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Abstract

Background: The aged brain exhibits a loss in gray matter and a decrease in spines and synaptic densities that may
represent a sequela for neurodegenerative diseases such as Alzheimer’s. Membrane/lipid rafts (MLR), discrete regions of the
plasmalemma enriched in cholesterol, glycosphingolipids, and sphingomyelin, are essential for the development and
stabilization of synapses. Caveolin-1 (Cav-1), a cholesterol binding protein organizes synaptic signaling components within
MLR. It is unknown whether loss of synapses is dependent on an age-related loss of Cav-1 expression and whether this has
implications for neurodegenerative diseases such as Alzheimer’s disease.

Methodology/Principal Findings: We analyzed brains from young (Yg, 3-6 months), middle age (Md, 12 months), aged (Ag,
.18 months), and young Cav-1 KO mice and show that localization of PSD-95, NR2A, NR2B, TrkBR, AMPAR, and Cav-1 to
MLR is decreased in aged hippocampi. Young Cav-1 KO mice showed signs of premature neuronal aging and degeneration.
Hippocampi synaptosomes from Cav-1 KO mice showed reduced PSD-95, NR2A, NR2B, and Cav-1, an inability to be
protected against cerebral ischemia-reperfusion injury compared to young WT mice, increased Ab, P-Tau, and astrogliosis,
decreased cerebrovascular volume compared to young WT mice. As with aged hippocampi, Cav-1 KO brains showed
significantly reduced synapses. Neuron-targeted re-expression of Cav-1 in Cav-1 KO neurons in vitro decreased Ab
expression.

Conclusions: Therefore, Cav-1 represents a novel control point for healthy neuronal aging and loss of Cav-1 represents a
non-mutational model for Alzheimer’s disease.
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Introduction

Cognitive decline is emerging as one of the greatest health

problems in the elderly population [1,2]. Age alone increases the

risk of stroke, Alzheimer’s disease (AD), and other forms of

dementia [2]. The risk of AD increases 14-fold between the ages of

65–85, and affects almost 47% over the age of 85 [3].

Multiple signaling pathways regulate neuronal survival and

growth to facilitate the formation of synapses and this signaling is

altered with age [4,5,6,7]. Synapses are essential for learning,

memory and the development of neurons in the CNS [8].

Receptors and associated proteins aggregate to mold and shape

post-synaptic densities in order to permit high fidelity signal

transduction leading to rapid regulation of neuronal function

[9,10,11]. Understanding the basic pathophysiological mecha-

nisms of cognitive decline and how the subcellular organization of

signaling molecules is altered with cognitive decline could

potentially yield novel therapeutic targets for neuronal aging and

neurodegeneration.

Cholesterol is a major lipid component of synapses and a

limiting factor in synapse development, synaptic activity, and

neurotransmitter release [12]. Age-related impairments in the

biosynthesis, transport, or uptake of cholesterol by neurons in the

CNS may adversely affect development, plasticity, and synaptic

circuitry associated with neurodegenerative diseases [13,14,15,

16,17]. Membrane lipid rafts (MLR), discrete regions of the

plasma membrane enriched in cholesterol, glycosphingolipids

and sphingomyelin, are essential for synapse development,

stabilization, and maintenance [12,18]. Moreover, caveolin-1

(Cav-1), a cholesterol binding and resident protein of MLR

[19,20,21], organizes and targets synaptic components of the

neurotransmitter and neurotrophic receptor signaling pathways
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to MLR [e.g., NMDAR, AMPAR, TrkR, Src Family Kina-

ses (SFK)] [22,23,24,25,26,27]. Additionally, neurotransmitter

and neurotrophic receptors are found within MLR in growth

cones, a finding that has major implications for neuronal plasticity

[11,28].

Early-onset AD, which afflicts individuals prior to 60–65 years

of age, is known to be caused by mutations in three genes: amyloid

precursor protein (APP), presenilin-1, and presenilin-2 [29]. MLR

and cholesterol play a protective role against APP processing and

amyloid-b (Ab) toxicity [13,14,16,30,31,32,33]. Cav-1 KO mice

develop CNS pathology similar to AD, such as altered

NMDA receptor signaling, motor and behavioral abnormalities,

increased ischemic cerebral injury, impaired spatial memory,

and cholinergic function [27,34,35,36]. Whether MLR, Cav-1

expression, and the organization of pro-survival and pro-growth

signaling mechanisms are altered in neurodegenerative states (age-

related dementia and AD) has yet to be investigated. The present

study tested whether 1) Cav-1 organizes synaptic signaling

components in neuronal MLR and synaptosomes, 2) the

localization of synaptic signaling components to neuronal MLR

and synaptosomes is reduced in brains from aged wild-type and

young Cav-1 KO mice, and 3) brains from Cav-1 KO mice

develop a neuropathological phenotype similar to Alzheimer’s

disease.

Results

PSD-95, NR2A, NR2B, and Cav-1 protein expression is
decreased in middle aged and aged hippocampus

Hippocampi were isolated from brains of C57BL/6J mice (wild-

type, WT) at 3–6 months (young), 12 months (middle aged), and

.18 months (aged). Immunoblots of hippocampal homogenates

showed a significant reduction in PSD-95 (n = 6, p = 0.0001 vs

Md, p = 0.01 vs Ag), NR2A (n = 6, p = 0.02 vs Md, p = 0.02 vs Ag),

NR2B (n = 6, p = 0.02 vs Md, p = 0.04 vs Ag), TrkB (n = 6,

p = 0.009 vs Md, p = 0.03 vs Ag), and Cav-1 (n = 6, p = 0.008 vs

Md, p = 0.04 vs Ag) in hippocampi from middle aged and aged

mice when compared to young mice (Figure 1). These data

demonstrate an age-dependent reduction in synaptic signaling

components and Cav-1 in the hippocampus.

Age-related decreases in synaptic signaling components
from MLR

MLR play a role in stabilizing synapses in the mammalian brain

[12,18], therefore we performed sucrose density fractionation of

whole brain homogenates from young, middle aged and aged WT

mice to purify MLR. Immunoblots showed buoyant fractions from

young brains contained the majority of PSD-95 (n = 5, p = 0.03 vs

Ag), NR2A (n = 5, p = 0.04 vs Md, 0 = 0.0005 vs Ag), NR2B

Figure 1. Hippocampal homogenates show an aged dependent reduction in NR2A, NR2B, PSD-95, and Cav-1. Hippocampi were
isolated from the brains of C57BL/6J mice at 3–6 months (young, Yg), 12 months (middle aged, Md), and 24 months (aged, Ag). Immunoblot
and densitometric analysis demonstrated a significant reduction in PSD-95, NR2A, NR2B, TrkBR, and Cav-1 in the Md and Ag hippocampus compared
to Yg.
doi:10.1371/journal.pone.0015697.g001
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(n = 5, p = 0.01 vs Ag), AMPAR (n = 5, p = 0.04 vs Md, 0 = 0.02 vs

Ag), TrkB (n = 5, p = 0.005 vs Ag, 0 = 0.003 Md vs Ag), and Cav-1

(n = 5, p = 0.004 vs Ag, 0 = 0.004 Md vs Ag) (Figure 2A,B). In

contrast, buoyant fractions from the middle aged and aged brains

showed a significant reduction in synaptic signaling components

compared to Yg, with the majority of the proteins detected in

heavy fractions, 11 and 12 only. Cav-1 (C) and PSD-95 (P) co-

immunoprecipitated with NR2A, NR2B, AMPAR, and TrkB in

the buoyant fractions of Yg mice, with decreased detection in Md

and Ag (Figure 2C). These data demonstrate an age-dependent

decrease in synaptic signaling components including Cav-1 from

MLR and PSD-95 immunoprecipitation of MLR.

Previous work has shown that MLR facilitate neuronal synapse

formation [12,18]. We sought to confirm whether the age-related

decrease in synaptic signaling components in MLR also occurred

in synaptosomes purified from hippocampi of Yg, Md, and Ag WT

mice. Immunoblots and PSD-95 immunoprecipitates of synapto-

somes from Md and Ag mice showed a decrease in PSD-95,

NR2A, NR2B, AMPAR, and Cav-1 compared to Yg (Figure 2D).

Assessment of membrane fluidity of synaptosomes isolated from

whole brain of Yg and Ag mice using electron paramagnetic

resonance showed that membranes of Ag mice had significantly

lower membrane order parameter (greater fluidity) than mem-

branes from Yg (n = 5, p = 0.001) (Figure 2E). These findings

suggest that age-related decrease in MLR and Cav-1 expression

are associated with increased membrane fluidity (i.e., increased

liquid-disordered phase) [37].

Young Cav-1 KO mice demonstrate accelerated aging
and neurodegeneration

Loss of synaptic proteins and neuronal preconditio-

ning. Cav-1 expression is decreased in hippocampi and

buoyant fractions (i.e., MLR) from Ag mice (Figure 1 and 2), we

therefore assessed whether Yg Cav-1 KO mice display reduced

synaptic protein expression. Hippocampal synaptosomes from Yg

Cav-1 KO mice showed a similar pattern to Ag WT mice, reduced

protein expression of PSD-95, NR2A, NR2B, and AMPAR

(Figure 3A). Similar to aged WT mice, PSD-95

immunoprecipitation of hippocampal synaptosomes from Cav-1

KO mice showed minimal detection of PSD-95, NR2A, NR2B,

and AMPAR.

We next sought to determine whether neuroprotection against

ischemic injury is absent in Yg Cav-1 KO mice. To achieve this

we performed an ischemic preconditioning protocol. Ischemic

preconditioning (IPC), a phenomenon wherein sublethal ischemia

protects the brain from a subsequent lethal ischemic event, is

absent in brains from aged animals [38,39] and in neurons in vitro

that have reduced or no Cav-1 expression [27]. We show here for

the first time that Cav-1 KO mice show a similar reduction in

neuroprotective signaling components to that exhibited by brains

from aged WT mice. IPC significantly protected CA1 neurons

against lethal ischemia in WT mice (n = 7, p = 0.0072 vs LI)

(Figure 3B-iv, C). There was no significant protection in CA1

neurons from Cav-1 KO mice subjected to IPC prior to LI

(Figure 3B-viii, C), demonstrating an inability to induce IPC in

these mice. In terms of expression and function of synaptic

signaling components, young Cav-1 KO mice resemble aged WT

mice.

Early on-set of AD-like phenotype
Previous work has shown that Cav-1 and MLR can regulate

amyloidogenic processing of APP [30]. Therefore, we assessed

whether brains from Cav-1 KO mice exhibit pathological signs

indicative AD. Amyloid-b (Ab) (n = 4, p = 0.005) and P-Tau[T181]

(n = 4, p = 0.02) were significantly elevated in hippocampal

homogenates from Yg Cav-1 KO mice (Figure 4A). Immunoflu-

orescence microscopy demonstrated that Yg Cav-1 KO mice had

increased Ab staining in Nissl positive neurons in the CA3 (n = 3,

p = 0.006) and CA1 (n = 3, p = 0.04) region of the hippocampus

compared to WT mice (Figure 4B). Hippocampi from Cav-1 KO

mice showed a 20–25% reduction in cerebrovascular volume

(n = 4, p = 0.001) (GSA, blood vessel marker - Figure 4C).

Toludine blue staining of the hippocampus showed a large

reduction in neurons within the dentate gyrus and CA1 regions of

Yg Cav-1 KO mice (Figure 5A-i, A-ii) compared to Yg (Figure 5C-

i, C-ii) and Ag (Figure 5B-i, B-ii) WT mice. In addition, there

appeared to be more glia and glial scar formation within the

dentate gyrus of Cav-1 KO mice as indicated by the darker gray

cell bodies intermixed with the neurons (Figure 5A-i, A-ii). Young

Cav-1 KO show increased astrogliosis (n = 4, p = 0.0006) (GFAP,

astrocyte marker – Figure 5D). Flouro-JadeHB staining demonstrat-

ed little neuronal degeneration and well-organized astrocytes in

the CA1 from Yg WT mice when compared with Yg Cav-1 KO

mice, which showed disorganized astrocytes and areas of potential

plaque development. Due to their shorter life spine [40], obtaining

Ag Cav-1 KO mice is difficult. We here show that the CA1 region

from 12 month Cav-1 KO mice had large bright, entangled green

fluorescence with red fluorescent (Nissl) neurons and severely less

organized astrocytes, demonstrating increased neuronal degener-

ation (Figure 5E).

There is a reduction in synaptic proteins from hippocampal

synaptosomal membranes, we therefore assessed whether Cav-1

KO mice exhibit changes in total hippocampal synapses. Routine

electron microscopy (EM) revealed a significant reduction in

hippocampal synapses (i.e., post synaptic densities) in both Cav-1

KO (n = 6, p = 0.002) (Figure 6C) and Ag (n = 6, p = 0.02)

(Figure 6B) mice compared to Yg (Figure 6A). In addition, Cav-

1 KO mice displayed unorganized cytoskeletal assemblage (arrow
heads) within dendrites (d, asterisks) (Figure 6F) and elevated

astocyte presence (arrows) compared to brains from Ag

(Figure 6E) and Yg WT mice (Figure 6D), the latter displaying

normal cytoskeletal organization (arrow heads) within dendrites

(d). These data indicate that Cav-1 KO mice develop pathological

changes at 3 months of age consistent with aging and AD mouse

models.

Re-expression of Cav-1 in Cav-1 KO neurons decreases Ab
Cav-1 KO mice demonstrate pathology similar to AD such as

elevated Ab production in the hippocampus. We tested whether

neuron-targeted re-expression of Cav-1 in primary Cav-1 KO

neurons would decrease Ab expression. We generated a viral

vector that contains a neuron-specific synapsin promoter upstream

of Cav-1 cDNA (SynCav1) (Figure 7A). Increasing doses of SynCav1

for 72 hr proportionally increased Cav-1 expression and reduced

Ab (Figure 7B). Six separate neuronal cultures from Cav-1 KO

mouse brains were transfected with SynGFP (control vector) or

SynCav1, and SynCav1 significantly reduced Ab expression (n = 6,

p = 0.002) after 72 hr (Figure 7C).

Discussion

The present study is the first to demonstrate that the cholesterol

binding and MLR resident protein, Cav-1, complexes with

synaptic proteins in the CNS, and that this organization is

disrupted with age. Furthermore, this study is the first to

demonstrate that loss of Cav-1 in a transgenic mouse model

produces neuropathology similar to that exhibited with AD, i.e.,

Ab production, elevated astrogliosis, reduced cerebrovasculature

Decreased Caveolin-1 and Neurodegeneration
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and neuronal loss in the hippocampus. Our data suggest that not

only are MLR and Cav-1 essential for maintaining and stabilizing

proper synaptic signaling [27] and neuroprotection against

cerebral ischemia, but they also may serve to slow the

amyloidogenic process of APP seen in AD brains. Lastly, Cav-1

KO mice may serve as the first non-mutational model of AD.

It is essential to understand the basic neural mechanisms of

synapse formation and stabilization in order to identify potential

therapeutic targets for facilitating neuronal regeneration and

recovery of neuronal networks in the aged and injured brain.

Traditionally synapses and MLR are considered separate

subcellular structures, yet they both contain identical physical

characteristics that are essential such as cholesterol, glycosphin-

golipids, sphingomyelin, and other saturated fatty acid containing

lipids (GM1 gangliosides, palmitic acid) as well as signaling

components [22,23,24,25,26,27]. Growing evidence supports the

role for free cholesterol and MLR in neuronal synaptic formation,

signaling and protection [12,18,27,41,42,43]. Because free cho-

lesterol directly affects Cav-1 expression, factors that alter

intracellular cholesterol also change Cav-1 expression [44,45,46].

Specifically, brain derived neurotrophic factor (BDNF), a

neurotrophin essential to synaptic function and development

[47] which facilitates of long-term potentiation[48,49], elicits

cholesterol biosynthesis and increased MLR and Cav expression in

cortical and hippocampal neurons.[50] Furthermore, MLR are

critical for growth cone expansion, neurite outgrowth, and axonal

branching and guidance [11,51,52]. Therapeutic approaches to

promote axonal regeneration and synapse formation after spinal

chord injury use a MLR marker, cholera toxin B, as a direct

indicator of axonal regeneration and de novo synapse formation

[53,54]. Moreover, there exists increasing evidence that disruption

or alterations of neuronal MLR and intracellular cholesterol can

be neurotoxic and even contribute to enhanced neuronal

vulnerability to Ab [13,14,33], demonstrating the importance of

these distinct microdomains for proper pro-survival neuronal

signaling [27,41,55,56,57]. When Cav-1 was over-expressed in b-

secretase expressing cells, amyloid precursor protein and b-

secretase localization to MLR resulted in decreased Ab produc-

tion, suggesting a protective role by Cav-1 and MLR against Ab
toxicity [30,31,32,58]. Interestingly the fatty acid content in MLR

(a.k.a. detergent-resistant membranes, or DRMs) isolated from

synaptic endings is altered in aged animals [59]. This result is

consistent with our findings that membrane fluidity in synapto-

somal membranes is increased in aged brains. Age-related

physiochemical changes to distinct biological membranes such as

MLR could be responsible for changes in Cav-1 expression and

loss of synaptosomal pro-survival signaling components with age.

Our results demonstrate that loss of Cav-1 results in accelerated

aging. Cav-1 KO mice have a shortened life span [40]. Two

pathophysiologies altered with aging are vulnerability to ischemic

stress and progression of AD. IPC is a phenomenon whereby brief

ischemia, which does not injure neurons, renders the brain less

vulnerable to subsequent ischemic injury [27,60,61,62,63,64]. IPC

activates endogenous signaling pathways that are neuroprotective,

and this neuroprotection is lost in the aged brain [38,39]. The

underlying mechanism for the lack of ischemic tolerance in the

aged brain is not clear. Signaling pathways in neurons are severely

compromised with age. Specifically, post-synaptic molecules such

as glutamate receptors, neurotrophin receptors and pro-survival

signaling cascades (i.e., kinase activation and cAMP production)

decrease significantly with age [65,66,67,68,69]. It is therefore

possible that the organization, and thus efficacy of signaling

pathways that produce tolerance is severely limited in the aged

brain. We show in young Cav-1 KO mice that preconditioning is

absent, suggesting a link between the loss of MLR and disrupted

organization of pro-survival signaling.

In addition to loss of IPC, Cav-1 KO mice also exhibit

characteristics consistent with AD. Cerebrovascular changes and

increased astrogliosis [70,71,72,73,74] could also be a contributing

factor to the absence of ischemic tolerance [75] as well as the AD

phenotype exhibited by young Cav-1 KO mice. Upregulation of

endogenous protective signaling in aged neurons through neuron-

targeted Cav-1 expression might reduce the vulnerability of the

aged brain even in the presence of reduced cerebrovascular

volume. Neuron-targeted Cav-1 re-expression/over-expression

offers the novel possibility of re-establishing the fidelity of

neuroprotective signaling that is lost with advanced age or in

other forms of neurodegeneration (i.e., dementia, Alzheimer’s

disease, depression, Parkinson’s disease).

In summary, these findings demonstrate an important role for

Cav-1 and MLR in organizing synaptic pro-survival signaling

components that are essential for neuroprotection against ischemic

injury, neuronal regeneration, and maintaining synapse stabiliza-

tion and formation. Cav-1 may be a control point for neurological

aging. Further understanding of how MLR and Cav-1 serve as a

nexus for pro-survival and pro-growth signaling components may

not only provide potential therapeutic targets for the preservation

of neuronal function, but may also yield tools that could augment

the brain’s capacity to reorganize its neuronal networks following

injury or during late stages of neurodegenerative diseases such as

AD and other forms of dementia.

Materials and Methods

All studies performed on animals were approved by Veteran

Affairs San Diego Institutional Animal Care and Use Committee

(Protocol#: 08-035 and ID#:1141788) and conform to relevant

National Institutes of Health guidelines.

Figure 2. PSD-95, NR2A, NR2B, AMPAR, TrkBR, and Cav-1 are abundantly detected in buoyant fractions (BF) from young mouse
brains homogenates, yet are less abundant BFs from middle aged and aged brains. Sucrose density fractionated was performed on brains
from three different age groups of C57BL/6J mice: young (Yg, 3–6 months), middle aged (Md, 12 months), and aged (Ag, .18 months). Immunoblot
analysis detected the majority of PSD-95 (post-synaptic density marker), NR2A, NR2B, AMPAR, TrkBR, and Cav-1 in buoyant fractions 4 and 5 (BFs)
isolated from Yg brains (A). In contrast, the Md and Ag brains exhibited a drastic reduction in these synaptic signaling components, with the majority
of these proteins detected in heavy fractions 11 and 12 (HFs) only. Densitometric analysis of the data is represented in B. (C) Cav-1 (C) and PSD-95 (P)
immunoprecipitates pulled down NR2A, NR2B, AMPAR, and TrkB in the buoyant fractions of Yg mice, with decreased detection in Md and Ag.
(D) Immunoblot analysis detected a significant decrease in PSD-95 (post-synaptic density marker), NR2A, NR2B, AMPAR, and Cav-1 in hippocampal
synaptosomes from Md and Ag brains compared to Yg. PSD-95, NR2, NR2B, AMPAR, and Cav-1 decreased in PSD-95 immunoprecipitates of Md, and
Ag synaptosomes compared to Yg. (E) Electron paramagnetic resonance (EPR) was performed on synaptosomal membranes from brains of C57BL/6J
mice: young (Yg, 3–6 months) and aged (Old, .18 months). Membrane localized spin labels 5-doxylstearic acid (5-DSA) probes changes in the
neuronal membrane fluidity closer to the membrane surface. Lineshape analysis of 5-DSA spin label using the indicated parameters revealed that
neuronal membrane of aged mice exhibit significantly lower order parameter (i.e. increased fluidity) than young animals. Aged membranes were
8.561.2% more fluid than young membranes (F(1,10) = 223.5, p = 0).
doi:10.1371/journal.pone.0015697.g002
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Figure 3. Ischemic preconditioning (IPC) does not occur in Cav-1 KO mice. (A) Hippocampal synaptosomes from Cav-1 KO (Yg) showed a
similar pattern to Ag, with a decrease in PSD-95, NR2A, NR2B, and AMPAR. PSD-95 IPs of Cav-1 KO synaptosomes revealed minimal detection in PSD-
95, NR2A, NR2B, and AMPAR. (B) WT or Cav-1 KO mice were subjected to 3 min (ischemic preconditioning, IPC) and/or 12 min (lethal ischemia, LI)
induced by bilateral carotid artery occlusion (BCAO). Intact neurons in CA1 hippocampal (HP) region were counted from Cresyl Violet stained paraffin
fixed sections. IPC (3 min, BCAO) significantly protected CA1 neurons against LI (12 min, BCAO) in WT mice (iv). There was a significant increase in
CA1 neuronal death in Cav-1 KO animals subject to IPC (viii) versus WT IPC + LI. Representative Cresyl Violet stained CA1 hippocampal images from
(i) WT sham, (ii) WT IPC, (iii) WT LI, and (iv) WT IPC and (v) Cav-1 KO sham, (vi) Cav-1 KO IPC, (vii) Cav-1 KO LI, and (viii) Cav-1 KO IPC. Quantitation of
images is presented by the graph.
doi:10.1371/journal.pone.0015697.g003
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Primary neuron isolation and culture
Neonatal mouse neurons were isolated using a papain

dissociation kit (Worthington Biochemical, Lakewood, NJ) as

previously described [27]. Neurons were cultured in Neuobasal A

media supplemented with B27 (2%), 250 mM GLUTMax1, P/S

(1%). Cells were cultured on poly-D-lysine/laminin (2 mg/cm2)

coated plates at 37uC in 5% CO2 for 4 d prior to transfection with

lentiviral vectors. Cav-1 cDNA was cloned in our laboratory and

given to Dr. Atushi Miyanohara at the UCSD Viral Vector Core.

Dr. Miyanohara successfully generated a lentiviral vector contain-

ing the synapsin promoter up-stream of the Cav-1 gene (SynCav1).

SynGFP was used as control vector. Titer for both vectors was

approximately 109 infectious units (i.u.) per ml.

Sucrose-density fractionation
Membrane/lipid rafts were isolated from adult brain and

neurons using detergent-free methods. Tissue and cells were

homogenized in sodium carbonate (150 mM, pH 11.0), and then

sonicated with three cycles of 20 sec bursts with 1 min incubation

on ice. Homogenate (1 mL) was mixed with 1 mL of 80% sucrose

to generate 2 mL of 40% sucrose. Above the 40% layer, 6 mL of

35% and 4 mL of 5% sucrose were carefully layered. The mixture

was centrifuged at 175,000 g using SW41Ti rotor (Beckman) for

3 h at 4uC. Samples were removed in 1 ml aliquots and the

membrane/lipid rafts are found in buoyant fractions 4–5 (5/35%

interface).

Synaptosomal membrane preparation
Neuronal cells or brain tissue were homogenized in 5 ml of

solution A [0.32 M sucrose (34 g/500 ml), 0.5 mM CaCl2
(36 mg/500 ml), 1 mM NaHCO3 (42 mg/500 ml), 1 mM MgCl2
(102 mg/500 ml)] containing protease and phosphatase inhibitors

with 12 strokes of a 19684 mm tissue grinder (Potter Elvehjem,

plastic coated) at 800 r.p.m. Samples were then subjected to

centrifugation for 10 min at 1000 g at RT to remove large debris.

Centrifugation 1 involved careful layering of the supernatant

onto 4 ml of 1.2 M sucrose (41 g/100 ml or 41% sucrose) in a

SW41 centrifuge tube (Beckman) and then spun at 160,000 g for

15 min (or 33,000 r.p.m. with SW41 rotor). The synaptosomes

were found at the interface between the 1.2 M and 0.32 M sucrose

layers. The synaptosomes were then mixed with 4 ml of 0.32 M

sucrose and then carefully layered onto 4 ml of 0.8 M sucrose (or

27% sucrose) in a fresh centrifuge tube for second major

centrifugation. Centrifugation 2 consisted of spinning the

sample at 160,000 g for 15 min (33,000 rpm with SW41 rotor)

generating a pellet enriched in the synaptosomes. The pellet was

then resuspended in 1 ml of neuronal lysis buffer containing

protease and phosphatase inhibitors and used for immunoprecip-

itation and/or immunoblot analysis.

Determination of synaptosomal membrane fluidity using
electron paramagnetic resonance (EPR)

Hydrocarbon chain mobility was measured using fatty acid spin

labeling EPR analysis using 5-nitroxyl stearate (5-DSA, Aldrich) as

a spin probe [76,77]. The number designation indicates the

relative position of the nitroxide on the stearic acid relative to the

polar carboxylic group. In the case of 5-DSA, the spin probe is

firmly held in place by the head groups of the lipids, which is

reflected in broad EPR lines. Synaptosomes from young (3–6 m)

and aged (.18 m) mice were isolated as described previously [78].

Freshly prepared synaptosomal protein (0.1–0.2 mg) was incubat-

ed for 15 minutes with 5-DSA (1 mM final concentration) in

synaptosomal buffer (120 mM NaCl, 4.7 mM KCl, 2.2 mM

CaCl2, 1.2 mM MgCl2, 25 mM HEPES, 1.2 mM MgSO4,

1.2 mM KH2PO4, 10 mM glucose) at 25uC. The mixture was

then loaded into a 50 ml-glass capillary and inserted into the EPR

cavity of a MiniScope MS200 Benchtop spectrometer (Magnet-

tech, Berlin), maintained at 37uC, where the EPR spectra

registered. EPR conditions were the following: microwave power,

5 mW; modulation amplitude, 2 G; modulation frequency,

100 kHz; sweep width, 150 G centered at 3349.0 G; scan rate,

7.5 G/s, with each spectrum representing the average of 5 scans.

The fluidity parameters T|| and TH are defined in Figure 2E
and are used to calculate the order parameter as previously

described [76,77].

In vivo BCAO (bilateral carotid artery occlusion) model of
neuronal preconditioning

Male C57BL/6J and Cav-1 KO mice were anesthetized with

isoflurane. After endotracheal intubation, the lungs were mechan-

ically ventilated with 1.5% isoflurane in 30% O2, balanced N2.

Pericranial temperature was controlled at 37uC. Via a pre-tracheal

incision, the carotid arteries and the basilar artery were exposed and

a temporary clip was applied to the basilar artery. Thereafter,

preconditioning (PC) was induced by occlusion of the carotid

arteries. The clips were removed after a defined interval (3 min for

PC and 10 min for lethal ischemia), the wounds were infiltrated

with 0.25% bupivacaine and the anesthetic was discontinued. Upon

resumption of spontaneous ventilation, the endotracheal tube was

removed and the animals were transferred to the animal care facility

4 hr post extubation. Animals underwent transcardiac perfusion

with heparinized saline followed by buffered paraformaldehyde.

The brains were removed and the extent of injury to the CA1 sector

of the hippocampus was determined by Cresyl violet staining.

Routine and immunoelectron microscopy
Brains were transcardially perfusion fixed with standard

Karnovsky’s fix, 4% paraformaldehyde, 1% gluteraldehyde,

0.1 M cacodylate buffer with 5 mM CaCl2. PND5-7 animals

were fixed with 2% paraformaldehyde, 2.5% glutaraldehyde,

0.1 M cacodylate buffer and 5 mM CaCl2 to prevent tissue

artifacts. Hippocampi were dissected from whole brains after 24 h

and 400 mm vibratome slices prepared and re-fixed an additional

24 h. Brains were blocked (i.e., dissected) to include hippocampal

areas, one hemisphere for sagittal orientation, and one hemisphere

for coronal. Blocks were re-fixed for an additional 24 h followed

by post-fixation with 1% OsO4 in 0.1 M cacodylate buffer, en bloc

stained with uranyl acetate and embedded with flat orientation to

locate appropriate hippocampal regions of interest. Each block

was thick sectioned, stained with toludine blue, and re-trimmed to

Figure 4. Ab, A4 protein, and P-Tau(T181) are elevated in the hippocampus of young Cav-1 KO mice. (A) Hippocampal homogenates
from WT (3 m) and Cav-1 KO (Cav-1 KO, 3–6 m) C57Bl/6J mice were immunoblotted for Ab and phosphorylated Tau (P-Tau[T181]), and GAPDH. Ab and
P-Tau[T181] were significantly elevated in young Cav-1 KO hippocampal homogenates. (B) Immunofluorescence microscopy showed that Cav-1 KO
CA1 region of the hippocampus displayed elevated Ab staining (green) overlapping with Nissl positive neurons (red) as indicated by yellow
fluorescence. Quantitation of the data is represented in the graph. (C) Cryostat sections (50 mm) of mouse hippocampus were stained with lectin GSA
(Griffonia simplicafolia) to label blood vessels. There was a 20–25% reduction in overall area occupied by blood vessels in Cav-1 KO. Quantitation of
the data is represented in the graph (right).
doi:10.1371/journal.pone.0015697.g004
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Figure 5. Cav-1 KO mice exhibit enhanced astrogliosis and neuronal degeneration. (A–C) Light microscopic image displaying 0.5 mm thick
hippocampal sections of Cav-1 KO (A-i, A-ii), aged (B-i, B-ii), and young (C-i, C-ii) stained with toludine blue. There is a drastic reduction in neurons
within the dentate gyrus (large arrow heads) and CA1 regions (arrows) of young Cav-1 KO mice compared to young and aged WT. In addition, there
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isolate hippocampal areas prior to preparation of grids. Grids

(70 nm sections) were stained with uranyl acetate and lead nitrate

for contrast and observed on the electron microscope [JEOL 1200

EX-II (Tokyo, Japan)] equipped with a digital camera system. 25

random low magnification micrographs of the stratum radiatum

were obtained from each specimen. Micrographs were analyzed

for the quantity of synapses and for synapse abnormalities

(reduction or changes in synapse and dendritic filopidal spine

morphology, i.e., degradation of cytoskeletal architecture). The

dendritic profiles were characterized by abundant organelles such

as mitochondria and endoplasmic reticulum and frequent contacts

from vesicle-filled axon terminals. Spine synapses were identified

by an electron dense region associated with vesicles pre-

synaptically and that lacked cellular organelles or contained a

spine apparatus (as indicated by cytoskeletal architecture) with

post-synaptic densities as described previously [79,80,81,82].

Approximately 25 electron micrographs (3350 mm2) per animal

were analyzed in a blinded fashion for total synapse number per

area (synapse #/3350 mm2).

Generation of SynCav1 construct
To link the neuron-specific synapsin (Syn) promoter with the

Cav1 cDNA, XbaI-SalI DNA fragment containing the Syn

promoter was inserted into the NheI-SalI sites of the pEGFP-N1

(Clontech) and the resulting plasmid was designated pSyn-EGFP. A

685bp Cav1 cDNA was isolated from the pCRII-TOPO vector

(Invitrogen) by PmeI-NotI digest and inserted into the SmaI-NotI

site of the pSyn-EGFP to generate the pSyn-Cav1, in which the

EGFP gene was replaced with the Cav1 cDNA. The Syn-promoter-

Cav1 cassette was isolated from the pSyn-Cav1 and inserted into the

BamHI site of the HIV1 vector backbone plasmid pHIV7 [83] and

the resulting plasmid was designated pHIV1-Syn-Cav1.

Statistics Analysis
All parametric data were analyzed by unpaired t-tests or

ANOVA Bonferroni’s Multiple Comparison as appropriate; post

hoc comparisons were made by Student Neuman Keuls tests.

Significance was set at p,0.05. Statistical analysis was performed

using Prism 4 (GraphPad Software, Inc., La Jolla, CA).

appears to be the presence of more glia and glial scar formation within the dentate gyrus of Cav-1 KO mice as indicated by the darker gray cell bodies
intermixed with the neurons. (D) Hippocampal coronal cryostat sections (10 mm) from WT and Cav-1 KO mice were stained with Nissl (neuronal
marker, red pixels) and GFAP (astrocyte marker, green) to show no overlap between neurons and astrocytes. (E) Coronal cryostat sections (25 mm) of
2 month WT, 2 month Cav-1 KO and 12 month Cav-1 KO stained with 0.0004% Flouro-JadeHB and fluorescent red Nissl with DAPI. Areas from CA1 of
the hippocampus were imaged. WT CA1 showed well-organized astrocytes. Two month Cav-1 KO had areas of disorganized astrocytes with lightly
labeling areas of potential future plaque development. Twelve month Cav-1 KO CA1 areas had large bright, entangled green fluorescence with red
neurons inside and significantly less organized astrocytes, further demonstrating a degenerating neuronal model.
doi:10.1371/journal.pone.0015697.g005

Figure 6. Cav-1 KO mice have reduced hippocampal synapses. Synapses were quantified by routine electron microscopy as previously
described [82]. EM analysis revealed a significant reduction in hippocampal synapses in both (C) Cav-1 KO (Yg) and (B) Ag mice compared to (A) WT.
Synapses are indicated by red circles in WT, blue circles in Ag, and green circles in Cav-1 KO. (D) WT micrographs exhibited dendritic processes
(indicated by d) with intact cytoskeletal architecture (arrows and arrowheads), while (E) Ag and (F) Cav-1 KO displayed less organized dendritic shafts
(asterisk) with more abundant astrocyte presence (arrows). (G) Quantitation of data.
doi:10.1371/journal.pone.0015697.g006
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