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Abstract

Heat shock transcription factor 1 (HSF1) plays an important role in the cellular response to proteotoxic stresses. Under
normal growth conditions HSF1 is repressed as an inactive monomer in part through post-translation modifications that
include protein acetylation, sumoylation and phosphorylation. Upon exposure to stress HSF1 homotrimerizes, accumulates
in nucleus, binds DNA, becomes hyper-phosphorylated and activates the expression of stress response genes. While HSF1
and the mechanisms that regulate its activity have been studied for over two decades, our understanding of HSF1
regulation remains incomplete. As previous studies have shown that HSF1 and the heat shock response promoter element
(HSE) are generally structurally conserved from yeast to metazoans, we have made use of the genetically tractable budding
yeast as a facile assay system to further understand the mechanisms that regulate human HSF1 through phosphorylation of
serine 303. We show that when human HSF1 is expressed in yeast its phosphorylation at S303 is promoted by the MAP-
kinase Slt2 independent of a priming event at S307 previously believed to be a prerequisite. Furthermore, we show that
phosphorylation at S303 in yeast and mammalian cells occurs independent of GSK3, the kinase primarily thought to be
responsible for S303 phosphorylation. Lastly, while previous studies have suggested that S303 phosphorylation represses
HSF1-dependent transactivation, we now show that S303 phosphorylation also represses HSF1 multimerization in both
yeast and mammalian cells. Taken together, these studies suggest that yeast cells will be a powerful experimental tool for
deciphering aspects of human HSF1 regulation by post-translational modifications.
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Introduction

All organisms are exposed to proteotoxic stresses that result in

the accumulation of misfolded proteins. In response to these

stresses cells have evolved adaptive responses to protect and

stabilize cellular proteins until more favorable conditions for cell

proliferation are encountered [1]. The heat shock transcription

factor, HSF, is a homotrimeric transcription factor that activates

gene expression in response to a variety of stresses including heat

and oxidative stress, as well as inflammation and infection [2].

Recent evidence has shown that the S. cerevisiae HSF directly

activates the expression of genes whose protein products are

involved in protein folding and degradation, ion transport, signal

transduction, energy generation, carbohydrate metabolism, vesic-

ular transport, cytoskeleton formation and other cellular functions

[3].

While mammalian cells express four distinct HSF proteins

encoded by separate genes, HSF1 is the primary factor responsible

for stress responsive gene transcription [2]. In the absence of stress,

mammalian HSF1 is repressed through mechanisms that are not

well understood. HSF1 is thought be maintained in an inactive

monomeric state through intramolecular interactions between a

hydrophobic coiled-coil domain in the carboxyl-terminus of the

protein and three amino-terminal coiled-coils required for

homotrimerization and transcriptional activation [4,5,6]. HSF1

is also thought to be bound and repressed by the protein

chaperones Hsp90 and Hsp70, though it is not clear how these

chaperones repress HSF1 activity [7,8,9,10]. Studies suggest that

during the initial phase of the stress response, the inactive HSF1

monomer dissociates from Hsp90, homotrimerizes, is transported

to the nucleus and binds to heat shock elements (HSE) found in the

promoters of HSF target genes [10,11]. The DNA-bound

homotrimer, remains relatively transcriptionally inert [12],

potentially due to the continued interaction with Hsp70 and the

HSF1-transactivation domain [9]. Stress-dependent hyperpho-

sphorylation of HSF1 by potentially multiple protein kinases has

been proposed to, in part, promote HSF1 dependent transactiva-

tion [13,14,15].

The activity of HSF1 is also thought to be negatively regulated

through a number of post-translational modifications including
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phosphorylation, sumoylation and acetylation [16,17,18,19]. Mass

spectrometry analyses have shown HSF1 to be phosphorylated on

at least 12 serine residues [13] and phosphorylation of S121, S303,

S307 and S363 have been correlated with a repression in HSF1

activity [18,20,21]. The most comprehensively studied of these

phosphorylation events are the phosphorylation of S303 and S307.

However, much of what is known about S303 and S307

phosphorylation stems from in vitro phosphorylation experiments

and in vivo studies using either lexA or Gal4-HSF1 fusion proteins

lacking the native HSF1 DNA binding domain. As such, many of

the earlier studies exploring S303 and S307-dependet regulation of

HSF1 activity have resulted in conflicting results. For example,

previous phosphorylation experiments suggested that S307 was

phosphorylated by ERK which, in turn, acted as an essential

priming step for GSK3-dependent phosphorylation of S303 [22].

However, subsequent in vitro studies suggested that S303 could also

be phosphorylated by a variety of mitogen activated protein

kinases (MAPK) including the stress responsive MAPK p38

[17,18]. In addition, subsequent in vivo data suggested S303

phosphorylation could occur independently of S307 phosphory-

lation [16].

While the specific mechanism by which S303 and S307

phosphorylation repress HSF1 activity remains unclear, evidence

has suggested that S303 and S307 phosphorylation represses the

transactivation potential of HSF1 [18,22,23]. S303 and S307 are

constitutively phosphorylated in the absence of stress and S303

phosphorylation levels increase after exposure to stress, suggesting

that this phosphorylation event might also contribute to HSF1

inactivation during the recovery phase [16,17]. Interestingly,

phosphorylation of S303, but not S307, promotes sumoylation of

K298 [16] which, like S303 phosphorylation, also increases in

response to stress exposure and represses HSF1-dependent

transactivation [24]. However, it remains unclear if the repressive

effects of S303 phosphorylation on HSF1 activity are exclusively

mediated through K298 sumoylation or occur through additional

mechanisms.

While HSF1 and the cognate HSEs are quite well conserved

from yeast to humans, our previous results demonstrated that

human HSF1 expressed in S. cerevisiae is unable to complement for

the loss of the essential yeast HSF protein [25]. Further analysis

showed that human HSF1 expressed in yeast was unable to form a

homotrimer and consequently unable to activate HSE-dependent

gene expression to support cell viability. Human HSF1 homo-

trimerized, became active and complemented for the loss of yeast

HSF when three derepressing mutations, collectively known as

LZ4m, were introduced into the repressive carboxyl-terminal

coiled-coil domain [6,25]. Further studies in yeast identified an

amino-terminal linker-domain as well as a loop in the DNA

binding domain as repressive elements that contributed to HSF1

repression in both yeast and mammalian cells [26,27]. We have

also used to the yeast assay system to screen for and indentify novel

pharmacological activators of human HSF1 [28]. Together, these

results suggest that human HSF1 expressed in yeast is maintained

in a constitutively repressed state through mechanisms similar to

those of mammalian cells and that the yeast system can serve as a

simplified assay system to decipher the complex mechanisms

regulating human HSF1 activity.

Here we report the use of the yeast assay system to further

understand the mechanisms that regulate human HSF1 through

phosphorylation of serine 303. Our results suggest that S303

phosphorylation blocks human HSF1 homotrimerization thereby

preventing human HSF1 activation and complementation of the

loss of yeast HSF. Furthermore, we demonstrate that S303

phosphorylation also blocks HSF1 homotrimerization in mam-

malian cells. We show that phosphorylation of HSF1 S303 in yeast

occurs via the action of the MAPK Slt2 and not via the action of

GSK3 and we extend these findings to show that S303

phosphorylation also occurs independent of GSK3 in mammalian

cells.

Results

Phosphorylation of S303 contributes to repression of
human HSF1 in yeast

When human HSF1 is expressed in yeast it is unable to

homotrimerize, promote gene expression and complement for the

loss of the essential yeast HSF protein [25]. Because our previous

work suggested that when HSF1 is expressed in yeast it exists in a

constitutively repressed monomeric state, we sought to use the

yeast assay system to better understand the complex mechanisms

regulating HSF1 activity in mammalian cells. An important

component of HSF1 repression occurs through the phosphoryla-

tion of serine 303 and serine 307 [17,18]. Because S303 and S307

are constitutively phosphorylated in mammalian cells and alanine

substitution of S303 or S307 promotes constitutive activation of

HSF1 in mammalian cells in reporter assays [17,18] we tested

whether S303 and/or S307 contribute to HSF1 repression in

yeast. Wild-type HSF1 or the individual S303A, S307A or S303/

307A double mutants were expressed in yeast strain PS145 which

lacks a chromosomal copy of the essential yeast HSF gene and

constitutively expresses yeast HSF episomally from a galactose

inducible and dextrose repressible promoter [29]. When PS145 is

grown in the presence of dextrose as the sole carbon source, yeast

HSF expression is extinguished and growth becomes solely

dependent on HSF1 which is episomally expressed [28]. While

wild-type human HSF1 was unable to complement for the loss of

yeast HSF, expression of the S303A, S307A or S303/307A HSF1

mutants allowed for human HSF1-dependent yeast growth

(Figure 1A, B). Interestingly, the S303/307A double HSF1 mutant

did not display enhanced activity over the S303A mutant

(Figure 1B) suggesting that phosphorylation of both S303 and

S307 modulate HSF1 repression through similar mechanisms.

To ascertain whether HSF1 is being phosphorylated in yeast,

we employed a commercially available antibody specific for

phospho-S303 (pS303). Because this antibody has not previously

been characterized in the literature, we tested its specificity in

human HeLa cells where S303 is known to be constitutively

phosphorylated [17]. As shown in Figure 1C, using this antibody

we detected that endogenous HSF1 was constitutively phosphor-

ylated in HeLa cells in the absence of stress. We also observed an

increase in S303 phosphorylation in response to a heat shock,

which correlated with previous reports [16]. Importantly, the

pS303-specific antibody did not detect HSF1 when HeLa extracts

were treated with lambda protein phosphatase prior to immuno-

blot analysis (Figure 1C), nor does it detect HSF1 when S303 is

mutated to alanine (Figure 1D). Together, these data suggest that

the antibody is specific for HSF1 that is phosphorylated on S303.

The detection of HSF1 using a polyclonal anti-HSF1 antibody

demonstrates that there are no significant differences in the steady

state levels of HSF1 either treated or untreated with lambda

phosphatase (Figure 1C).

Consistent with a contribution to HSF1 repression (Figure 1A,

B) S303 is robustly phosphorylated when HSF1 is expressed in

yeast (Figure 1D, E). Interestingly, phosphorylation of S303 was

also observed when the S307A mutant was expressed in yeast

though it was reduced by approximately 50% when compared to

wild-type HSF1 (Figure 1D, E). While this observation supports a

previous report indicating that S303 phosphorylation could occur

Phosphorylation of Human HSF1 in Yeast
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independently of S307 phosphorylation in mammalian cells [16],

these data also suggests that under certain circumstances S303

phosphorylation may be enhanced by S307 phosphorylation. In

addition, although a correlation between S303 and S307

phosphorylation and HSF1 protein stability has not been

previously reported, we repeatedly observed two to three-fold

higher steady state levels of HSF1 when the S303A, S307A and

S303/307A mutants were expressed in yeast (Figure 1D, F). While

an antibody specific for phospho-S307 is commercially available,

we have been unable to detect S307 phosphorylation of human

HSF1. As such we focused our investigation on S303-phosphor-

ylation dependent repression of human HSF1.

Human HSF1 S303 phosphorylation is known to promote

sumoylation of lysine 298, which also contributes to the repression

of HSF1 activity [16]. Therefore, to further investigate the idea

that human HSF1 is being actively repressed in yeast, we explored

the possibility that K298, like S303, contributes to HSF1

repression in yeast. However, unlike the S303A HSF1 mutant,

Figure 1. S303 phosphorylation represses HSF1 activity in yeast. (A) PS145 yeast strains expressing wild-type HSF1 (WT) or the S303A, S307A
or S303/307A mutants were plated on either galactose or dextrose supplemented medium. (B) PS145 expressing either wild-type HSF1 or the S303A
or S303/307A mutants were grown in dextrose containing medium for 4 d. Growth was monitored by measuring O.D.600. (C) HeLa cells were grown
at 37uC (C) or heat shocked for 2 h at 42uC (HS). Total protein extracts were treated with lambda protein phosphatase and analyzed for phospho-S303
(pS303) and total HSF1 levels by immunoblotting. (D) PS145 was transformed with a plasmid expressing wild-type HSF1 (WT) or mutant alleles of
HSF1 and grown on galactose containing medium. Total protein extracts were analyzed for pS303, HSF1 and Pgk1 by immunoblotting. (E) Levels of
HSF1 phosphorylated at S303 were quantified and are shown as a percent of total HSF1, from panel D. (F) Protein levels of HSF1 were normalized to
Pgk1, from panel D. (G) PS145 expressing either wild-type HSF1 or mutant HSF1 alleles were assayed for HSF1-dependent growth as in B.
doi:10.1371/journal.pone.0015976.g001
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the K298R mutant did not promote HSF1-dependent growth

(Figure 1E), suggesting that at least in yeast, K298 does not

significantly contribute to HSF1 repression. We also did not

observe a reduction in human HSF1-dependent yeast growth for

the S303A/K298R double mutant, indicating that K298 is also

not required for HSF1 activity in yeast (Figure 1E).

S303 represses trimer formation of HSF1 in yeast and
mammalian cells

Previous reports have suggested that phosphorylation of S303

represses the ability of HSF1 to transactivate gene expression

[18,22,23]. Here we show that the HSF1 S303A mutant

functionally complements for the lost of yeast HSF (Figure 1A,

B). Based on our previous work this indicates that S303

phosphorylation might also regulate the ability of human HSF1

to homotrimerize [25]. To test this hypothesis we carried out EGS

cross-linking experiments in conjunction with immunoblot analysis

to ascertain if S303 phosphorylation regulates the homotrimeriza-

tion of human HSF1 in yeast. When the S303A HSF1 mutant was

expressed in yeast we detected approximately 2-fold higher levels

of trimerized HSF1 at the intermediate EGS concentration than

when wild-type HSF1 was expressed in yeast (Figure 2A).

However, trimerization of the S303A HSF1 mutant was lower

than trimerization of the LZ4 HSF1 mutant, previously demon-

strated to be constitutively trimerized in yeast and mammalian

cells and able to complement for the loss of yeast HSF [6,25]. We

observed similar results for the S307A and S303/307A HSF1

mutants (data not shown) further supporting the notion that S303

and S307 phosphorylation repress HSF1 activity through similar

mechanisms. We next evaluated whether HSF1 S303 phosphor-

ylation could also function to repress homotrimer formation in

mammalian cells. To test this hypothesis we expressed wild-type

HSF1 or the S303A, S307A or S303/307A mutants in hsf12/2

mouse embryonic fibroblasts (MEF) [30] and assayed for HSF1

trimerization in the absence of thermal stress by EGS crosslinking

and immunoblotting. While wild type HSF1 could be detected as a

multimer in these extracts, we observed approximately 2-fold

higher levels of the HSF1 trimer for the HSF1 S303A mutant

(Figure 2B) as well as the S307A and S303/307A mutants (data

not shown).

S303 phosphorylation and coiled-coil interactions
synergize in HSF1 repression

In addition to post-translational modifications, HSF1 activity is

also thought to be repressed through intramolecular interactions

between carboxyl- and amino-terminal coiled-coil domains and

mutations in these domains render HSF1 constitutively trimerized,

nuclear localized and bound to DNA in mammalian cells [6].

Because our results suggest that S303 phosphorylation might also

regulate homotrimer formation, we tested the combined affects of

both the S303A as well as the LZ4m mutations on human HSF1

activity in yeast. A human HSF1 mutant containing both the

S303A and LZ4m mutations was created and its ability to promote

human HSF1-dependent yeast growth was compared to the

individual HSF1 mutants as well as wild-type HSF1 in quantitative

cell growth assays. The individual S303A and LZ4m HSF1

mutants promoted human HSF1-dependent yeast growth to a

similar extent, though neither the LZ4m nor the S303 mutant

were fully derepressed, as the S303A/LZ4m double mutant

displayed enhanced human HSF1-dependent yeast growth

(Figure 3A). While we currently do not know if the S303A/

LZ4m double HSF1 mutant has an increased propencity to

trimerize, previous studies have shown that the LZ4m mutant,

when expressed in yeast is not maximally trimerized and

trimerization can be further enhanced via the addition of

pharmacological HSF1 activators [28]. While we observed higher

steady state protein levels for both the S303A and LZ4m mutants

in comparison to wild-type HSF1 when expressed in yeast, no

further increases in protein levels were observed for the double

mutant (Figure 3B, C). These results suggest that while both HSF1

S303 phosphorylation and coiled-coil interactions regulate human

HSF1 multimerization in yeast, they do so via distinct mecha-

nisms. We also did not observe changes in HSF1 S303

phosphorylation when the LZ4m mutant was expressed in yeast,

consistent with the notion that HSF1 trimerization does not affect

HSF1 S303 phosphorylation.

Gsk3 regulates human HSF1 activity in yeast
independent of S303 phosphorylation

Previous reports using in vitro phosphorylation experiments have

suggested that HSF1 is phosphorylated at S303 by glycogen

synthase kinase 3 (GSK3) [20,22,31]. However, it remains unclear

Figure 2. S303 represses trimer formation of HSF1 in yeast and
mammalian cells. (A) PS145 was transformed with wild-type HSF1,
the LZ4m mutant or the S303A mutant and grown on galactose
containing medium. Total protein extracts were evaluated for HSF1
multimerization by EGS crosslinking, SDS-PAGE, and immunoblotting
using an HSF1 specific antibody. The positions of molecular weight
markers are indicated on the left, and circles indicating the expected
migration of HSF1 monomers and trimers are on the right. Levels of
HSF1 trimer as percent of total HSF1 are shown below. (B) hsf12/2 MEFs
were transfected with a plasmid expressing wild-type HSF1 or the
S303A mutant and analyzed for HSF1 multimerization by EGS cross-
linking as in A.
doi:10.1371/journal.pone.0015976.g002
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if GSK3 phosphorylates and represses HSF1 via S303 phosphor-

ylation in vivo. To test if GSK3 contributes to HSF1 repression, we

assayed human HSF1-dependent yeast growth in a strain also

lacking the yeast GSK3 homolog Rim11. Supporting the notion

that yeast GSK3 can repress human HSF1 activity in yeast we

observed human HSF1-dependent yeast growth as well as HSF1

multimerization in the rim11D strain (Figure 4A, B). However,

HSF1-dependent yeast growth in the rim11D strain was less robust

than growth of a wild-type strain expressing the S303A HSF1

mutant (Figure 4A). Furthermore, when we expressed the S303A

HSF1 mutant in the rim11D strain we observed HSF1-dependent

growth at a rate similar to the growth of the S303A mutant in

wild-type cells. This suggested the possibility that HSF1 might not

be fully derepressed in the rim11D strain. Consistent with this idea,

we did not detect a reduction in S303 phosphorylation in the

rim11D strain (Figure 4C). S. cerevisiae encodes four separate yet

partially functionally redundant GSK3 homologues [32], suggest-

ing the possibility that S303 remains phosphorylated in the rim11D
strain due to phosphorylation through other GSK3 proteins. To

test this hypothesis we assayed the phosphorylation state of HSF1

at S303 in a yeast strain lacking all four isoforms of yeast GSK3.

As shown in Figure 4D, no reduction in S303 phosphorylation was

observed in the 4xgsk3D strain suggesting that while yeast GSK3

does contribute to HSF1 repression, it does so independently of

S303 phosphorylation.

Results shown here for the S303A HSF1 mutant and previously

published for the LZ4m HSF1 mutant suggest that mechanisms

that regulate HSF1 in mammalian cells are at least partially

conserved with regulation of human HSF1 expressed in yeast cells.

Therefore, we carried out experiments to ascertain if GSK3 might

also repress HSF1 independently of S303 phosphorylation in

mammalian cells. To explore this possibility HeLa cells were

treated with the GSK3 inhibitor SB-216763 [33] and assayed for

HSF1 S303 phosphorylation as ascertained by immunoblotting

with the anti-pS303 antibody. While SB-216763 treatment

strongly inhibited GSK3 activity as shown by increased b-catenin

levels [34], no reduction in S303 phosphorylation was observed

(Figure 5A). However, similar to the results obtained from our

yeast experiments, SB-216763 did promote activation of HSF1

under normal growth conditions, as determined by immunoblot

analysis of Hsp70 expression (Figure 5A). This result is consistent

with a previous report showing increased Hsp70 expression in

response to lithium treatment, which also inhibits GSK3 function

[35]. siRNA mediated knock-down of the two GSK3 isoforms in

mammals, GSK3a and GSK3b, either singly or in combination,

further confirmed that, while b-catenin expression was elevated,

HSF1 S303 was not appreciably phosphorylated by GSK3 in

unstressed mammalian cells (Figure 5B). Together, data from

experiments in both yeast and mammalian cells support a model in

which GSK3 inhibits HSF1 activity through a mechanism that is

independent of S303 phosphorylation.

Slt2 represses human HSF1 activity via S303
phosphorylation in yeast

To begin to identify which protein kinase(s) in yeast phosphor-

ylate human HSF1 at S303 to promote HSF1 repression, we

assayed S303 phosphorylation in several previously generated

protein kinase deletion strains obtained from the yeast gene

Figure 3. Phosphorylation of S303 and coiled-coil domains synergize in the repression of HSF1 in yeast. (A) PS145 expressing either
wild-type HSF1 or mutant alleles of HSF1 were grown in dextrose supplemented medium for 4 d. Growth was monitored by measuring O.D.600. (B)
PS145 was transformed with a plasmid expressing wild-type HSF1 (WT) or mutant alleles of HSF1 and grown on galactose containing medium. Total
protein extracts were analyzed for pS303, total HSF1 and Pgk1 by immunoblotting. (C) Protein levels of HSF1 were normalized to Pgk1, from panel B.
(D) Levels of HSF1 phosphorylated at S303 were quantified and are shown as a percent of total HSF1, from panel B.
doi:10.1371/journal.pone.0015976.g003

Phosphorylation of Human HSF1 in Yeast

PLoS ONE | www.plosone.org 5 January 2011 | Volume 6 | Issue 1 | e15976



deletion collection [36]. One strain in which we detected severely

reduced levels of human HSF1 S303 phosphorylation was a strain

deleted for the SLT2 gene, encoding a stress-responsive MAPK

[37,38], consistent with S303 lying within a consensus site for

MAPK-dependent phosphorylation (Figure 6A) [39]. This suggests

that Slt2 either directly or indirectly promotes the phosphorylation

of human HSF1 expressed in yeast. This hypothesis was further

supported by the observation that an slt2D strain allowed wild type

human HSF1-dependent yeast growth at a rate similar to the

HSF1 S303A mutant, while no growth was observed in the SLT2

wild-type strain (Figure 6B). Homotrimerization of wild-type

human HSF1 was observed in the slt2D strain at levels similar to

the S303A and LZ4m HSF1 mutants, further supporting the

notion that the Slt2 MAPK represses human HSF1 multi-

merization in yeast (Figure 6C). In mammalian cells the most

closely related homolog of Slt2 is the MAPK ERK5 [40].

However, using siRNA-mediated knock-down of ERK5 we were

unable detect an effect of ERK5 on HSF1 S303 phosphorylation

in mammalian cells (data not shown). This may suggest that in

mammalian cells S303 can be phosphorylated by multiple

MAPKs. This hypothesis is supported by previous data showing

that ERK1/2 as well as the stress-responsive MAPK p38 could

phosphorylate HSF1 at S303 in vitro [18]. In addition, our data

showing reduced, but not eliminated phosphorylation of S303 in

the slt2D strain (Figure 6A) also support a model where S303 may

be phosphorylated by multiple MAPKs.

Expression of S303A and S307A mutants in hsf12/2 cells
results in constitutive activation of Hsp70 expression

Previous studies have assayed the function of S303 and S307

phosphorylation in HSF1 regulation via in vitro phosphorylation

experiments [22], in vivo using lexA/Gal4-HSF1 fusion proteins

lacking the native HSF1 DNA binding domain [17,18] or via

overexpression of a S303A HSF1 mutants in mammalian cells

expressing endogenous wild-type HSF1 [16]. We tested the

consequences of loss of S303 and S307 phosphorylation on

HSF1 activity in the context of the entire protein using hsf12/2

MEFs which lack endogenous HSF1. When we expressed S303A,

S307A or S303/307A HSF1 mutants in hsf12/2 MEFs we

observed a modest elevation of Hsp70 expression under normal

growth conditions (Figure 7A, B) consistent with the hypothesis

that S303 phosphorylation modulates both homotrimerization as

well as transactivation by HSF1. However, HSF1 was not fully

activated through the S303A and S307A mutations, as expression

of Hsp70 was further enhanced when the transfected cells were

exposed to low levels of the proteasome inhibitor MG132

Figure 4. GSK3 represses HSF1 activity in yeast independent of S303. (A) PS145 (WT) expressing wild-type HSF1 or the S303A HSF1 mutant
and LNY1 (rim11D) expressing wild-type HSF1 were grown in dextrose supplemented medium for 4 d. Growth was monitored by measuring O.D.600.
(B) PS145 (WT) and LNY1 (rim11D) expressing wild-type HSF1 were grown on galactose containing medium and were evaluated for HSF1
multimerization by EGS crosslinking, SDS-PAGE, and immunoblotting using an HSF1 specific antibody. The positions of molecular weight markers are
indicated on the left, and circles indicating the expected migration of HSF1 monomers and trimers are on the right. Levels of HSF1 trimer as percent
of total HSF1 are shown below. (C) PS145 (WT) and LNY1 (rim11D) were transformed with a plasmid expressing wild-type HSF1 and were grown on
galactose containing medium. Total protein extracts were analyzed for pS303, total HSF1 and Pgk1 by immunoblotting. (D) YPH499 (WT) and LNY3
(4xgsk3D) were transformed with a plasmid expressing wild-type HSF1 and were grown in dextrose containing medium. Total protein extracts were
analyzed for pS303, total HSF1 and Pgk1 by immunoblotting.
doi:10.1371/journal.pone.0015976.g004

Phosphorylation of Human HSF1 in Yeast
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(Figure 7A, B). This is consistent with our data generated in yeast

demonstrating that while the S303A mutation did activate human

HSF1-dependent yeast growth, this was further enhanced when

the S303A HSF1 mutant was combined with the LZ4m mutation

(Figure 3A). Interestingly, in hsf12/2 cells we observed a faster

electrophoretic mobility on SDS-PAGE gels for the HSF1 S303A

and S303/307A mutant proteins that was not observed for wild-

type HSF1 or the S307A mutant (Figure 7A), nor did we observe

this change in mobility in the yeast system (Figure 1D). While the

nature of this electrophoretic mobility shift is unknown, the HSF1

S303A and S303/S307A mutant alleles also exhibited lower

steady state levels when exposed to MG132, suggesting that these

proteins, despite having increased activity, might be less stable

(Figure 7A, C). Because S303 phosphorylation has been proposed

to promote HSF1 sumoylation in mammalian cells [16] it is

possible that lack of sumoylation results in the altered electropho-

retic mobility. Despite the fact that equal amounts of plasmid

DNA were transfected for each mutant, we observed elevated

steady state protein levels for the HSF1 S307A mutant (Figure 7A,

C). While we have not definitively demonstrated that the S307A

mutant protein has increased stability in comparison to wild-type

HSF1, this finding correlates with the increased protein levels we

observed for the HSF1 mutants expressed in yeast (Figure 1D, F)

and will require further investigation. Interestingly, when we

expressed the HSF1 S307A mutant in hsf12/2 cells we did not

observe a reduction in S303 phosphorylation (Figure 7A, D) as was

observed in yeast cells (Figure 1D, E) suggesting that priming

requirements for S303 phosphorylation may change in different

expression systems.

Discussion

Mammalian HSF1 activity is regulated via complex regulatory

mechanisms that include post-translation modifications as well as

inter- and intra-molecular protein-protein interactions [2]. While

our understanding of these regulatory mechanisms remains

incomplete, earlier work has suggested that many of these

mechanisms may be conserved in yeast [25,26,27,28]. This is

evident, in part, by repression of the human HSF1 protein when it

is expressed in S. cerevisiae via coiled-coil domain and HSF1 loop

interactions. In this report we show that evaluation of the

mechanisms that regulate HSF1 activity in yeast via post-

translational modifications can lead to important insights into

the mechanisms that regulate HSF1 in mammalian cells.

Previous experiments using HSF1 fusions with the constitutively

bound Gal4 or lexA DNA-binding domains demonstrated that

phosphorylation of S303 contributed to the repression of HSF1

transactivation [17,18]. In this report we show that alanine

substitution of S303, in the context of full length HSF1, also results

in increased levels of trimerized HSF1 both in un-stressed yeast

and in mammalian cells. This suggests that aside from repressing

transactivation, S303 phosphorylation can also repress earlier

points in the HSF1 activation pathway. Interestingly, we also show

that repression of HSF1 activity through S303 phosphorylation

may occur independent of K298 sumoylation in yeast, as arginine

substitution of K298 does not promote HSF1 activation in yeast. It

should be noted that not all of the mechanisms that regulate

human HSF1 in mammalian cells are conserved in yeast. While

human HSF1 is repressed in both yeast and mammalian cells

through an amino-terminal coiled-coil as well as a carboxyl-

terminal linker domain, the ability of wild type human HSF1 to

respond to proteotoxic compounds or thermal stress, for example,

appears to be strikingly absent in yeast [25,27,28]. Nevertheless,

the ability of S303 phosphorylation to promote repression of

human HSF1 in yeast independent of K298 sumoylation suggests

that our understanding of the mechanisms by which S303

phosphorylation represses HSF1 activity remains incomplete.

S303 and S307 are located in the regulatory domain of HSF1, a

proposed binding site for the protein chaperone Hsp90 [41]. As

such, it is tempting to speculate that phosphorylation of these

residues might affect binding to Hsp90.

An understanding of how phosphorylation regulates HSF1

activity and what protein kinases phosphorylate HSF1 remains

largely incomplete [20,22]. Early reports showed that in vitro,

HSF1 S307 phosphorylation acted as an essential priming event

for S303 phosphorylation [22]. However, a subsequent report

showed this priming event was not required in vivo and that HSF1

S303 phosphorylation occurred independent of S307 phosphor-

ylation in K562 cells [16]. The work presented here using the yeast

model system furthers our understanding of these regulatory

mechanisms and may begin to clarify the conflicting mechanisms

underlying S303 phosphorylation. Specifically, our data suggest

that while phosphorylation of S303 can occur independently of

S307 phosphorylation in both yeast and mammalian cells, S303

phosphorylation may be enhanced by S307 phosphorylation in the

non-native yeast system. While a mechanistic basis for this

difference in the requirements for S303 phosphorylation remains

unknown when HSF1 is expressed in yeast, structural differences

could change the priming requirements for S303 phosphorylation.

Such changes in HSF1 might occur due to different protein

interactions and as such it is not surprising that in in vitro

experiments, using only recombinant HSF1 protein, phosphory-

lation of S303 is fully dependent on S307 phosphorylation.

However, further studies will be required to fully test these

hypotheses.

Here, we demonstrate that in both yeast and mammalian cells

phosphorylation of HSF1 S303 appears to occur independently of

GSK3, previously thought to be the primary kinase responsible for

S303 phosphorylation [20,22]. Rather, as suggested by loss of

function analysis, we propose that the MAPK Slt2 is one candidate

that phosphorylates HSF1 at S303 in yeast though residual

phosphorylation of HSF1 at S303 in an slt2D strain suggests that

Figure 5. GSK3 represses HSF1 activity in HeLa cells indepen-
dent of S303 phosphorylation. (A) HeLa cells were treated with
DMSO solvent or the GSK3 inhibitor SB-216763 (25 mM) for 15 h. Total
protein was analyzed for pS303, HSF1, and b-catenin by immunoblot-
ting. GAPDH serves as a loading control. (B) HeLa cells were treated
with siRNA specific for GSK3a and GSK3b either individually or together
or a scrambled siRNA for 72 h. Total protein was analyzed for pS303,
total HSF1, b-catenin, GSK3a/b and GAPDH by immunoblotting.
doi:10.1371/journal.pone.0015976.g005
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other MAPKs may also contribute to S303 phosphorylation.

Differences in HSF1 structure between the in vivo and in vitro

systems may also explain why different kinases can target S303 for

phosphorylation under different conditions. We speculate that

under some cellular conditions, for example physiological stress or

different cell types, HSF1 structure may be altered, thereby

shifting the S303-kinase specificity from a MAPK to GSK3. This

might, in part, contribute to the complexity in identifying all of the

mammalian kinases that phosphorylate S303. While GSK3 does

not appear to phosphorylate HSF1 at S303 in vivo, data presented

here nevertheless support a role for GSK3 as a repressor of HSF1

activity. It should be noted that several other serine residues in the

HSF1 coding sequence, including S307, are located within

putative GSK3 consensus sites [39].

The importance in understanding HSF1 regulation is under-

scored by recent findings showing that pharmacological activation

of HSF1 can increase protein chaperone expression and

ameliorate cytotoxicity in models of protein folding disease

[28,42,43,44,45]. As such, it is important to further our

understanding of the mechanisms that repress HSF1 activity as

potential points of therapeutic intervention in disease. For

example, our data has shown that the loss of S303-dependent

HSF1 repression can lead to the accumulation of protein

chaperones and as such could be efficacious in the treatment of

protein folding diseases. In support of this possibility Rimoldi et al

showed that over-expression of the HSF1 S303G mutant in HeLa

cells reduced aggregation and inclusion formation of an aggrega-

tion prone Ataxin1-31Q mutant protein [46] In addition,

Fujimoto et al showed that overexpression of a constitutively

active HSF1 mutant lacking the regulatory domain, which

includes S303 and S307, suppressed the aggregation and

cytotoxicity of a mutant Huntingtin protein in both cell culture

and mice [47]. Furthermore, Carmichael et al suggested that

GSK3-inhibitors might prove useful in the treatment of polyQ-

expansion diseases [48].

Materials and Methods

Yeast Strains, Plasmids
S. cerevisiae strains used in this study are listed in Table 1. Yeast

expression plasmids pRS424-GPD-HSF1 and pRS424-GPD-

HSF1LZ4m were described previously [25]. Point mutations were

introduced into the HSF1 coding sequence using the Quick-

Change Site-directed mutagenesis kit (Stratagene) and confirmed

by DNA sequencing. YEp351-Slt2-FLAG was kindly provided by

Dr. David E. Levin [49]. Mammalian expression plasmids were

Figure 6. S303 phosphorylation of HSF1 in yeast is modulated by Slt2. (A) PS145 and LNY2 (slt2D) were transformed with a plasmid
expressing wild-type HSF1 and were grown on galactose containing medium. Total protein extracts were analyzed for pS303, total HSF1 and Pgk1 by
immunoblotting. (B) PS145 (WT) expressing wild-type HSF1 or the S303A mutant or LNY2 (slt2D) expressing wild-type HSF1 were grown in dextrose
supplemented medium for 4 d. Growth was monitored by measuring O.D.600. (C) PS145 (WT) expressing wild-type HSF1, the LZ4m mutant or the
S303A mutant and LNY2 (slt2D) expressing HSF1 were evaluated for HSF1 multimerization by EGS cross-linking, SDS-PAGE, and immunoblotting. The
positions of molecular weight markers are indicated on the left and circles indicating the expected migration of HSF1 monomers and trimers are on
the right. Levels of HSF1 trimer as percent of total HSF1 are shown below.
doi:10.1371/journal.pone.0015976.g006
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generated by subcloning the HSF1 open reading frame from yeast

vectors into the mammalian vector pcDNA3.1.

Cell culture maintenance, transfection and siRNA
Mammalian cell lines used in the study were hsf12/2 MEF cells

[30] and HeLa cells (ATCC, CCL-2). The MEF cells were

maintained in DMEM supplemented with 10% fetal bovine serum

(FBS), 0.1 mM nonessential amino acids, 100 U/ml penicillin/

streptomycin and 55 mM 2-mercaptoethanol. HeLa cells were

maintained in DMEM supplemented with 10% FBS and 100 U/

ml penicillin/streptomycin. MEF cells were transfected with HSF1

expressing plasmids using a Nucleofector (Lonza) and Nucleofec-

tor solution MEF2. siRNA was purchased from Dharmacon and

2 nmoles of each siRNA were transfected into HeLa cells using

Dharmafect 1. Knock-down of proteins was assayed 72 h after

siRNA transfection by immunoblot analysis.

Complementation assays
Growth curve experiments were carried out in 96-well plates as

described previously [28]. For spot assays yeast cells were grown

Figure 7. S303 and S307 repress HSF1 activity in hsf12/2 MEFs. (A) hsf12/2 MEFs were transfected with an empty vector or plasmids
expressing wild-type HSF1 or the S303A, S307A or the S303/307A mutants. The transfected cells were treated with DMSO solvent or MG132 (10 mM)
for 5 h. Total protein extracts were analyzed for Hsp70, pS303 and HSF1 by immunoblotting. GAPDH serves as a loading control. (B) Protein levels of
Hsp70 were normalized to GAPDH, from panel A. (C) Protein levels of HSF1 were normalized to GAPDH, from panel A. (D) Levels of HSF1
phosphorylated at S303 were quantified and are shown as a percent of total HSF1, from panel A.
doi:10.1371/journal.pone.0015976.g007

Table 1. Yeast strains used in this study.

Strain Genotype

PS145 MATa ade2-1 trp1-1 can1-100 leu2-3, 112 his3-11,15 ura3-1 hsf1D::LEU2 Ycp50gal-yHSF

YPH499 MATa ura3-52 lys2-801 ade2-101 trp1-D63 his3-D200 leu2-D1

BY4741 MATa his3D1 leu2D0 met15D0 ura3D0

LNY1 MATa ade2-1 trp1-1 can1-100 leu2-3, 112 his3-11,15 ura3-1 hsf1D::LEU2 Ycp50gal-yHSF rim11D::HIS3

LNY2 MATa ade2-1 trp1-1 can1-100 leu2-3, 112 his3-11,15 ura3-1 hsf1D::LEU2 Ycp50gal-yHSF slt2D::HIS3

LNY3 MATa ura3-52 lys2-801 ade2-101 trp1-D63 his3-D200 leu2-D1 rim11D::TRP1 mck1D::HIS3 mrk1D::URA3 ygk3D::kanMX

doi:10.1371/journal.pone.0015976.t001
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overnight in galactose-containing medium to allow for expression

of GAL1-yHSF and reseeded the following day at O.D.600 = 0.2

and spotted on either galactose or dextrose supplemented growth

media.

Immunoblot and Crosslinking Analysis
Protein extracts were generated from yeast cultures using glass

bead lysis in cell lysis buffer (25 mM Tris, 150 mM NaCl, 1%

Triton X-100, 0.1% SDS, 1 mM EDTA) supplemented with

protease inhibitors (Roche) and Halt phosphate inhibitor cocktail

(Thermo Scientific Pierce). Proteins extracts were generated from

mammalian cell culture using cell lysis buffer supplemented with

protease and phosphatase inhibitors. Protein concentrations were

quantified using the BCA assay and 80–100 mg of total protein was

resolved by SDS-PAGE and transferred to a nitrocellulose

membrane. HSF1 oligomerization was assessed using the amine-

specific cross-linker ethylene glycol bis-succinimidyl succinate

(EGS) (Pierce). Crosslinking analysis were carried out as described

previously [28]. Antibodies used in this study were anti-phospho-

S303(pS303) (ab47369, Abcam), anti-HSF1 [28], anti-Pgk1, anti-

FLAG (M2, Sigma), anti-Hsp70 (C92, Stressmarq), anti-b-catenin

(6B3, Cell Signaling), anti-GAPDH (6C5, Ambion) and anti-

GSK3a/b (D75D3, Cell Signaling). Quantification of immunoblot

data was done using Photoshop.
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