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Abstract

Copy number alterations are important contributors to many genetic diseases, including cancer. We present the readDepth
package for R, which can detect these aberrations by measuring the depth of coverage obtained by massively parallel
sequencing of the genome. In addition to achieving higher accuracy than existing packages, our tool runs much faster by
utilizing multi-core architectures to parallelize the processing of these large data sets. In contrast to other published
methods, readDepth does not require the sequencing of a reference sample, and uses a robust statistical model that
accounts for overdispersed data. It includes a method for effectively increasing the resolution obtained from low-coverage
experiments by utilizing breakpoint information from paired end sequencing to do positional refinement. We also
demonstrate a method for inferring copy number using reads generated by whole-genome bisulfite sequencing, thus
enabling integrative study of epigenomic and copy number alterations. Finally, we apply this tool to two genomes, showing
that it performs well on genomes sequenced to both low and high coverage. The readDepth package runs on Linux and
MacOSX, is released under the Apache 2.0 license, and is available at http://code.google.com/p/readdepth/.
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Introduction

Copy number alterations (CNAs) that arise due to genomic

duplications or deletions have gradually been recognized as a

major contributor to genetic variation and disease [1–4]. In

addition to being linked to Mendelian diseases, CNAs have been

frequently described in tumor genomes and contribute to

oncogenesis by altering gene dosage or creating gene fusions or

truncations [5,6]. In order to assess the effects of CNAs in either

normal or tumor genomes, it is necessary to both precisely

demarcate the boundaries of the alteration and accurately infer the

copy number. In the past decade, this has typically been done

using array comparative genomic hybridization (aCGH) [7,8].

Despite the low cost and ubiquity of such methods, aCGH is

beginning to be supplemented by sequencing-based methods.

These methods offer a number of advantages, including higher

resolution and better dynamic range [9–11].

Specifically, it has been shown that when whole-genome

shotgun sequencing is performed on massively parallel instru-

ments, the number of sequence reads that align to a position in the

genome is proportional to the copy number at that position [9].

This simple concept is complicated by the fact that genomes are

not sequenced deeply enough to enable base-pair resolution. This

necessitates the use of a binning procedure, where bins of a fixed

size are tiled along the genome and the reads falling into each bin

are counted. The size of the bin and number of reads determine

how accurately normal regions can be distinguished from those

with amplifications or deletions [11,12]. Thus, the statistical

methods used to model the dataset and determine the size of these

bins are a key component of an accurate detection algorithm.

Some algorithms arbitrarily choose this bin size [9,10], which is

clearly less than optimal, while others use models based on Poisson

or Gaussian distributions to determine parameters that result in

good sensitivity and a small bin size which gives good resolution

[11–13]. If the model’s assumptions are violated and the bin size is

too large or small, the algorithm’s performance will suffer.

Another challenge in extracting copy number information from

sequence data is that the genome contains many repetitive

elements, and aligning reads to these positions is impossible using

current short-read technologies. Several groups sidestep this

problem by sequencing a reference genome alongside their target

genome [11–13]. This allows the algorithm to use the ratio

between the two samples at each position and reduces this

problem of ‘‘mapability’’. Unfortunately, this also effectively

doubles the costs of sequencing, which is still a significant expense.

We present readDepth, a new R package for CNA detection

that does not require the sequencing of matched normal sample.

Using a binning procedure, readDepth calls copy number variants

based on sequence depth, and then invokes a circular binary

segmentation algorithm to call segment boundaries. If the reads

are obtained from paired ends, breakpoint information can be

used to refine segment boundaries. The algorithm accepts both

regular and bisulfite-treated DNA reads, thus enabling integrative

study of structural and epigenomic alterations. A key feature of the

algorithm is an improved statistical model that is applied to adjust

for a number of types of bias, including GC-content, mapability,
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and other sources of distortion introduced by the preparation and

sequencing processes. The algorithm also allows for explicit

control of the false discovery rate (FDR), which minimizes the

number of false positive aberrations detected. Furthermore, by

leveraging parallel processing, readDepth produces results many

times faster than comparable algorithms.

We validate readDepth on simulated data and show that it has

high sensitivity and specificity and outperforms a comparable R

package. We then apply it to several genomes. We show this

algorithm’s ability to resolve complex and highly amplified regions

from low-coverage data on the MCF-7 breast cancer cell line. We

also demonstrate a method for integrating information from

paired-end sequencing information to create more accurate

boundary calls. Finally, we showcase a methylation-sensitive

method of correcting for GC-content bias by applying it to high-

coverage bisulfite-treated data from the H1 embryonic stem cell

line.

Results

Statistical Model and Algorithm Development
We first examined several genomes and assessed the distribution

of reads uniquely mapping to the genome in order to create a

statistical model. We started with the assumption that all reads

were chosen randomly from the genome, which meant that the

number of reads in any given region would follow a Poisson

distribution with mean proportional to the copy number of the

region. After examining several complete genomes (Yoruban [14],

Han Chinese [15], and Korean [16]), we noted that the observed

distributions violate the Poisson distribution’s assumption of equal

mean and variance, even after correcting for several known

sources of distortion such as GC-content bias and variation in

mapability.

Thus, we developed a model that uses a negative-binomial

distribution to approximate an overdispersed Poisson distribution.

The negative binomial distribution can be seen as a mixture of

Poisson distributions where the median values (l) are drawn from

a gamma distribution [17]. The variation in l, which accounts for

the excessive variance which we observe, is input to the model

using an extra parameter. By altering this parameter, we can alter

the variance/mean ratio (VMR) and model overdispersion. A

similar approach for modeling overdispersion has been proposed

in the context of detecting gene expression levels from sequence

reads [18], but has not previously been applied to copy number

assays. We concluded that the genomes we examined, which were

all sequenced on Illumina machines, are well approximated by a

negative binomial distribution with a VMR of 3. On the Yoruban

genome (visualized in Figure 1a/b), our negative binomial model

has a root mean square error three times smaller than that of the

Poisson (RMSE of 23817.203 vs 7955.012).

We next developed readDepth, a tool that uses our model to

identify sets of optimal parameters that correspond to specific

false-discovery rates. To allow for improvements in the sequencing

process or introduction of new platforms that may result in

different distributions, the VMR parameter (set to 3 in the

following experiments) is adjustable. Figures 1c and 1d show the

effects of different bin sizes, which control the mean number of

reads per bin, and by extension, control the separability of peaks at

each copy number. Given a data set with a certain number of

reads, readDepth calculates the smallest bin size that allows no

more miscalled bins than specified by the input FDR, then

calculates the thresholds for copy number gain and loss that

optimally separate the peaks.

Once a bin size is established and the number of reads that fall

into each bin is counted, readDepth corrects for bias introduced by

the inability to map reads into repetitive regions of the genome. To

do this, we created mapability tracks via self-alignment of the

reference genome. ReadDepth takes these tracks as input and uses

them to proportionally scale the number of reads in bins that have

less than 100% mapability. Previous studies have described

significant bias in the number of reads generated from regions

with differing GC-content [14]. Based on this observation, which

we have confirmed, readDepth uses a simple statistical correction

to adjust the read depth for this bias. (Figure S1)

Once read counts are adjusted for each bin in the genome,

readDepth applies circular binary segmentation, as implemented

in the DNAcopy R package [19], to divide the genome into

contiguous regions with the same copy number. It then reports

copy numbers for each segment, and flags segments that exceed

the thresholds for gain and loss calculated by the model.

Validation
We first validated readDepth’s ability to detect regions of copy

number gain and loss using simulated data. We randomly

generated reads from chromosome one, drawing from a

distribution with copy number of two that conforms to our

negative-binomial model with a VMR of three. We then insert a

copy number gain by replacing a region of the specified size with

reads drawn from a distribution with a copy number of three. One

thousand simulations were run, and sensitivity was measured by

determining if both edges of the CNA call matched the seeded

CNA with a tolerance of one bin size. A false positive was defined

as a putative alteration call where both ends did not match the

seeded CNA. We measured specificity by taking one minus the

percentage of trials which had one or more false positive calls.

We show that readDepth detects CNAs with high sensitivity and

specificity, even at low levels of genomic coverage. With a single

lane of 76 bp Illumina paired-end sequencing that provides 0.5x

coverage, readDepth reliably detects alterations that exceed

200 kbp in size. (Figure 2a,b). As the genomic coverage, and thus

number of reads, increases, the algorithm can detect increasingly

smaller aberrations while maintaining very high specificity.

We then compared the performance of readDepth to cnv-seq,

which is another R package for detecting CNAs from sequencing

data [12]. Since cnv-seq requires a matched normal sample, we

followed the same random generation procedure as above to

generate a reference sample with no CNAs. When the tools’

performance is compared on the same generated data set,

readDepth shows considerably higher sensitivity and specificity,

even on data that is not overdispersed (Figure 2c–f). Examination

of the results shows that this is largely due to cnv-seq misclassifying

windows within a copy number alteration as normal. This results

in hypersegmentation and inaccurate boundary calls. We also note

that as the data deviates farther from a Poisson distribution, cnv-

seq suffers from lower sensitivity and specificity. In contrast,

readDepth adjusts for this overdispersion and maintains high

sensitivity and specificity by sacrificing a small amount of

resolution.

Application - MCF-7 genome and breakpoint refinement
To further test readDepth, we analyzed over 47 million

uniquely mapping reads from the MCF-7 breast cancer cell line

generated as 55 bp mate-pairs with the Illumina GAII sequencer.

This represents 0.85-fold coverage of the reference genome.

ReadDepth was applied to this data using an FDR rate of 0.01,

which resulted in bins with a size of 25.3 kbp. As shown in

Figure 3, the algorithm detects mostly the same gross regions of

ReadDepth: Detecting CNA from Sequencing in R
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copy number change as aCGH on the Affymetrix 100 k SNP

platform, albeit with better resolution and higher dynamic range.

Two notable exceptions are large aberrations on chromosomes 2

and 9, which we believe to be biological differences between

different sublines and/or passages of MCF-7. Manual examination

of the raw data from these regions agrees with this conclusion. As

expected, we find over 30% of the genome with altered copy

number, and find almost eight times as many amplifications as

deletions. The amplifications we find tend to be smaller, with a

median size of 582 kbp, vs 942 kbp for deletions.

We then integrated breakpoint information derived from the

mate-pair reads with information about read depth in order to

more accurately delineate the boundaries of copy number

alterations. Genomic breakpoints were detected from mate-pair

data using a custom pipeline and the locations of these breakpoints

were used as input to readDepth. After identifying segments of

gain and loss, the algorithm adjusted segment boundaries if an

unambiguous single breakpoint was located less than half of the

bin size away from the segment boundary. This step resulted in the

refinement of 99 breakpoints, effectively increasing the mean

resolution of those copy number boundaries to 3.396 kbp, which is

far lower than the 25.3 kbp resolution possible through the use of

bins.

Application - H1 genome using bisulfite sequencing
reads

The use of bisulfite reads presents some unique challenges, as

prior to sequencing, they are treated such that all non-methylated

cytosines are converted to uracils, which are then read out of the

sequencer as thymine bases [20]. We started with over 1.5 billion

such reads from the H1 embryonic stem cell line generated on the

Illumina GAII sequencer [21]. We then mapped these reads to the

reference genome using Pash 3.0 [22] and created a comprehen-

sive methylation map, where each cytosine base in the reference

genome is annotated with the number of times methylation is

observed at that position. Our package combines this methylation

map with bisulfite mapability tracks, allowing us to accurately

correct for GC-content bias.

With reads representing approximately 37-fold coverage of the

genome, the algorithm is able to use a window size of 500 bp,

resulting in a very high resolution picture of the CNAs in this cell

line. We detect 6,722 copy number variants, mostly small, with

Figure 1. Bin size determination and distribution modeling. a) Illumina reads from the Yoruban genome are not fit well by a Poisson model.
b) Modeling the reads using a negative binomial distribution with a variance/mean ratio of 3 results in a much better fit, with a root mean square
error three times smaller. c) The use of bin sizes that are too small results in an inability to cleanly separate peaks with copy number of one and two,
resulting in a large number of false-positive calls in the overlapping region. d) Increasing the bin size allows us to trade resolution for better
separation.
doi:10.1371/journal.pone.0016327.g001
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39% smaller than 10 kbp, and 80% smaller than 100 kbp. The

number of deletions is over ten-fold higher, with 91% losses and

9% gains, but they tend to be smaller, with a median size of

17.5 kbp, compared to 45 kbp for amplifications. Chromosome 12

is especially aberrant, with most of the chromosome amplified

(Figure S2). Since we have no array data to draw comparisons

Figure 2. Algorithmic performance assessed on simulated data. a) readDepth sensitively detects small copy number alterations even at very
low levels of sequence coverage. As additional reads increase the coverage, the algorithm is able to detect smaller alterations. b) Controlling the false
discovery rate keeps the number of false positives very low. c/d) the readDepth algorithm is applied to simulated data with 1x coverage. When the
read distribution is overdispersed, readDepth uses larger bins, effectively trading accuracy for resolution. e/f) When the cnv-seq algorithm is applied
to the same data set, it tends to call many false breakpoints, resulting in lowered sensitivity and specificity. This problem is exacerbated by
overdispersed data.
doi:10.1371/journal.pone.0016327.g002
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with, we used a high-resolution subset of the Database of Genomic

Variants (version 9) [23]. We find that 71% of these amplifications

and 49% of the losses overlap with known CNVs.

Parallel processing
Through the use of the multicore and foreach R packages,

readDepth splits the most CPU-intensive parts of the calculations

among multiple processors [24]. We assessed runtime on a

machine with 8 Intel Xeon CPUs running at 2.67 GHz. Using a

simulated data set with 5-fold coverage of the genome, cnv-seq

took 1651s to produce cnv calls, while readDepth was able to

produce calls in 231s; a greater than 7-fold improvement.

Methods

Bin size determination
Given n reads from a genome of size g, and a bin size b, the mean

number of reads per bin, l, can be calculated as: l= n*b/g. A Poisson

model assumes that both the mean and the variance of the

distribution are equal to l. Since this is not the case in Illumina

data, we model an overdispersed Poisson distribution by using a

negative binomial distribution. The mean of the negative binomial

distribution is also l, but the variance can be controlled independently

of the mean using a second parameter, r. By changing the value of r,

we can choose an appropriate variance/mean ratio (VMR).

We generate the distributions using the rnbinom function in R,

setting m =l, and the size parameter = l/(d-1), where d is the input

VMR. We then generate distributions using the expected number of

reads with copy number of one, two, and three, and choose a

threshold value for gains and losses that minimizes the number of

bins that are misclassified. The FDR rate can then be calculated as

the number of misclassified bins divided by the total number of bins.

We progressively test lower bin sizes until we reach the smallest size

possible under the constraints of the given false-discovery rate.

Mapability correction
We developed mapability tracks by aligning all genomic

sequences of a given length back to the human reference genome

(hg18) with BWA [25]. The positions of all uniquely mapping

reads were retained. To correct for mapability, the number of

reads in a given bin was multiplied by the inverse of the percent

mapability in that region. Regions with extremely low mapability

(,25%) were filtered out to prevent overcorrection.

For bisulfite-mapability tracks, the same process was followed

for read generation, then all cytosines were replaced with thymines

to mimic the effects of bisulfite treatment. These were aligned to

the reference genome using Pash 3.0, and read depth correction

was carried out as above.

GC-content correction
To correct for sequencing biases that arise due to preferential

sequencing of certain levels of GC content, we normalize the read

depth based on the GC content of each bin. These values

incorporate mapability information, such that we only consider the

GC content of mappable bases. To correct the data, we first

calculate the average read depth for bins with GC content in

intervals of 0.1%. We then use the LOESS method to fit a

regression line to this data. The correction value for each bin is

equal to the difference between the median read depth and the

average read depth of that bin. We then scale the values such that

the correction is neutral with respect to the total number of reads.

For bisulfite reads, we generate a methylation report for each

cytosine in the genome using a pipeline built around Pash 3.0 [22].

These values are used to adjust the GC-content of each bin to

reflect the status of both bases transformed by bisulfite treatment

and bases protected by methylation. LOESS correction is then

performed as described above.

Segmentation
Segmentation is performed using circular binary segmentation,

as implemented in the R package DNAcopy [19]. We use the

default alpha value of 0.01 and for low-coverage data (MCF-7), we

use a min.width value of 2. To reduce the number of false-positives

in high-coverage data (H1), we use a min.width value of 4. This

requirement of multiple consecutive bins significantly decreases

the false discovery rate.

Figure 3. Comparison of array CN calls to sequence-based calls in MCF-7. a) a log2 plot of copy number alterations found in the MCF-7
breast cancer cell line. Sequence based copy number calls made with the readDepth package (bottom) reveal the same gross morphology seen by an
assay done with a 100 k SNP array (top) b) an absolute copy number plot of MCF-7 chromosome 20, showing high level amplifications and fine-scale
copy number changes not detectible with array-based methods.
doi:10.1371/journal.pone.0016327.g003
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Array Processing
MCF-7 copy number data assayed with the Affymetrix 100 k

chip (50k_Xba240 and 50k_Hind240) was obtained from http://

pevsnerlab.kennedykrieger.org/text/Affy_100K_Sample_Tumor_

CN.txt. The data was segmented using circular binary segmenta-

tion with default values. Segments were called gains or losses if their

mean value exceeded 1.5 standard deviations from the mean probe

value.

Data Availability
MCF-7 sequence reads are available at http://www.genboree.

org/breastCellLineReads/ The 4 kb and 6 kb mate-pair reads

were used in this analysis. H1 bisulfite sequencing data is available

from public repositories as described in Lister, et al [20]. Copy

number results for both cell lines are attached as Dataset S1 and

Dataset S2.

Discussion

The readDepth package is under active development and we

anticipate adding a number of additional features in the future.

Functions that will allow better visualization of results are

currently being developed, as well as methods for detecting

overdispersion automatically, rather than requiring it as an input

parameter. We are also exploring methods for increasing the

resolution of breakpoint calls when deep-sequencing data is

available.

We expect that readDepth will be useful in a variety of different

scenarios. Projects that produce low-coverage paired end sequenc-

ing can benefit from its ability to integrate breakpoint information

for accurate boundary calls. Deep-sequencing projects will be able

to leverage the multiple cores present in modern computers to

detect CNAs quickly, even when analyzing billions of reads.

Additionally, readDepth’s first-of-its-kind ability to correct for GC-

biases specific to bisulfite sequencing mean that it is uniquely well-

suited to dealing with data coming from the burgeoning field of

epigenomics.

The readDepth package is under active development and we

anticipate adding a number of additional features in the future.

Functions that will allow better visualization of results are

currently being developed, as well as methods for detecting

overdispersion automatically, rather than requiring it as an input

parameter. We are also exploring methods for increasing the

resolution of breakpoint calls when deep-sequencing data is

available.

We expect that readDepth will be useful in a variety of different

scenarios. Projects that produce low-coverage paired end sequenc-

ing can benefit from its ability to integrate breakpoint information

for accurate boundary calls. Deep-sequencing projects will be able

to leverage the multiple cores present in modern computers to

detect CNAs quickly, even when analyzing billions of reads.

Additionally, readDepth’s first-of-its-kind ability to correct for GC-

biases specific to bisulfite sequencing mean that it is uniquely well-

suited to dealing with data coming from the burgeoning field of

epigenomics.

The readDepth package runs on Linux and MacOSX, is

released under the Apache 2.0 license, and is available at http://

code.google.com/p/readdepth.

Supporting Information

Figure S1 Loess normalization. The yoruban genome was

binned and mapability corrected as described in the main text.

Bins were then grouped by GC-content percentage in 0.01%

increments, and the mean number of reads was calculated. The

data shows considerable bias at extreme values of GC-content

(top). Loess correction removes most of this bias (bottom).

(TIF)

Figure S2 H1 cell line copy number calls. A log2 plot of

copy number alterations found in the H1 cell line. Though most

CNAs are small, we find largescale amplification of chromosome

12.

(TIF)

Dataset S1 MCF-7 copy number results. Segmented copy

number calls for the MCF-7 cell line.

(DAT)

Dataset S2 H1 copy number results. Segmented copy

number calls for the H1 cell line.

(DAT)
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