa phosphoryla-

tion, ACC phosphorylation (Ser79) was elevated in KO, D/A and

K/R cells compared with controls (Fig. 5B). LKB1 is one of the

upstream kinases that activate AMPKa by phosphorylating

Thr172 [50,51]. LKB1 protein levels were elevated in KO, D/A

and K/R cells compared with controls (Fig. 5C) and likely to

contribute to increased AMPK phophorylation in these cells.

Insulin-stimulated glucose uptake is impaired in PTP1B K/
R adipocytes

Basal and insulin-stimulated 2-deoxy-glucose uptake was

determined in differentiated KO and reconstituted cells as

described in Methods. There was no significant difference in

basal glucose transport between cells, although KO cells exhibited

a trend for increased glucose uptake compared with WT, but that

did not reach statistical significance (Fig. 6A). After insulin

stimulation, WT cells exhibited a significant increase in glucose

uptake (,5 fold) in line with published observations [20,21]. A

comparable increase in insulin-stimulated glucose uptake was

observed in KO cells. In addition, insulin-induced glucose uptake

was significantly enhanced in D/A cells and attenuated in K/R

Figure 2. Expression of differentiation markers in PTP1B KO and reconstituted adipocytes. mRNA expression of PPARc (A), C/EBPa (B),
PGC1a (C), C/EBPd (D) and Pref1 (E) at different days of differentiation, measured by quantitative real-time PCR and normalized against GAPDH.
Results are representative of two independent experiments and data are expressed as mean 6 SEM. (F) Immunoblots of UCP1 expression in
differentiated cells. Blots were probed for hPTP1B and with anti-Tubulin antibodies as a control for loading.
doi:10.1371/journal.pone.0016446.g002
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cells compared with WT (Fig. 6A). Decreased insulin-induced

glucose uptake in K/R cells was paralleled by attenuated Glut4

expression in these cells (Fig. 6B). On the other hand, elevated

glucose uptake in D/A cells was not mirrored by comparable

increase in Glut4 expression in total lysates. This suggests that

other factor(s), including but not limited to Glut4 translocation,

could be altered in these cells. At any rate, our findings

demonstrated impaired insulin-stimulated glucose uptake in K/

R brown adipocytes.

Troglitazone treatment increases differentiation capacity
of K/R cells

K/R cells failed to accumulate the adipogenic marker PPARc
and given its role in brown and white adipose differentiation [17],

we determined the effects of PPARc activation on the differen-

tiation capacity of K/R cells. WT and K/R cells were treated with

the PPARc agonist troglitazone and differentiation was monitored.

Addition of troglitazone to WT cells did not significantly alter their

differentiation profile probably due to the natural differentiation

potential of these cells (Fig. 7A, B). On the other hand, PPARc

activation significantly improved the ability of K/R cells to

differentiate as measured by oil red O staining (Fig. 7A, B). Thus,

troglitazone treatment is sufficient to override the differentiation

deficit in K/R cells.

Discussion

Adipocyte differentiation requires integration of a multitude of

stimuli and coordinated regulation of cellular responses

[12,13,14,15]. Despite recent confluence of discoveries on brown

fat adipogenesis, molecular regulators of this complex mechanism

are not fully identified. PTP1B is an established physiological

regulator of systemic insulin sensitivity and energy balance, but its

role in brown fat adipogenesis warrants additional investigation. In

this study we utilized immortalized brown preadipocytes from wild

type and PTP1B KO mice and reconstituted KO preadipocytes to

address the role of PTP1B in adipogenesis. These cells provide a

useful platform since preadipocytes can differentiate into mature

brown adipocytes with accumulation of multilocular fat droplets

and expression of adipogenic and differentiation markers [22,42].

In addition, these cells are an established model for dissecting the

Figure 3. Overall tyrosyl phosphorylation, Erk and Akt phosphorylation during differentiation. A) Overall tyrosyl phosphorylation in WT,
KO, D/A and K/R cells during differentiation. Total lysates were prepared from cells on days 0, 4 and 8 of differentiation. Blots were probed using anti-
phosphotyrosine and anti-hPTP1B antibodies. Molecular weight markers are indicated on the right of the blot. Total lysates from cells at days 0, 4 and
8 of differentiation were immunoblotted for p-Erk (B) and p-Akt (C) and the corresponding proteins. (*) indicates statistically significant difference
between KO, D/A or K/R and WT under the same treatment condition, while (#) indicates statistically significant difference between WT, KO, D/A or K/
R and their corresponding basal (day 0).
doi:10.1371/journal.pone.0016446.g003
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contribution of components in insulin signaling to brown fat

adipogenesis and glucose uptake [20,23,42]. Moreover, PTP1B-

reconstituted cells help identify if observed alterations in KO cells

are directly caused by PTP1B deletion.

Using standard differentiation protocols, KO and D/A

preadipocytes exhibited a trend (that did not reach statistical

significance) for increased differentiation and accumulation of fat

droplets compared with WT cells. These findings are in line with

those of Miranda et al. who report beneficial effects of PTP1B

deficiency on brown fat adipogenesis [35]. Conversely, differen-

tiation of preadipocytes expressing a sumoylation-resistant PTP1B

mutant (K/R) was dramatically reduced compared with controls.

The underlying reason(s) for attenuated K/R preadipocyte

differentiation is not clear. One scenario involves attenuated

insulin signaling in these cells (see next paragraph). Another

possibility involves alteration of signaling in distinct cellular

compartment(s). The bulk of sumoylated PTP1B localizes to the

perinuclear region [38], and since K/R is resistant to insulin-

induced downregulation, then presumably K/R cells manifest

increased and/or prolonged PTP1B activation at this region.

Therefore, K/R could modulate insulin (and potentially other)

signaling amplitude and/or duration to attenuate differentiation.

In addition, we cannot rule out that K/R regulates a distinct set of

cellular substrate(s), and this warrants additional investigation. At

any rate, treatment of K/R cells with the PPARc agonist

troglitazone fully recovers the differentiation blockade in these

Figure 4. Altered insulin signaling in PTP1B KO and reconstituted adipocytes. Brown adipocyte cell lines from WT (Con) and PTP1B KO (KO)
mice were differentiated then serum starved O/N and stimulated with insulin (100 nM) for 5 minutes. A) Lysates were immunoprecipitated using IR
antibodies, immunoblotted with anti-phosphotyrosine antibodies, and then stripped and reprobed for IR to control for loading. B) IRS1 was
immunoprecipitated from adipocyte lysates, immunoblotted with anti-phosphotyrosine antibodies, and then stripped and reprobed for IRS1 to
control for loading. C) Lysates from cells reconstituted with WT and D/A were immunoprecipitated using hPTP1B antibodies (FG6) followed by
immunoblotting with anti-phosphotyrosine and anti-IRS1 antibodies. (D–G) Isogenic KO and reconstituted differentiated cells were serum starved O/
N then stimulated with insulin for 5 or 10 minutes. D) Lysates were immunoprecipitated using IR antibodies, immunoblotted with anti-
phosphotyrosine antibodies, and then stripped and reprobed for IR to control for loading. E) IRS1 was immunoprecipitated from adipocyte lysates,
immunoblotted with anti-phosphotyrosine antibodies, and then stripped and reprobed for IRS1 to control for loading. Cell lysates were
immunoblotted for p-Erk (F) p-Akt (G) and the corresponding total proteins. Bar graphs are data from three independent experiments and are
presented as means 6 SEM. (*) indicates statistically significant difference between KO, D/A or K/R and WT under the same treatment condition, while
(#) indicates statistically significant difference between WT, KO, D/A or K/R and their corresponding basal (no insulin).
doi:10.1371/journal.pone.0016446.g004
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cells. This could be due to direct activation of PPARc, and/or

indirectly caused by the insulin-sensitizing effects of thiazolidine-

dione. Of note, troglitazone treatment of IR-deficient brown

preadipocytes slightly improves their differentiation profile [22],

and in IRS1-deficient preadipocytes reverses some of their

differentiation deficits (Glut4 expression) without affecting others

(fat accumulation) [20]. Although the exact mechanism of

impaired differentiation of K/R cells requires additional investi-

gation, our results demonstrate that PTP1B regulates brown fat

adipogenesis.

PTP1B can regulate brown fat adipogenesis through insulin-

dependent and insulin-independent signaling pathways (please see

schematic in Fig. 8). Numerous studies establish insulin signaling

as a critical regulator of brown fat adipogenesis [20,21,22,23,42].

Brown preadipocyte cell lines from IR KO mice exhibit

dramatically impaired differentiation [22]. Similarly, preadipo-

cytes from IRS1 KO mice exhibit a marked decrease in

differentiation and lipid accumulation [20,23,42]. In addition,

expression of adipogenic makers and transcription factors (such as

PPARc, C/EBPa, PGC1a, Glut4, and fatty acid synthase) is

attenuated in preadipocytes from IR and IRS1 KO mice

[20,22,23]. Our studies clearly established PTP1B as a regulator

of IR and IRS1 signaling in differentiated brown adipocytes and

demonstrated that IRS1 is a substrate of PTP1B in these cells.

Insulin-induced IR and IRS1 tyrosyl phosphorylation was elevated

in cells with abolished/minimal PTP1B activity (KO and D/A,

respectively) and attenuated in those with increased/prolonged

PTP1B activity (K/R). Similarly, PPARc, C/EBPa, and PGC1a
mRNA was increased in WT, K/O and D/A cells compared with

K/R. Notably, our studies demonstrated regulation of insulin-

stimulated glucose uptake in adipocytes by PTP1B, but that did

not fully correlate with alterations in IR and IRS1 tyrosyl

phosphorylation and Glut4 expression. This in line with previous

studies [52,53,54,55] that suggest that a multitude of factors are

required to evoke maximal insulin-stimulated glucose transport

including, but not limited to, modulation of signaling at specific

Figure 5. Altered AMPK signaling in PTP1B KO and reconstituted adipocytes. A) Immunoblotting of AMPKa subunit phosphorylation
(Thr172) in differentiated KO and reconstituted brown adipocytes under starved and insulin-stimulated conditions. Phosphorylation of ACC (Ser79)
(B), and LKB1 expression (C) in differentiated WT, KO, D/A and K/R cells at basal and insulin-stimulated conditions. Bar graphs are data from three
independent experiments and are presented as means 6 SEM. (*) indicates statistically significant difference between KO, D/A or K/R and WT under

PTP1B and Brown Fat Differentiation
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intracellular compartments. Collectively, our findings indicate that

alteration of insulin signaling via modulation of PTP1B activity

accounts, at least in part, for the observed differentiation effects.

PTP1B also can regulate brown fat adipogenesis through

insulin-independent signaling pathways (Fig. 8). AMPK has been

implicated in the regulation of brown fat adipogenesis. Inhibition

Figure 6. Insulin-induced glucose uptake is impaired in K/R adipocytes. A) Differentiated KO and reconstituted cells were serum starved O/
N then stimulated with insulin (100 nM) for 30 minutes followed by addition of 2-deoxy-[3H] glucose for 3 minutes. Data are expressed as nmol of
glucose taken up/mg of cell protein/min (left panel) and as percentage of basal uptake in WT cells (right panel). Bar graphs are data from three
independent experiments and data are presented as means 6 SEM. B) Immunoblots of Glut4 expression in differentiated cells. Blots were probed
with anti-Tubulin antibodies as a control for loading. (*) indicates statistically significant difference between basal and insulin-stimulated conditions in
each cell type, while (#) indicates statistically significant difference between insulin-stimulated glucose uptake in KO, D/A and K/R cells compared
with WT.
doi:10.1371/journal.pone.0016446.g006

Figure 7. Differentiation capacity of K/R cells is improved by troglitazone treatment. WT and K/R cells were induced to differentiate in the
absence or presence of 25 mM troglitazone. A) At differentiation days 0 and 8 cells were stained with oil red O and differentiation quantitated (B).
Graph represents data from three independent experiments, and data are expressed as mean 6 SEM. (*) indicates statistically significant difference
between untreated K/R and WT cells, and (#) indicates statistically significant difference between untreated K/R and troglitazone-treated K/R cells.
doi:10.1371/journal.pone.0016446.g007
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of AMPK blocks brown but not white adipocyte differentiation,

and chronic activation of AMPK in vivo increases brown

adipocytes within WAT depots [47]. Notably, AMPK activity is

elevated, and AMPK target genes that regulate mitochondrial

biogenesis are induced in BAT of PTP1B KO mice [34]. In line

with this, our data demonstrated regulation of AMPK signaling by

PTP1B in brown adipocytes. Collectively, these findings indicate

that PTP1B can regulate brown adipose differentiation, at least in

part, through AMPK signaling. Finally, we cannot rule out

modulation of additional affectors(s) of brown adipose differenti-

ation by PTP1B (Fig. 8). Adipogenic differentiation is associated

with downregulation of Wnt/b-catenin signaling [56,57,58]. Since

PTP1B has been implicated in regulating b-catenin signaling

[59,60] it is tempting to speculate that it could influence

adipogenesis through this signaling pathway. Proper execution of

adipogenesis requires integration of a wide array of stimuli and

regulated expression of numerous genes, so it is not surprising that

PTP1B participates in this complex process through regulating

various signaling pathways.

In summary, our studies identify PTP1B as a modulator of

brown fat adipogenesis, and suggest that adipocyte differentiation

requires regulated expression of PTP1B. These findings are of

direct relevance to obesity and diabetes given the contribution of

brown fat to energy homeostasis, and considering that PTP1B is a

target that is being harnessed as a potential therapeutic.

Materials and Methods

Chemicals and reagents
Dulbecco’s Modified Eagle Medium (DMEM), fetal bovine

serum (FBS) and trypsin were purchased from Invitrogen

(Carlsbad, CA). Antibodies for human PTP1B (FG6), mouse

Figure 8. Proposed model of regulation of brown fat adipogenesis by PTP1B. PTP1B can regulate adipogenesis through insulin-dependent
and insulin-independent pathways. Activation of cell surface receptors of insulin or IGF1 leads to phosphorylation of IRS proteins, activation of PI3K
and MAPK pathway, and glucose uptake. Alterations in downstream signaling (summarized in Tseng et al. [23,40]) lead to the initiation of
transcriptional cascades that involve PPARc, C/EBPs, and PGC1a and cause changes that are required for differentiation of brown adipocytes
(expression of Glut4 and UCP1). PTP1B dephosphorylates IR and IRS1 in differentiated brown adipocytes and modulates insulin-stimulated glucose
uptake. In addition, PTP1B regulates LKB1/AMPK signaling pathway in differentiated brown adipocytes. Conceivably, PTP1B also could modulate
other affector(s) of cellular signaling to regulate transcription factors and cofactor to influence differentiation. Effects of KO, D/A and K/R on adipose
differentiation, IR and IRS1 tyrosyl phosphorylation, glucose uptake, and LKB1/AMPK signaling are summarized. Alterations in KO, D/A and K/R are
indicated with the symbol (+) and compared with WT (set at ++). Arrows indicate activation and T-shaped lines indicate repression. A dashed line
indicates that the connection has not been completely established.
doi:10.1371/journal.pone.0016446.g008
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PTP1B, IR, IRS1 were purchased from Upstate Biotechnology

(Lake Placid, NY), pAkt (Ser473), pErk, pAMPK (Thr172),

AMPK, pACC (Ser79), ACC were purchased from Cell Signaling

Technology (Beverly, MA), LKB1, Tubulin, Akt and Erk were

from Santa Cruz Biotechnology (Santa Cruz, CA). Horseradish

peroxidase (HRP)-conjugated secondary antibodies were pur-

chased from BioResources International (Carlsbad, CA). Unless

otherwise indicated, chemicals were purchased from Sigma (St.

Louis, MO).

Cell isolation and culture
Brown adipocytes and their precursor cells were isolated from

newborn wild type and whole-body PTP1B KO mice by

collagenase digestion as described previously [61]. Preadipocytes

were immortalized by infection with the retroviral vector pBABE

encoding SV40T-antigen then selected with puromycin (2 mg/

ml). To induce cell differentiation, preadipocytes were grown to

confluence in culture medium containing 20% FBS. Confluent

cells were then switched to differentiation media containing 20%

FBS, 20 nM insulin and 1 nM triiodothyronine [T3] for

48 hours. Adipocyte differentiation was induced by treating cells

for 48 h in differentiation medium further supplemented with

0.5 mM dexamethasone, 0.5 mM isobutylmethylxanthine, and

0.125 mM indomethacin (induction media). After induction,

cells were returned to differentiation medium, and at day 8

exhibited a fully differentiated phenotype with massive accumu-

lation of multilocular fat droplets. All animal work was

conducted following federal guidelines and in accordance with

University of California Davis IACUC approval (protocol #
13064).

For oil red O staining, cells were fixed with 10% buffered

formalin for at least 1 hour at room temperature. Cells were then

stained for one hour with filtered oil red O solution (5g/liter in

isopropyl alcohol), washed with distilled water, and visualized. Oil

red O was quantified spectrophotometrically at 520 nm.

PTP1B KO cell lines were reconstituted using retrovirus

encoding human PTP1B wild type (WT), substrate-trapping

mutant PTP1B D/A [37], and sumoylation-resistant mutant

PTP1B K/R [38] as we previously described [36]. Briefly, viral

W NX-packaging cells were transfected with retroviral vectors

using Lipofectamine 2000 (Invitrogen) following manufacturer’s

instructions and viral supernatants were harvested 48 h after

transfection. PTP1B KO cells were infected with polybrene

(4 mg/ml)-supplemented virus-containing supernatants. Selec-

tion was started 48 hours after infection with 200 mg/ml of

hygromycin (Invitrogen) and pools of drug-resistant cells

maintained.

Biochemical analyses
For signaling experiments, cells were starved overnight then

stimulated with insulin (100 nM) for 5 or 10 minutes. Cells were

lysed using radio-immunoprecipitation assay (RIPA) buffer

(10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% sodium dodecyl

sulfate [SDS], 1% Triton X-100, 1% sodium deoxycholate, 5 mM

EDTA, 1 mM NaF, 1 mM sodium orthovanadate and protease

inhibitors). Extracts were sonicated and clarified by centrifugation

at 13,000 rpm for 10 min, and protein concentrations were

determined using a bicinchoninic acid protein assay kit (Pierce

Chemical, Rockford, IL). Proteins (500–1000 mg) were subjected

to immunoprecipitation using IR, IRS1 and phosphotyrosine

(4G10) antibodies. For substrate-trapping experiments, lysates

were prepared in 1% NP40 buffer with a protease inhibitor

cocktail (without sodium orthovanadate) and hPTP1B was

immunoprecipitated using FG6 antibodies. Immune complexes

were collected on protein G-Sepharose beads (GE Healthcare) and

washed with lysis buffer. Proteins were resolved by SDS-PAGE

and transferred to PVDF membranes. Immunoblotting of total cell

lysates and immunoprecipitates was performed with antibodies for

phosphotyrosine (1/10,000), IR (1/1,000), IRS1 (1/500), pErk

(Thr202/Tyr204) (1/20,000), pAkt (Ser473) (1/10,000), Erk (1/

10,000), Akt (1/5,000), UCP1 (1/5,000), pAMPKa (1/2,000),

AMPKa (1/2,000), pACC (1/1,000), LKB1 (1/2,000) and

Tubulin (1/1,000). After incubation with appropriate secondary

antibodies, proteins were visualized using enhanced chemilumi-

nescence (Amersham Biosciences). Pixel intensities of immunore-

active bands were quantified using FluorChem 9900 (Alpha

Innotech).

RNA was extracted from differentiated adicpocytes using

TRIzol reagent (Invitrogen). cDNA was generated using high-

capacity cDNA Archive Kit (Applied Biosystems). Expression of

PPARc, C/EBPa, C/EBPd, PGC1a and Pref1 was assessed by

quantitative real-time PCR (iCycler, BioRad) with appropriate

primers (Table S1) and normalized to glyceraldehyde 3-phosphate

dehydrogenase (GAPDH).

Glucose uptake assay
Cells were assayed for glucose uptake essentially as described

[62]. Briefly, differentiated brown adipocytes were treated with

insulin for 30 minutes after which 2-deoxy-[3H] glucose (0.5 mCi/

ml, final concentration) was added for an additional 3 minutes.

The incorporated radioactivity was quantitated using liquid

scintillation counting.

Statistical analyses
Data are expressed as means 6 standard error of the mean

(SEM). Statistical analyses were performed using JMP program

(SAS Institute). Comparisons between groups were made by

unpaired two-tailed Student’s t test. Differences were considered

significant at P#0.05 and highly significant at P#0.01. A single

symbol (such as *) indicates P#0.05 and a double symbol (**)

indicates P#0.01.

Supporting Information

Table S1 Primers used for real time PCR. Primer

sequences used to determine mRNA expression levels of PPARc,

C/EBPa, C/EBPd, Pref1, PGC1a and GAPDH in brown

adipocytes during differentiation.
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