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Abstract

Gene-expression signature-based disease classification and clinical outcome prediction has not been widely introduced in
clinical medicine as initially expected, mainly due to the lack of extensive validation needed for its clinical deployment.
Obstacles include variable measurement in microarray assay, inconsistent assay platform, analytical requirement for
comparable pair of training and test datasets, etc. Furthermore, as medical device helping clinical decision making, the
prediction needs to be made for each single patient with a measure of its reliability. To address these issues, there is a need
for flexible prediction method less sensitive to difference in experimental and analytical conditions, applicable to each
single patient, and providing measure of prediction confidence. The nearest template prediction (NTP) method provides a
convenient way to make class prediction with assessment of prediction confidence computed in each single patient’s gene-
expression data using only a list of signature genes and a test dataset. We demonstrate that the method can be flexibly
applied to cross-platform, cross-species, and multiclass predictions without any optimization of analysis parameters.
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Introduction

It has been nearly a decade since genome-wide expression

profiling was applied on clinical specimens with a great expectation

for its potential to fish out disease-related genes as diagnostic

biomarkers and/or therapeutic targets in comprehensive and

unbiased manner [1]. Many studies have subsequently reported

sets of coordinately dysregulated genes, i.e., gene-expression

signature, correlated with clinical phenotype of interest. Some

studies also have shown that the signature could be more sensitive

than traditional histological assessment in monitoring biological

status of diseased tissue [2]. Accompanying these studies, consensus

on key issues of study design and analysis protocol emerged [3,4]

However, despite these efforts, most of these signatures have not yet

been introduced into clinical practice.

As a medical device utilized for clinical diagnostic and

prognostic prediction, the signatures need to be intensively

evaluated before their clinical deployment. However, this critical

process has been hampered by the following obstacles. First, it is

widely recognized that the measurement in gene-expression

microarray could vary across experimental conditions and assay

platforms [5,6], and it is still uncertain what the optimal and

sustainable assay platform is given the rapid genomics technology

development. Second, analytical restrictions such as requirements

for comparable pair of training and test datasets, specific analytic

algorithm and parameters used in the initial study, etc., often

preclude the opportunity of preclinical assessment of the signature.

Third, the signatures are often defined based on various types of

experimental techniques applied on variety of biomolecules or

even biological knowledge, which could be a valuable source of

potential biomarker. However, there is no established way to

utilized them for prediction analysis to estimate their potential

value in clinical practice. Furthermore, as a tool to help physicians’

clinical decision making, the prediction method should be

applicable to each single patient, although this is overlooked in

most of existing prediction methods, which were designed for a

dataset consisting of multiple samples [7]. In addition, it is ideal

that each prediction is accompanied with a measure of confidence

to enable more reliable clinical decision making.

Nearest template prediction (NTP) is a method designed to address

these issues, without requiring corresponding training dataset. It has

been successfully applied for gene-expression-based clinical classifica-

tion and outcome prediction [2,8,9]. In this article, we describe

detailed methodology of NTP and its performance in comparison with

other commonly used prediction methods to highlight its advantage.

Results

Overview of Nearest Template Prediction (NTP)
Diagnostic and/or prognostic genomic signature is usually a set

of genes coherently over- or under-expressed in patients with a

certain phenotype of interest, or combination of these sets of genes,

and assumed to indicate ON (or up) or OFF (or down) of relevant

biological functions. The major task of gene-expression signature-

based class prediction method would be simply to capture the

presence or absence of these patterns in each sample, rather than

recapitulating complex combinatorial pattern of the signature gene

expression. NTP is a simple, hence flexible, nearest neighbor-

based method designed to capture such information. It requires

only a list of signature genes and a dataset to be tested.

Methodological details are described in the Materials and

Methods section and Figure 1. Here we overview the key steps:
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Step 1: Define representative expression pattern of the
signature genes (template)

For simplicity, suppose the case of prediction of 2 subclasses, A

and B. The signature genes consist of nA (marker.A) and nB (marker.B)

over-expressed marker genes in subclass A and B, respectively. In a

hypothetical subclass A sample, it is supposed that marker.A are

coherently over-expressed and marker.B are under-expressed. If the

expression level of each signature gene is standardized, genes in

marker.A are expected to show uniformly high, and genes in

marker.B are expected to show uniformly low expression. The

expression pattern of the signature in a subclass B sample is

similarly assumed. These expression patterns of hypothetical

samples representing the subclasses are used as templates for the

prediction. Specifically, a value of 1 is assigned to marker.A and 21

is assigned to marker.B for the template of subclass A (template.A).

The template of subclass B (template.B) is similarly defined.

Step 2: Find nearest template to assign a prediction label
to a test sample

Suppose N genes are measured in a microarray experiment for a

test sample S (N$nA+nB). Expression levels of the nA+nB signature

genes (marker.A and marker.B) are extracted from the N genes

(sample.signature). Subsequently, proximity of sample.signature to

template.A or template.B is calculated as distance d using cosine

distance (default). If the distance to template.A is smaller, a

prediction of ‘‘subclass A’’ is assigned to sample S. A prediction

of ‘‘subclass B’’ is similarly performed.

Step 3: Compute prediction confidence
Significance for the prediction is compued as a nominal p-value

estimated based on a null distribution for the distance d to the

templates generated by randomly resampling nA+nB genes from the

N genes 1,000 times (default). This computation is performed

within the data of sample S and does not use data of other samples

in the test dataset. When prediction analysis is performed for

multiple samples ($2), one might want to correct the set of

prediction confidence p-values for multiple hypothesis testing. In

this article, we used false discovery rate (FDR),0.05 for the

criteria of high-confident prediction.

NTP can be flexibly applied to prediction of clinical disease

subtypes (Example 1), cross-platform prediction of molecular

disease subtype (Example 2), cross-species phenotype prediction

(Example 3), and multiclass (.2 classes) prediction (Example 4)

without any special optimization of analytical parameters.

Furthermore, we demonstrate that NTP performs reasonably well

in predicting molecular subclasses in real-world, large-scale

datasets of breast cancer (Example 5). (See Table 1 for the

details of each dataset.)

Example 1. Prediction of acute lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML)

First, we applied NTP for prediction of the major leukemia

subtypes, ALL and AML [10] as a straightforward 2-class

prediction problem in comparison with other commonly used

methods: classification and regression tree (CART), weighted

voting (WV), support vector machine (SVM), and k-nearest

neighbor (kNN). We evaluated a 35-gene signature reported in

the original publication in the test set including 35 patients

(Table 1). Prediction error rate was comparable to other methods

and even lower in the samples with high prediction confidence

(FDR,0.05) (Table 2). Samples receiving low prediction

confidence (FDR$0.05) showed no obvious high expression of

either of ALL or AML marker genes, and more number of

inconsistent predictions across the different prediction methods

were observed in these samples (Figure 2, Table 3).

Figure 1. Methodology of Nearest Template Prediction (NTP). Based on predetermined gene signature of subclasses A and B including nA

over-expressed genes in subclass A (marker.A) and nB over-expressed genes in subclass B (marker.B), template.A and template.B are defined as
representative expression pattern of the signature genes for each subclass (Templates of subclass A and B). From microarray data measuring N genes
in sample S (Microarray data of sample S), the nA+nB signature genes are extracted (Signature in sample S: sample.signature), and its proximity to the
templates is evaluated by calculating distance d. The label of closer template is assigned as a prediction for sample S, and its significance is estimated
as a nominal p-value based on a null distribution for d generated by randomly resampling nA+nB genes from the N genes 1,000 times. Red and blue
colors in heatmaps indicate high and low gene expression, respectively.
doi:10.1371/journal.pone.0015543.g001
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Example 2. Cross-platform prediction of estrogen
receptor (ER) positivity in breast cancer

We next tested NTP in the setting of cross-platform prediction

analysis. The ER positivity signature, which consists of 202 up-

regulated and 552 down-regulated genes, was defined in the

training set of 97 samples [11], and assessed on the test set of 49

samples [12] (Table 1, Figure 3). Again, prediction errors and

inconsistent predictions across different methods accumulated

within the samples with low prediction confidence (FDR$0.05)

(Table 2 and 3).

Example 3. Cross-species prediction of liver cirrhosis
between human and rat

In this example, we evaluated NTP’s prediction performance in

cross-species prediction. We first defined a human liver cirrhosis

signature including 801 up-regulated and 445 down-regulated

genes in comparison between 13 cirrhotic and 10 normal livers

from publicly available dataset [13] (Table 1). We then tested

whether the signature was presented in another publicly available

dataset of gene-expression profiles of rat liver cirrhosis induced by

bile duct ligation. NTP made highly confident prediction

(FDR,0.05) for all samples with no error and showed no

inferiority to other methods (Figure 4, Table 2 and 3).

Example 4. Prediction of multiple tissue types
All the previous examples demonstrated the predictive perfor-

mance in simple 2-class prediction. This example is to assess NTP

in multi-class (.2 classes) prediction. A gene-expression signature

predicting 4 different tissue types (breast, prostate, lung, and colon)

was determined in the training set (N = 51) and evaluated in the

test set (N = 52) (Table 1) [14,15]. The signature includes 4

groups of significantly over-expressed genes in each tissue type in

comparison to the rest (Breast: 388 genes, Prostate: 667 genes,

lung: 174 genes, and colon: 374 genes). In this setting of multi-class

prediction, NTP again demonstrated high-confident prediction

(FDR,0.05) for all samples without making error (Figure 5,

Table 2 and 3).

Example 5. Prediction of breast cancer molecular
subclass

Lastly, we analyzed multiple large scale datasets of breast cancer

as an example of molecular subclass prediction in real-world

clinical samples. Signature genes of the 5 subclasses (Basal-like,

HER2, Luminal A, Luminal B, and Normal breast-like) were

defined in the largest dataset (N = 295) [16] based on prediction

Table 1. Datasets.

Example No. of samples Assay platform Source of dataset Reference

1. ALL vs. AML Training set 38 HuGeneFL* (a) [10]

Test set 35 HuGeneFL* (a) [10]

2. ER positivity in breast cancer Training set 97 Hu25K** (b) [11]

Test set 49 HuGeneFL* (a) [12]

3. Liver cirrhosis in human and rat Training set 23 HG-U133plus2* GSE6764 [13]

Test set 12 Rat Genome 230* GSE13747 -

4. Multiple tissue types (breast, lung, prostate, colon) Training set 51 HG-U95A* (a) [14,15]

Test set 52 HG-U95A* (a) [14,15]

5. Molecular subclasses of breast cancer Training set 295 Stanford cDNA (c) [16]

Test set 1 (‘‘TransBig’’) 198 HG-U133A* GSE7390 [18]

Test set 2 (‘‘Wang’’) 286 HG-U133A* GSE2034 [19]

Test set 3 (‘‘Weigelt’’) 53 Human WG6*** E-TABM-543 [17]

ALL: acute lymphoblastic leukemia, AML: acutr myeloid leukemia, ER: estrogen receptor, GSE: NCBI’s Gene Expression Omnibus accession ID (www.ncbi.nlm.nih.gov/
geo/).
E-TABM: EBI’s Array Express accession ID (www.ebi.ac.uk/arrayexpress/).
(a) www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.
(b) www.rii.com/publications/default.htm.
(c) microarray-pubs.stanford.edu/wound_NKI/explore.html.
All datasets used for the analysis are available as Supporting Information.
Microarrays manufactured by *Affymetrix (Santa Clara, CA), ** Agilent Technologies (Palo Alto, CA), or ***Illumina (San Diego, CA).
doi:10.1371/journal.pone.0015543.t001

Table 2. Summary of prediciton error rates according to
prediction method.

Example CART WV SVM k-NN NTP
NTP
(FDR,0.05)

#1 9% 3% 9% 6% 11% 0%

#2 8% 14% 20% 12% 10% 5%

#3 0% 17% 0% 17% 0% 0%

#4 31% -* 2% 6% 0% 0%

#5 (test set 1) 47% -* 30% 47% 42% 42%

#5 (test set 2) 37% -* 27% 44% 31% 28%

#5 (test set 3) 40% -* 26% 23% 32% 17%

CART: classification and regression tree, WV: weighted voting, SVM: support
vector machine, k-NN: k-nearest neighbor, NTP: nearest template prediction,
FDR: false discovery rate.
*WV is designed only for 2-class prediciton.
In Example #5, prediction error indicates inconsistency with prediciton made
with ‘‘Sorlie2003 SSP’’ predictor [17].
doi:10.1371/journal.pone.0015543.t002
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made with ‘‘Sorlie2003 single sample predictor (SSP)’’ [17], and

evaluated in 3 datasets of independent patient series generated on

various microarray platforms [17–19] (Table 1). The signature

consists of over-expressed genes in each subclass (Basal-like: 956

genes, HER2: 125 genes, Luminal A: 387 genes, Luminal B: 291

genes, and Normal breast-like: 134 genes). We asked whether NTP

and other prediction methods could reproduce the prediction

reported in the original publication (Figure 6). The prediction

error rate was not inferior to those of other methods (Table 2),

and consistency of prediction across the methods was higher in

samples with high prediction confidence (FDR,0.05) (Table 3).

In the original publication by Weigelt et al., 3 different SSP models

were compared and yielded averaged error rates of 40%, 38%,

and 38% in Test set 1, 2, and 3, respectively [17], which are

comparable or even worse compared to the results of NTP

(Table 3).

Discussion

In gene-expression microarray analysis, signature-based ap-

proach, in contrast to single gene-based approach, has been

successfully utilized for robust identification of molecular pathway

activation, prediction of disease phenotype and outcome, moni-

toring of response to genetic or pharmacologic experimental

perturbations [2,10,20–22]. These examples of success seem to be

achieved particularly because the signature genes exhibit coher-

ently similar expression pattern, and missing or failed measure-

ments from some of the signature genes (due to malfunctioning

probe, genetic polymorphism at probed site, etc.) could be

compensated by rest of the genes in capturing the same trend of

biological dysregulation. By focusing on such direction of

expression change measured by similarly behaving multiple genes,

the analysis may become less affected by difference in experimen-

tal condition and assay platform. NTP was intended to capture

such direction of expression change of the signature genes, in the

modeling of the templates. Our examples clearly showed that the

method works reasonably well in prediction of 2 or more classes

beyond different assay platforms and species without necessity of

any special analysis parameter optimization. In general, no specific

prediction algorithm universally outperforms others (so called no

free lunch theorem), but it would worth to note that NTP showed

constantly low error rate in predictions with high confidence.

In gene-expression profiling studies utilizing clinical specimens,

it is frequently noticed that a certain proportion of samples do not

Figure 2. Example 1: Prediction of acute lymphoblastic
leukemia (ALL) and acute myeloid leukemia (AML). Previously
reported ALL-AML signature was evaluated on the test set (N = 35)
employed in the study. Samples are ordered according to proximity to
either of the template of ALL or AML to visualize clear or unclear
expression pattern of the signature genes in each sample. Note that
closer distance to template (i.e., most left or right in heatmap) does not
necessarily indicate higher prediction confidence because the confi-
dence p-value is calculated based on null distribution for the distance
generated for each individual sample. CART: classification and
regression tree, WV: weighted voting, SVM: support vector machine,
kNN: k-nearest neighbor, FDR: false discovery rate.
doi:10.1371/journal.pone.0015543.g002

Table 3. Prediciton results according to prediction confidence.

Example % samples with FDR,0.05 Error rate Consistency across prediction methods

FDR,0.05 FDR$0.05 FDR,0.05 FDR$0.05

#1 49% 0% 22% 88% 78%

#2 88% 9% 50% 86% 17%

#3 100% 0% -* 0% -*

#4 100% 0% -* 63% -*

#5 (test set 1) 97% 42% 67% 38% 0%

#5 (test set 2) 90% 28% 64% 36% 4%

#5 (test set 3) 57% 17% 52% 50% 26%

FDR: false discovery rate.
*No sample received NTP prediciton with FDR$0.05.
In Example #5, prediction error indicates inconsistency with prediciton made with ‘‘Sorlie2003 SSP’’ predictor [17].
doi:10.1371/journal.pone.0015543.t003
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present obvious expression pattern of the signature genes

characteristic to the subclasses. In fact, we observed such samples

in the middle of the heatmap in Example 1 and 2 lacking obvious

high expression of ALL/AML or ER signature genes (Figure 2
and 3). We observed that the discordant predictions between

different methods tended to accumulate within these samples,

suggesting that such discordance occured due to the vague

expression pattern rather than superiority of certain prediction

algorithm.

The vague expression pattern may not be a problem in

understanding biological nature of gene-expression signature in a

set of multiple samples as long as a subset of samples presents

distinct expression pattern of the signature. However, if the

signature is intended to be used as a clinical diagnostic or prognostic

tool, the assay and prediction need to be performed on a single

patient basis. And assessment of prediction confidence is necessary

to make reliable clinical decision considering any classification and

prediction algorithms could assign predicted class labels even in

randomly generated data. Some existing prediction methods assign

prediction class label and/or prediction confidence according to

relative expression of signature genes within a given collection of

samples, i.e., these methods merely split the dataset into equal-sized

subsets using a cut-off such as median specific to the sample

collection, therefore each prediction could be changed according to

which samples are included in the collection [7,23,24]. Weigelt et al.

reported a method assigning prediction for each single patient based

on correlation to ‘‘centroid’’ (a vector of mean expression levels of

signature genes calculated for each subclass in training set) [17].

However, the criteria of ‘‘unclassifiable’’ sample (correlation

coefficient ,0.1) is arbitrary, and the performance of ‘‘centroid’’

might be affected when the numerical values in the vector of

‘‘centroid’’ overfit training set and if substantial cross-platform

difference exists in test set.

In actual clinical setting, it is possible that molecular subclasses

are presented in imbalanced manner across patient populations. In

fact, in Example 5, some subclasses are underrepresented or even

does not exist in some patient series. Even in such situation, NTP

showed reasonable predictive performance constantly comparable

or not inferior to other methods, supporting its usefulness as a

clinical tool.

NTP is a convenient method, which allows flexible assessment

of any existing gene signatures across wide variety of patient

populations, assay platforms, and even species even if there is no

corresponding training dataset. It will facilitate extensive preclin-

ical evaluation of existing genomic signatures for their potential

value as reliable medical diagnostics. The NTP methodology

is implemented as Nearest Template Prediction module of

GenePattern analysis toolkit and publicly available from www.

broadinstitute.org/genepattern.

Materials and Methods

Data preprocessing
We utilized data sets already normalized in the respective

studies. Multiple probes corresponding a single gene were

summarized into a gene symbol provided by NBCI Entrez Gene

Figure 3. Example 2: Cross-platform prediction of estrogen
receptor (ER) positivity in breast cancer. The ER signature was
defined and tested on a pair of independent training (N = 97) and test
(N = 49) datasets generated on different microarray platforms (see
Table 1 for details). Samples are ordered according to proximity to
either of the template of ER (+) or ER (2).
doi:10.1371/journal.pone.0015543.g003

Figure 4. Example 3: Cross-species prediction of liver cirrhosis
between human and rat. Human liver cirrhosis signature generated
by comparing 13 cirrhotic and 10 normal livers was tested on rat livers
with or without liver cirrhosis induced by bile duct ligation.
doi:10.1371/journal.pone.0015543.g004
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database (www.ncbi.nlm.nih.gov/gene) by taking median of their

signal intensities. Rat genes were converted into orthologous

human genes by using a mapping table provided by the Jackson

laboratory (http://www.informatics.jax.org/).

To capture ‘‘up’’ or ‘‘down’’ regulation of signature genes

modeled as the template, dynamic range of measurement for each

gene probe is standardized to be similar or comparable across gene

probes on the microarray. Once clinical deployment platform is

decided, the assay is assumed to be calibrated to generate

reproducible measurements and a set of reference samples is run

to test its validity. This reference dataset will allow to calculate

sample-wise mean and sample standard deviation for each gene

probe, which can be used for the standardization of each single

patient’s data obtained in actual clinical practice. NTP can take

vectors of the mean and sample standard deviation provided

separately from input dataset for the standardization (supported in

the R code packaged in the GenePattern NTP module).

Alternatively, when such reference dataset does not exist and a

research-level dataset is the only available material, NTP also can

use the input dataset to calculate the mean and sample standard

deviation for the standardization (current default of the Gene-

Pattern module).

Methodology of Nearest Template Prediction (NTP)
(i) Representative expression pattern of the signature

genes (template). Suppose the case of prediction of 2

subclasses, A and B, and the signature to be tested includes nA

and nB over-expressed marker genes in subclass A and B,

respectively. The template of subclass A (template.A) is defined as

a vector containing nA+nB elements: first nA elements correspond

over-expressed genes in subclass A (marker.A), and next nB elements

correspond over-expressed genes in subclass B (marker.B). To model

representative expression pattern of subclass A, i.e., over-

expression of marker.A and under-expressed of marker.B, a value

of 1 is assigned to each of the nA marker.A genes, and a value of 21

to each of the nB marker.B genes. The template of subclass B

(template.B) is similarly defined. In case of prediction of more than 2

subclasses, a value of 1 is assigned to subclass A marker genes and

a value of 0 is assigned to marker genes of the rest of subclasses.

Numerical values like t-statistic, signal-to-noise ratio, fold change,

or p-value, which is often reported together with list of signature

genes, can be used to weigh each gene to incorporate information

of its relative importance in the signature.

(ii) Nearest template to assign a prediction label to a test

sample. For a test sample, actual expression levels of the nA+nB

signature genes are extracted from N genes measured in the

microarray assay (N$nA+nB) to create a vector with nA+nB elements

(sample.signature). Proximity of sample.signature to template.A or

template.B is computed as distance d using cosine distance

(default) or Pearson correlation coefficient. Any other distance

measure can be used. If d to template.A is smaller than that to

template.B, a prediction label of subclass A is assigned to the test

sample, and a prediction of subclass B is similarly performed.

(iii) Prediction confidence (p-value). For the single test

sample, significance of the proximity to template is estimated as a

nominal p-value based on a null distribution for the distance d

generated by randomly resampling nA+nB genes from the N genes

multiple times (default is 1,000 times). Here, the null hypothesis is

that the signature genes show similar expression pattern to neither

of the templates, and the alternative hypothesis is that the

signature genes show similar expression pattern to any one of the

templates. A nominal p-value is computed based on the rank of

actual d in the null distribution. In case the prediction is made for a

set of multiple samples ($2), user can choose to correct the

p-values for multiple hypothesis testing using either false discovery

rate (FDR) [25] or Bonferroni correction.

Prediction analysis in each example
In Example 1, the list of signature genes reported in the

original publication was directly used for NTP, including 19 up-

regulated (GOLUB_ALL_VS_AML_UP) and 16 down-regulated

(GOLUB_ALL_VS_AML_DN) genes in ALL compared to AML

samples deposited in Molecular Signature Database (MSigDB)

(http://www.broadinstitute.org/msigdb/). The signature genes In

Example 2,5 were defined by random permutation-based t-test

implemented in Comparative Marker Selection module of

GenePattern analysis toolkit [26] (www.broadinstitute.org/gene-

pattern) with a significance threshold of FDR,0.05 (Example
2,4) or FDR,0.001 (Example 5). In multi-class (.2 classes)

prediction (Example 4 and 5), the signature was defined as a

concatenation of over-expressed genes in each class in comparison

to the rest. Genes significantly over-expressed in multiple classes

were removed from the signature. In Example 4, the dataset

including 4 tissue types (breast, prostate, lung, and colon) was

randomly split into training (N = 51) and test (N = 52) sets using

Split Dataset Train Test module of GenePattern.

Prediction analysis with other methods
Additional prediction analyses were performed within the same

signature gene space by using CART, WeightedVoting, SVM, and

KNN modules implemented in GenePattern with default analysis

parameters. For cross-platform (Example 2 and 5) and cross-

species (Example 3) predictions, each gene’s expression level was

Figure 5. Example 4: Prediction of multiple tissue types.
A signature distinguishing 4 tissue types (breast, prostate, lung,
and colon) was defined in the training set (N = 51) and
evaluated on the test set (N = 52). The signature was defined as
a concatenation of over-expressed genes in each tissue type in
comparison to the rest.
doi:10.1371/journal.pone.0015543.g005

Flexible Genomic Class Prediction
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standardized using its sample-wise mean and sample standard

deviation in each dataset to adjust range of gene expression level

between training and test datasets. All datasets and class labels

used for the analysis are publicly available at http://www.

broadinstitute.org/cgi-bin/cancer/datasets.cgi.
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