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Abstract

ETV1 is overexpressed in a subset of clinical prostate cancers as a fusion transcript with many different partners. However,
ETV1 can also be overexpressed as a full-length transcript. Full-length ETV1 protein functions differently from truncated
ETV1 produced by fusion genes. In this study we describe the genetic background of full-length ETV1 overexpression and
the biological properties of different full-length ETV1 isoforms in prostate cancer. Break-apart FISH showed in five out of six
patient samples with overexpression of full-length ETV1 a genomic rearrangement of the gene, indicating frequent
translocation. We were able to study the rearrangements in more detail in two tumors. In the first tumor 59-RACE on cDNA
showed linkage of the complete ETV1 transcript to the first exon of a prostate-specific two exon ncRNA gene that maps on
chromosome 14 (EST14). This resulted in the expression of both full-length ETV1 transcripts and EST14-ETV1 fusion
transcripts. In chromosome spreads of a xenograft derived from the second prostate cancer we observed a complex ETV1
translocation involving a chromosome 7 fragment that harbors ETV1 and fragments of chromosomes 4 and 10. Further
studies revealed the overexpression of several different full-length transcripts, giving rise to four protein isoforms with
different N-terminal regions. Even the shortest isoform synthesized by full-length ETV1 stimulated in vitro anchorage-
independent growth of PNT2C2 prostate cells. This contrasts the lack of activity of even shorter N-truncated ETV1 produced
by fusion transcripts. Our findings that in clinical prostate cancer overexpression of full-length ETV1 is due to genomic
rearrangements involving different chromosomes and the identification of a shortened biologically active ETV1 isoform are
highly relevant for understanding the mechanism of ETV1 function in prostate cancer.
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Introduction

Gene fusions are important in the development of many

hematological malignancies and sarcomas, but are rare in most

other tumor types [1]. However, the frequent fusion between

TMPRSS2 and the ETS gene ERG showed that gene fusion is a highly

relevant event in prostate cancer [2,3]. Overexpression of the

TMPRSS2-ERG fusion gene has been reported in 40–70% of prostate

cancer cases [2–5]. Fusions of TMPRSS2 and three other genes

encoding ETS transcription factors, ETV1, ETV4 and ETV5, which

are located on different chromosomes, occur at low frequency in

prostate cancer [2,6,7]. However, for ETV1 at least 10 different fusion

partners have been described [8–10]. Most of these have in common

that, like TMPRSS2, they are prostate-specific and androgen-

regulated expressed. The properties of fusion partners are key

elements in explaining the androgen-regulated overexpression of an

ETS oncogene in prostate cancer. However, a unique characteristic

of ETV1 is that it can not only be overexpressed in prostate cancer as

a fusion transcript but also as a full-length wild-type transcript.

The large family of ETS transcription factors is composed of 27

members [11–13]. All members have in common a highly homo-

logous DNA binding domain, the ETS domain. The remaining

regions of most ETS proteins show limited structural homology.

ETV1, ETV4 and ETV5 are the members of a small subfamily of

structurally related ETS proteins. These proteins contain in the N-

terminal region a conserved short acidic transactivation domain

(TAD) that is absent in ERG. ETS proteins regulate many target

genes that modulate biological processes like cell growth,

angiogenesis, migration, proliferation and differentiation. Howev-

er, which of the many molecular and biological functions of ETS

proteins are most important in prostate cancer is not known.

Following ERG, ETV1 is the most frequently overexpressed ETS

gene in prostate cancer (,10% of the tumors) [10]. The ETV1

protein translated from most fusion transcripts is truncated, lacking

the 131 N-terminal amino acids (dETV1). Approx. half of the

tumors with ETV1 overexpression express a fusion transcript, the

others show a high level of full-length ETV1 expression. The in vitro

biological and molecular properties of dETV1 seem different from

those of the full-length 477 amino acid protein [10]. This

observation suggests that tumors with overexpression of full-length

ETV1 are different from tumors expressing dETV1.

Little is known about the mechanism of full-length ETV1

overexpression and its function in clinical prostate cancer. Our

present results show that overexpression of full-length ETV1 is
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correlated with rearrangement of the ETV1 chromosomal region.

Moreover, we identified a novel, N-truncated ETV1 isoform with

the same activity as full-length ETV1.

Results and Discussion

Previously, we reported ETV1 overexpression in eight out of 84

prostate cancer samples. In four cases this was caused by a gene

fusion, in the other four a full-length ETV1 transcript was

overexpressed [10]. In the present study we investigated

overexpression of ETV1 by quantitative reverse transcriptase

reaction (QPCR) in a novel cohort of 66 prostate cancers. In six

RNAs ETV1 overexpression was detected. Samples G51, G59,

G233, G270 and G268 were derived from primary tumors and

G210 was derived from a recurrent tumor. The six samples were

further studied by QPCR with primer pairs at the 59-end of ETV1

mRNA (exon 1F and exon 4R) and at the 39-end of the mRNA

(exon 11F and exon 12R) (Figure 1A). A high exon 11–12 to exon

1–4 ratio is indicative for a fusion gene; a 1:1 ratio indicated

overexpression of full-length ETV1 mRNA. Based on these

criteria, tumors G51, G59, G233 and G270 expressed full-length

ETV1 whereas G210 and G268 expressed a fusion transcript (see

also control PC374 that expresses TMPRSS2-ETV1). HNRPA2B1-

ETV1 was found as the fusion transcript in sample G210 (data not

shown); the fusion transcript in G268 has not been identified as

yet. These two samples were not investigated further in this study.

In the next experiments we focused on the elucidation of the

mechanism of overexpression of full-length ETV1. Recently, it has

been shown that in two prostate cancer cell lines overexpressing

full-length ETV1, LNCaP and MDA PCa2b, ETV1 is translocated

[8]. We now addressed the question whether in clinical samples

translocation of the complete ETV1 gene might occur. To detect

genomic rearrangements tissue slides of all four prostate cancer

samples with full-length ETV1 overexpression were analyzed by

break-apart interphase FISH with two labeled BAC probes, one

BAC recognized ETV1 and the second one the flanking gene

DGKB (Figure 1B). The series was supplemented with two samples

harboring full-length ETV1 overexpression from our previous

study, G89 and G308 [10], for which frozen tissues of sufficient

morphological quality were available. Figure 1B shows the results

of the FISH experiments. Interestingly, we found split signals in all

samples except for G59, indicating frequent ETV1 rearrangements

in prostate cancers that overexpress full-length ETV1. Absence of a

split signal in G59 suggests absence of translocation, although we

cannot exclude a breakpoint outside the investigated region. Its

observed high frequency indicates genomic rearrangement as an

important mechanism of full-length ETV1 overexpression in

clinical prostate cancer. Obviously, the chromosomal region to

which ETV1 is translocated can contribute to elucidation of the

mechanism of ETV1 overexpression. We were able to identify

more details of the rearrangements in samples G270 and G89.

It has been shown in LNCaP cells that ETV1 is translocated to

14q13.3-q21.1. The whole gene is integrated in the last intron of

MIPOL1. In MDA PCa2b, ETV1 is translocated to the same region,

although the precise position is unknown [8]. Moreover, we

previously described insertion of truncated ETV1 in the intron of a

two exon gene encoding a ncRNA, denoted EST14, giving rise to an

EST14-ETV1 fusion transcript that contains ETV1 exon 5–12

sequences (sample G342 in ref. 10; Figure 2A). Importantly, EST14

maps directly adjacent to MIPOL1 on 14q. Like most ETV1 fusion

partners, EST14 is an androgen-regulated prostate-specific gene. To

investigate whether the same chromosomal region was involved in

full-length ETV1 translocation in our novel cohort, interphase FISH

was performed with the ETV1 BAC (Figure 1B) in combination with

a MIPOL1 BAC (Figure 1C). A merging yellow signal was detected in

sample G270 (Figure 1C) but in none of the other tumors. These data

indicate that although there seems a preference for chromosome

14q13.3-21.1, other genomic regions will also contribute to

rearrangement and overexpression of full-length ETV1.

Additional information of ETV1 rearrangement in G270 came

from 59-RACE of tumor cDNA (data not shown). Remarkably, we

did not only detect as expected the full-length ETV1 transcript but

also a fusion transcript (Figure 2A). Such a result was not found for

any of the other tumors overexpressing full-length ETV1.

Sequencing showed that the fusion transcript in G270 was

composed of ETV1 exon 1–12 preceded by the first exon of

EST14 (Figure 2A). Scanning the EST14 intron and ETV1 flanking

region by long-range PCR and sequencing mapped the break-

points in G270 ,1.9 Kbp upstream of ETV1 exon 1 and ,5 Kbp

downstream of EST14 exon 1. The breakpoint in EST14 is only

180 bp apart from the breakpoint in G342 (Figure 2B and ref. 10).

Further information of ETV1 rearrangement was also collected

for sample G89. Previously, a xenograft propagated on male nude

mice had been generated from this tumor (PC135). Like tumor

G89, PC135 overexpressed full-length ETV1 [3]. The availability

of the xenograft allowed the preparation of metaphase chromo-

some spreads. In multicolor FISH a complex chromosomal

rearrangement pattern was found (data not shown). Individual

chromosome paints were used to validate the multicolor FISH

data. Painting of chromosome 7 indicated the presence of multiple

chromosome 7 fragments (Figure 3). Hybridization with an ETV1

BAC identified the presence of three gene copies: two in

apparently normal chromosomes 7 and one in a complex marker

chromosome. Follow-up experiments showed that the marker

chromosome contained fragments of chromosomes 4, 7 and 10, as

first indicated by multicolor FISH (Figure 3). The ETV1 BAC

hybridized at the junction of the chromosome 7 and the

chromosome 4 fragment, strongly suggesting that the 4;7

translocation was instrumental in overexpression of ETV1. The

precise positions of the breakpoints in 4 and 7 remain to be

determined. Our data predict that multiple chromosomal regions

are involved in overexpression of full-length ETV1. At least one of

these regions is on chromosome 14 and a second one on

chromosome 4. The chromosome 14 region is also involved in

ETV1 gene fusion. Deep sequencing technology could be

instrumental in identification of other ETV1 rearrangements.

Detailed characterization of the full-length ETV1 transcripts in

the various tumors by 59-RACE and sequencing showed that not

only ETV1 exon 1- exon 12 transcripts were present but also

various other full-length ETV1 transcripts, resulting from alterna-

tive promoter usage. These transcripts were denoted as ETV1,

ETV1-1a, ETV1-1b and ETV1-1c. Figure 4A and Supplementary

Figure S1 show the positions of the different first exons in the gene

and indicate the various ATG start codons. Of both ETV1-1a and

ETV1-1b two splice variants were found (data not shown). QPCR

experiments using transcript-specific primers on RNA from all six

clinical prostate cancer samples that overexpressed ETV1 showed

that the level of expression of the different transcripts was variable

in the various tumors (see Figure S2). ETV1 was hardly expressed

in control benign prostate hyperplasia sample G277. Figure 4B

schematically represents the predicted composition of the various

ETV1 protein isoforms that will be produced. Note that ETV1-1c

is by far the shortest, lacking the N-terminal 60 amino acids,

including the major part of the conserved acidic TAD. In dETV1

that is expressed by most fusion genes, the N-termimal 131 amino

acids are absent. ETV1, ETV1-1b1 and -1b2 were of similar size,

as shown in Western blots of lysates from transfected HEK293T

cells (Figure 4B).

ETV1 Translocations in Prostate Cancer
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Figure 1. Full-length ETV1 overexpression in clinical prostate cancers correlates with genomic rearrangement of the complete gene.
(A) QPCR on RNA from clinical samples that show ETV1 overexpression. Two primer-pairs were used to determine ETV1 expression: ETV1 exon 1
forward and exon 4 reverse, and exon 11 forward and exon 12 reverse, respectively. Primer sequences are given in Supplementary Table S1. Amplified
products were quantified relative to the expression of the porphobilinogen deaminase (PBGD) housekeeping gene. Data were normalized to full
length ETV1 overexpressed in the xenograft PC135. A high exon 11/12 to exon 1/4 ratio indicates an ETV1 fusion event, a 1 to 1 ratio indicates
overexpression of a full length ETV1 transcript. PC374 is a control xenograft that expresses a TMPRSS2-ETV1 fusion gene. A representative experiment
of the six samples that show ETV1 overexpression is depicted. (B) Interphase FISH on fresh-frozen prostate cancer tissue sections. BACs used are
indicated below the chromosome 7 region investigated. BAC RP11-124L22 (red) spans ETV1 and RP11-1149J13 (green) overlaps DGKB (left panel).
Positions of genes from the top of chromosome 7 are indicated in Mbp. A split signal representing an ETV1 translocation is indicated by an arrow.

ETV1 Translocations in Prostate Cancer
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Previously, we have shown that ETV1 and dETV1 differed in

stimulation of in vitro anchorage-independent growth [10]. PNT2C2

cells infected with all novel ETV1 constructs induced anchorage-

independent growth in a similar manner as ETV1 (Figure 4C).

Remarkably, ETV1-1c, although expressed at a lower level and

much smaller, is as active as the longer ETV1 isoforms. Thus, the

full N-terminal TAD was not needed but amino acids 61–131 seem

essential for biological activity of ETV1 (Figure 4B, C).

In summary, the data presented reveal two important novel

aspects of the role of ETV1 in prostate cancer. First, it is shown

that in clinical prostate cancers a subgroup of ETV1 positive

patients show full-length ETV1 overexpression due to transloca-

tions of the whole gene to different chromosomes. This novel

observation complements the well-described mechanism of

overexpression of truncated ETV1 caused by gene fusions where

expression regulation is determined by the promoter and

enhancers of the fusion partners. Secondly, in contrast to dETV1

produced by gene fusions, a short isoform of full-length ETV1,

ETV1-1c, lacking most of the N-terminal TAD, is as active as

longer ETV1 isoforms, containing the complete N-terminal acidic

TAD. This finding pinpoints the anchorage-independent growth

to a small region that is absent in truncated ETV1 expressed by

fusion genes.

It is highly relevant to extend the number of clinical samples in

order to be able to compare tumor progression in the two

subgroups of prostate cancers showing overexpression of truncated

vs. full-length ETV1, and to determine the molecular mechanisms

involved in their different biological behavior.

Materials and Methods

Ethics Statement
Use of the samples was approved by the Erasmus MC Medical

Ethics Committee according to the Medical Research Involving

Human Subjects Act in protocol MEC-2004-261, entitled ‘‘The

use of human normal and cancer residual tissue from a tissue bank

for characterization of DNA, RNA and protein’’.

Mice were housed according to guidelines of the Erasmus

Medical Centre, and procedures were carried out in compliance

with standards for use of laboratory animals. Animal experiments

performed in this manuscript have been approved by the animal

experimental committee of the Erasmus Medical Centre (DEC-

consult Erasmus MC project 102-10-01).

Tissue samples, RNA and DNA isolation
Snap-frozen prostate cancers were obtained by radical prosta-

tectomy or transurethral resection. Hematoxilin/eosin (HE)

stained tissue sections were histologically evaluated by a

pathologist (G. van Leenders). All samples contained at least

50% tumor cells.

Figure 2. Characterization of the EST14 to ETV1 gene fusion in prostate cancer G270. (A) Schematic representation of ETV1-EST14 fusion
transcripts in prostate tumors G270 and G342 (sample G342 is from ref. 10). Arrows indicate positions of primers used in the RT-PCR experiment.
Primer sequences are shown in Supplementary Table S1. (B) Sequence of the fusion point of EST14 and ETV1 in sample G270. The position of the
fusion point in tumor G270 was mapped by long-range PCR on genomic DNA with a forward primer in the EST14 intron and reverse primer upstream
of ETV1 exon 1. At the fusion point two T residues were lost. The breakpoint in EST14 in G270 and G342 are indicated by arrows.
doi:10.1371/journal.pone.0016332.g002

(C) Translocation of ETV1 to chromosome 14 in tumor G270. Tissue sections were hybridized with BAC RP11-460G19 (green) that overlaps MIPOL1 and
flanks ETS14 and with the ETV1 BAC RP11-124L22 (red) (see B for details). In the left panel the position of MIPOL1 BAC on chromosome 14 is indicated.
In the right panel a merging signal (yellow) shows co-localization of ETV1 and MIPOL1/EST14 in G270, as indicated by the arrow.
doi:10.1371/journal.pone.0016332.g001
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RNA from clinical specimens was isolated using RNA-Bee

(Campro Scientific, Berlin, Germany). DNA was isolated using the

DNeasy DNA Extraction kit (Qiagen, Valencia, CA, USA). RNA

from cell lines was isolated using the RNeasy RNA Extraction kit

(Qiagen).

Breakpoint mapping
The position of the fusion point in tumor 270 was mapped by

long-range PCR on genomic DNA using a forward primer in the

EST14 intron and reverse primer upstream of ETV1 exon 1. PCR

products were separated on a 1% agarose gel and sequenced in an

ABI 3100 genetic analyzer (Applied Biosystems, Carlsbad, CA,

USA).

Q-PCR
mRNA expression was analyzed by QPCR. cDNA was

prepared with MMLV-RT (Invitrogen, Carlsbad, CA, USA) and

oligo(dT)12 primer. QPCR was performed in Power SYBR Green

PCR Master Mix on an ABI Prism 7700 Sequence Detection

System (Applied Biosystems). Amplified products were quantified

relative to porphobilinogen deaminase (PBGD) by the standard

curve method. For primers see Table S1.

RNA ligase-mediated rapid amplification of cDNA ends
59-RLM-RACE was performed using the GeneRacer kit of

Invitrogen. cDNA was amplified using the GeneRacer 59-primer

and a reverse gene-specific primer (ETV1 exon 6). PCR products

were analyzed on a 1.5% agarose gel, and bands were excised,

purified, and sequenced.

Fluorescence in situ hybridization
FISH was done on 5-mm frozen tissue sections according to

standard protocols with minor modifications [14]. BAC clones

RP11-124L22 (ETV1), RP11-460G19 (MIPOL1), RP11-1149J13

(DGKB) were purchased from BacPac Resources (bacpac.chori.org).

BACs were either digoxigenin-11-dUTP or biotin-16-dUTP

(Roche, Basel, Schweiz) labeled and visualized with anti-digoxigenin

FITC (Roche) or streptavidin-Alexa 594 (Invitrogen). Tissue

sections were counterstained with DAPI. Images were collected

on an epifluorescence microscope (Leica DM, Wetzlar, Germany)

equipped with a charge-coupled device cooled camera (Photo-

metrics, Tuscon, AZ, USA).

For preparation of metaphase spreads, xenograft PC135 was

propagated on male nude mice. Single cells were collected by

mincing and filtration. Metaphase preparation and hybridization

Figure 3. A complex ETV1 translocation in xenograft PC135 involves chromosomes 4, 7 and 10. Paints of chromosomes 4, 7 and 10 are
green and the ETV1 BAC (Figure 1b) is red. Black arrows indicate the translocated ETV1. In the lower panel the relevant marker chromosome is boxed
in red.
doi:10.1371/journal.pone.0016332.g003
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Figure 4. Alternative full-length ETV1 transcripts give rise to proteins that all induce in vitro anchorage-independent growth.
(A) Schematic representation of the organization of the ETV1 gene. Alternative first exons are 1a, 1, 1b and 1c. The positions of the four different ATG
start codons are indicated. More details are given in Supplementary Figure S1. (B) Schematic representation of the composition of different ETV1
proteins and their expression in transfected HEK293T cells. Different colors of N-terminal regions indicate a different amino acid composition. dETV1
is the truncated ETV1 protein produced by fusion genes. This protein is unable to induce anchorage independent growth. In the right panel a
Western blot of ETV1 isoforms produced by transiently transfected HEK293T cells is shown. b-actin was used as loading control. (C) Soft-agar assay
showing the anchorage-independent growth of PNT2C2 cells infected with lentiviruses expressing the various ETV1 isoforms or control GFP. The bars
represent the average number of colonies per microscope field of three independent experiments (6SD). Representative images of the stained
colonies are shown below the bar figure.
doi:10.1371/journal.pone.0016332.g004

ETV1 Translocations in Prostate Cancer

PLoS ONE | www.plosone.org 6 January 2011 | Volume 6 | Issue 1 | e16332



were essentially as described [14]. Chromosome paints 4, 7 and 10

were from Euro-Diagnostica (Malmö, Sweden). Metaphases were

analyzed with an Axioplan 2 Imaging microscope (Carl Zeiss,

Oberkochen, Germany) and images were captured using Isis

software (MetaSystems, Altiussheim, Germany).

Expression plasmids
cDNAs of the different ETV1 isoforms were PCR amplified and

cloned into pGEM-TEasy (Promega). Inserts were sequence

verified and cloned into the pcDNA3 expression vector (Invitro-

gen) or the lenti-viral vector pWPXLd (Didier Trono, University

of Geneva).

Western blot analysis
For Western blot analysis, HEK293T cells were transfected with

the different pcDNA3-ETV1 expression constructs using the

calcium phosphate precipitation method. Cells were harvested

48 h after transfection. Western blot analysis was carried out using

standard procedures with antibody directed to the ETV1 C-

terminus (Santa Cruz, Santa Cruz, CA, USA). b-actin was used as

loading control (Sigma, St Louis, MO, USA). Proteins were

visualized by chemiluminescence (Pierce, Rockford, IL, USA).

Lentiviral infections
HEK293T cells were cotransfected with pWPXLd-ETV1

expression vectors, or pWPXLd-GFP (control), and pPAX2 and

pMD2.G (Trono) using the calcium phosphate precipitation

method. Virus was harvested from the supernatant and used for

infection of PNT2C2 cells. Pools of infected cells were propagated.

Soft agar assay
A layer of 0.6% low-melting agarose in standard culture

medium was prepared in six-well plates. On top, a layer of 0.3%

agarose containing 16104 PNT2C2 cells infected with various

ETV1 expressing viruses or control PNT2C2-GFP cells were

plated. At day 14, cells were stained with crystal violet and colonies

were counted.

Supporting Information

Figure S1 Part of genomic sequence of ETV1. The different

exons are highlighted in yellow. Translation start codons are

underlined. Note that the transcript starting at exon 1a may or

may not include exon 1a1 but the translation start is the same as

that of the transcript starting at exon 1. The end of exon 1b1 is

indicated in red. ETV1 transcripts starting at exon 1c lack exons 1,

2 and 3 which results in a truncated TAD in the translated protein.

(DOC)

Figure S2 Expression of the different ETV1 transcripts was

determined by QPCR in the 7900HT Fast Real-Time PCR

system from Applied Biosystems using the power SYBR-green

master mix (Applied Biosystems). Expression levels are relative to

the housekeeping gene PBGD. ETV1 and PBGD primers are listed

in Supplementary Table S1. Sample G277 is a BPH. It has very

low or no expression of all of the different ETV1 transcripts.

Samples G51, G59, G89, G233, G270 and G308 all overexpress

ETV1. The different transcripts are expressed in variable levels.

(TIF)

Table S1 Primer sequences.

(TIF)
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