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Abstract

Epidemiologic studies show a high incidence of cancer in shift workers, suggesting a possible relationship between
circadian rhythms and tumorigenesis. However, the precise molecular mechanism played by circadian rhythms in tumor
progression is not known. To identify the possible mechanisms underlying tumor progression related to circadian rhythms,
we set up nude mouse xenograft models. HeLa cells were injected in nude mice and nude mice were moved to two
different cases, one case is exposed to a 24-hour light cycle (L/L), the other is a more ‘‘normal’’ 12-hour light/dark cycle (L/D).
We found a significant increase in tumor volume in the L/L group compared with the L/D group. In addition, tumor
microvessels and stroma were strongly increased in L/L mice. Although there was a hypervascularization in L/L tumors, there
was no associated increase in the production of vascular endothelial cell growth factor (VEGF). DNA microarray analysis
showed enhanced expression of WNT10A, and our subsequent study revealed that WNT10A stimulates the growth of both
microvascular endothelial cells and fibroblasts in tumors from light-stressed mice, along with marked increases in angio/
stromagenesis. Only the tumor stroma stained positive for WNT10A and WNT10A is also highly expressed in keloid dermal
fibroblasts but not in normal dermal fibroblasts indicated that WNT10A may be a novel angio/stromagenic growth factor.
These findings suggest that circadian disruption induces the progression of malignant tumors via a Wnt signaling pathway.
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Introduction

Modern lifestyles and the use of indoor lighting mean that many

people are exposed to a long photoperiod throughout the year [1].

This is most evident in shift workers, especially night workers. This

results in the disruption of circadian rhythms, which is known to

induce many different types of stress [2]. Abnormal circadian

rhythms, including exposure to light at night, are associated with a

higher cancer risk and a poorer prognosis [3–7], which may be

one of the reasons that the incidence of cancer is increasing in

individuals subjected to these stresses. Circadian genes have been

shown to function as oncogenes or tumor suppressors at both the

systemic and cellular levels due to their roles in cell proliferation,

cell cycle regulation, apoptosis and DNA damage signaling

pathways [8,9]. However, the molecular or systemic mechanisms

involved in tumor growth under artificial illumination stress

conditions have not been identified. In fact, the question of

whether artificial illumination stress promotes tumor growth at all

is still controversial [10,11]. To identify the possible mechanisms

underlying tumor progression related to circadian rhythms, we set

up nude mouse xenograft models and revealed that artificial light

stress induced tumor growth and angio/stromagenesis through

WNT10A overexpression.

Results

Circadian disruption induces tumor growth and angio/
stromagenesis

The mice were divided into two groups: one group was exposed

to 24-hour periods of artificial light (L/L) the other was exposed to

a more conventional 12-hour light/dark cycle (L/D). First, we

examined the effect of light stress on the in vivo growth of

epidermoid cancer (HeLa) cell tumors and found a significant

increase in tumor volume in the L/L group compared with the L/

D group (Figure 1A). Similar results were obtained using a

xenograft model incorporating prostate cancer (PC3) cells

(Figures 1B). Examples of the Hela cell tumors in the L/L and

L/D groups are shown in Figure 1C and Figure S1. The L/L

tumors were not only larger, but also immunohistochemical

analysis showed them to be highly vascular, with increased

numbers of CD34 positive (CD34+) and a-Smooth Muscle Actin

(a-SMA) positive (a-SMA+) cells (Figure 1D). High vascularity of
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tumor surface in L/L group using HeLa cells was reproducibly

observed in four independent experiments. Also, the microvessel

density within the L/L tumors was significantly higher than that in

the L/D tumors and correlated with a reduction in the amount of

necrosis (Figure 1E). Masson trichrome staining of the tumor

stroma showed a clear expansion of the extracellular matrix

Figure 1. Effect of photoperiod manipulation on the growth of human HeLa cell or PC3 cell tumors. (A) Hela cell tumors. Volume of the
subcutaneous xenografts in nude mice housed in either L/L (closed circle; n = 16) or L/D (open circle; n = 16) conditions. After 17 days of growth, L/L
tumors were significantly larger than L/D tumors (F from repeated measure ANOVA = 12.276, **P,0.01). (B) PC3 cell tumors. Volume of the
subcutaneous xenografts in nude mice housed in either L/L (n = 8) or L/D (n = 8) conditions. A significant reduction in volume is seen in the L/D
tumors compared with the L/L tumors (F from repeated measure ANOVA = 18.360, **P,0.01). (C) Representative photograph of L/L and L/D tumors
showing the obvious difference in size. (D) Immunohistochemical analysis of CD34 positive (CD34+) cells and aSMA positive (aSMA+) cells in the L/L
and L/D tumors. Increased numbers of CD34+ and aSMA+ (black arrows) are clearly visible in the L/L tumors. (E) The number of microvessels was
quantified using the number of CD34+ cells. An increase in microvessel density (vessels in 10 viewing fields; n = 3 per group, *P,0.05), is accompanied
by a decrease in necrosis (n = 3 per group **P,0.01). (F) Representative photographs showing masson trichrome staining of the expanded
extracellular matrix and immunohistochemical analysis of mouse Type I collagen in the L/D and L/L tumors.
doi:10.1371/journal.pone.0015330.g001
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(ECM; stained blue) in the L/L tumors not seen in the L/D

tumors (Figure 1F). The immunostaining of mouse Type I collagen

also showed the increase of ECM in the L/L tumors (Figure 1F).

Taken together, these results clearly show that abnormal circadian

rhythms induce marked tumor growth accompanied by increased

angio/stromagenesis.

Microarray analysis of L/L tumors and L/D tumors
Next, we wanted to investigate the molecular mechanisms

underlying the striking morphological differences between L/L

and L/D tumors. Whole-genome expression DNA microarray

analysis was performed to identify the genes and biological

pathways that might be regulated by photoperiod manipulation.

We found that 201 genes were transcriptionally upregulated in the

L/L tumors compared with the L/D tumors (Table S1).

Surprisingly, the expression of human VEGF-A and VEGF-B,

which are the most important molecules in cancer angiogenesis,

was the same in L/L and L/D tumors (Table S1 and Figure 2A),

suggesting that a novel angiogenic factor is involved in increased

L/L tumor growth. We focused on genes encoding secretory

proteins (Table 1) and found a greater than 9-fold upregulation in

the expression of WNT10A in L/L tumors compared with L/D

tumors. We designed human WNT10A and mouse Wnt10a

specific primers for semi-quantitative RT-PCR analysis and

checked the specificity of the primers (Figures S2A and Table

S2). Semi-quantitative RT-PCR showed that not only human

WNT10A, but also mouse Wnt10a, was upregulated in L/L

tumors (Figure 2A); however, the expression of human WNT10A

in the L/L tumors was still very low as it could only be detected

using nested techniques (1st PCR 30 cycles and 2nd PCR 35

cycles). Immunohistochemical analysis showed WNT10A expres-

sion mainly around the blood vessels and it was increased in L/L

tumors compared with L/D tumors (arrows in Figure 2B),

indicating that this enhanced expression of WNT10A is derived

from mouse tissues.

WNT10A overexpression cells induce tumor growth,
angiogenesis and stromagenesis in vivo xenograft
models

To further investigate the role played by WNT10A in these

morphological changes, we established another nude mouse model

implanted with HeLa cells overexpressing WNT10A (Figures 3A

and S3). Because the growth rate of these WNT10A-overexpress-

ing cells was similar to that of control cells in vitro (Figure 3B), we

were surprised to see that the growth rate of the implanted

WNT10A-overexpressing tumors was faster than that of control

tumors (Figure 3C). Furthermore, as shown in Figure 3D, most of

the tumors were hypervascular; even those from mice housed

under L/D conditions. Immunohistochemical analysis of these

WNT10A-overexpressing tumors showed increased numbers of a-

SMA+ cells coupled with increased size, microvessel density,

significantly reduced areas of necrosis (Figures 3E and 3F) and an

expanded ECM (Figure 3G).

WNT10A is expressed in fibroblasts and WNT10A
stimulates the growth of both fibroblasts and vascular
endothelial cells in vitro

Based on these results, we hypothesized that WNT10A was

functioning as a growth factor for both vascular endothelial cells

and fibroblasts and was involved in a novel mechanism of tumor

growth, possibly via the promotion of angio/stromagenesis. To

confirm this hypothesis, we used RT-PCR to show that normal

human dermal fibroblasts (NHDF) cells express WNT10A, but

normal human dermal microvascular endothelial (HMVEC-d)

cells do not (Figure 4A). This suggests the presence of a WNT10A-

dependent autocrine growth system in fibroblasts. Cell prolifera-

tion analysis showed that the growth of both HMVEC-d and

NHDF cells was stimulated by the addition of conditioned

medium from WNT10A-overexpressing cells and was significantly

inhibited by the addition of an anti-WNT10 antibody (Figures 4B

and 4C). NHDF cells cultured in recommended medium were also

effectively inhibited by the addition of the anti-WNT10A antibody

(Figure 4D). In addition, knockdown of WNT10A-expression

using siRNA inhibited the growth of NHDF cells (Figures 4E and

4F), confirming the existence of a WNT10A-dependent autocrine

growth mechanism.

Tumor stroma cells express WNT10A
The pattern of WNT10A expression in human tumors was

examined by immunohistochemistry (Figures 5A and 5B). A

careful examination of the double stained tissues showed marked

increase of WNT10A positive fibroblastic cells in scirrhous type

gastric cancer which is a representative cancer with hyperplastic

Figure 2. WNT10A was upregulated in L/L tumors. (A) RT-PCR of
the relevant gene transcripts was carried out based on the results of the
DNA microarray analysis. Human WNT10A (h-WNT10), mouse Wnt10a
(m-Wnt10a) and ANGPL4 were upregulated in L/L mice tumors. RB1 was
downregulated. There was no difference in the expression levels of
VEGF-A, VEGF-B and YB-1 between L/L and L/D tumors. Human b-actin
(h-b-actin) and mouse b-actin (m-b-actin) were used as internal control.
The cycle number is 30 for all semi-quantitative RT-PCR except h-
WNT10A. Nested PCR technique to investigate the expression of human
WNT10A in tumors. The cycle number of 1st PCR is 30 and that of 2nd
nested PCR is 35. (B) Immunohistochemical analysis of WNT10A in L/L
and L/D mice tumors. The arrows indicate tumor blood vessels.
doi:10.1371/journal.pone.0015330.g002
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stroma (Figure 5A). Only the tumor stroma stained positive for

WNT10A, strongly suggesting expression by stromal cells such as

fibroblasts, myofibroblasts, smooth muscle cells, and pericytes.

WNT10A is expressed in keloid stroma, but not in normal
dermal stroma

The inducible expression of Wnt genes, including WNT10A,

stimulates the proliferation of hepatic progenitor cells [12], and

mutations in WNT10A are associated with an autosomal recessive

ectodermal dysplasia [13,14]. In addition, The expression of Wnt

signaling antagonists has been shown to be down-regulated in

keloid, which is an aggressive wound healing tissue, fibroblasts

[15,16]. These previous reports indicate that WNT signaling is

involved in both tissue repair and wound healing. Because an old

hypothesis suggests that cancer results from uncontrolled wound-

healing [17], we investigated WNT10A expression in keloid tissue.

WNT10A-positive cells were only found in the vessels and

peripheral nerves of normal skin (Figure 6A). On the other hand,

WNT10A expression markedly increased in fibroblastic cells in the

hyperplastic stroma of keloid tissue (Figure 6B), suggesting that

WNT10A functions as an angio/stromagenesis gene in tumor

progression, thus supporting the ‘‘old’’ hypothesis. Although

WNT10A expression was observed in cutured normal human

dermal fibroblasts (Figure 4E), WNT10A expression was not in

fibroblast in normal skin (Figure 6A). This may be probably due to

the sensitivity of immunostaining analysis. Another possibility is

that normal human dermal fibroblasts were cultured with growth

factors which may induce the WNT10A expression.

Oxidative stress induce WNT10A expression
The level of psychological and physiological stress experienced

by the mice is hard to measure experimentally. So, we measured 8-

OH deoxyguanosine (8-OH-dG) associated with increased levels

of oxidative stress. We found that the level of 8-OH-dG in lung

tissue, but not liver, from L/L mice was significantly higher than

that in L/D mice (Figure 7A). This is consistent with the fact that

lung tissue is more sensitive to oxidative DNA damage than other

tissues [18]. This data strongly suggest an association between

disruption of circadian rhythms and increased oxidative stress

responses. A preliminary study also showed that the promoter

activity of the WNT10A gene was induced by the oxidizing agent,

hydrogen peroxide and Wnt10a mRNA transcript level was also

increased in NIH3T3 cells treated with hydrogen peroxide

(Figures 7B and 7C). These provide further evidence supporting

the role of oxidative stress in tumor promotion and progression.

Discussion

Greater understanding of the complexity of the tumor

microenvironment, and the role of tumor angiogenesis, will lead

to further advances in cancer treatment [4,19,20]. The results

presented in this paper are both interesting and unexpected and

strongly suggest that disruption of circadian rhythms promotes

tumor growth through WNT10A-dependent angio/stromagenesis

resulting from increased levels of oxidative stress. The transcrip-

tional factor of NF-kB is activated by oxidative stress or tumor

necrosis factor alpha (TNF-a) [21]. WNT10A has been shown to

be one of the NF-kB target genes and it’s expression was induced

by TNF-a [22,23]. Since there is one NF-kB site in the promoter

region of WNT10A gene, it is conceivable that WNT10A might be

regulated by NF-kB pathway. WNT signaling pathway has been

implicated in angiogenesis [24] and tumor stroma microenviron-

ment [25]. These data suggest that both endothelial cells and

stromal cells are activated by WNT signals from cancer cells. On

the other hand, our data indicate that both endothelial cells and

stromal cells may be activated by WNT10A signals from non

tumor cells, such as cancer associated fibroblasts. WNT signaling

has been separated into a ‘‘canonical’’ pathway or ‘‘non-

canonical’’ pathways [26]. Since canonical WNT signaling

pathway stabilize b-catenin, we hypothesized that WNT10A

might also stabilize b-catenin. The expression of b-catenin was

observed in the endothelial cells of newly formed tumor vessels

(Figure S4), suggesting that Wnt/b-catenin signaling plays a role in

tumor angiogenesis. WNT signaling is also known to play an

important role in cancer and stem cell biology [27], indicating that

WNT10A might affect not only the tumor microenvironment, but

also stem cells themselves.

There are some limitations in this study. We cannot exclude the

possibility that other physiological and/or hormonal factors, such

as melatonin, affected the growth of the implanted cancer cells in

our mouse models [28–30]. Subcutaneous injection of rapidly

growing human cancer cells into nude mice provided a setting in

which tumor growth could be assessed in a relatively short time

Table 1. The subset of secretory protein genes was selected if fold change marked more than 2.0 in the L/L tumor sample
compared to the L/D tumor sample.

Gene symbol Accession number Fold change Gene discription

WNT10A NM_025216 9.41 Protein WNT-10A precursor.

CCL11 NM_002986 3.06 Eotaxin precursor (Small inducible cytokine A11).

MUC1 NM_002456 2.79 Mucin-1 precursor.

SCGB1C1 NM_145651 2.51 Secretoglobin family 1C member 1 precursor.

ANGPTL4 NM_016109 2.36 Angiopoietin-related protein 4 precursor (Angiopoietin-like 4).

CES1 NM_001266 2.30 Liver carboxylesterase 1 precursor.

EDN1 NM_001955 2.20 Endothelin-1 precursor.

AMY2A NM_000699 2.19 Pancreatic alpha-amylase precursor.

C1QTNF6 NM_031910 2.13 Complement C1q tumor necrosis factor-related protein 6 precursor.

HTRA3 NM_053044 2.08 Probable serine protease HTRA3 precursor.

FBLN1 NM_006486 2.04 Fibulin-1 precursor.

APOC1 NM_001645 2.03 Apolipoprotein C-I precursor.

doi:10.1371/journal.pone.0015330.t001
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Figure 3. WNT10A functions as an angio/stromagenetic growth factor in vivo xenograft models. (A) Establishment of a stable WNT10A-
overexpressing cell line. (B), (C) The growth rate of these stable cell lines (B) in vitro and (C) in vivo. Two control cell lines (cl:2; open circle, cl:3; open
square) and two stable WNT10A-overexpressing cell lines (cl:6; closed circle, cl:25, closed square) were used. **P,0.01 compared with the control cl:2
group and #P,0.05 compared with the control cl:3 group using Scheffe’s test. n = 8 per groups. (D) Representative photograph WNT10A-
overexpressing tumors in nude mice illustrating their hypervascular nature. (E) Immunostaining of tumors with an anti-aSMA antibody. Increased
numbers of aSMA+ cells (black arrows) are clearly visible in WNT10A-overexpressing tumors. (F) Reduced areas of tissue necrosis in WNT10A-
overexpressing tumors are accompanied by increased tumor size and increased microvessel density (n = 4 or 6 per group, *P,0.05 and **P,0.01).
Microvessel density was quantified using the number of aSMA+ cells (G) Masson trichrome staining showing expansion of the extracellular matrix and
immunohistchemical analysis of mouse Type I collagen in the control and WNT10A-overexpressing tumors.
doi:10.1371/journal.pone.0015330.g003
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Figure 4. WNT10A is expressed in fibroblast cells and functions as an angio/stromagenesis growth factor in vitro. (A) RT-PCR for
human WNT10A mRNA in NHDF and HMVEC-d cells. Human YB-1 was used as a positive control and mouse Wnt10a was used as a negative control.
(B), (C) WNT10A-dependent growth of HMVEC-d and NHDF cells. For the proliferation assays using BrdU incorporation, HMVEC-d (NHDF) cells were
cultured in conditioned medium (CM) with or without WNT10A antibody for 24 hours (black bar; Control-CM, white bar; Control-CM + WNT10A
antibody 5 mg/ml, gray bar; WNT10A-CM, slash bar; WNT10A-CM + WNT10A antibody 5 mg/ml). **P,0.01. n = 3 per groups. (D) WNT10A-dependent
autocrine growth of NHDF cells. NHDF cells were cultured with the recommended medium (RM) with or without WNT10A antibody (black bar; RM,
white bar; RM + IgG 5 mg/ml, gray bar; RM + WNT10A antibody 2 mg/ml, slash bar; RM + WNT10A antibody 5 mg/ml). *P,0.05 and **P,0.01. n = 3 per
groups. (E) Complete knockdown of WNT10A expression in NHDF cells is achieved using the two siRNAs against WNT10A. Whole-cell extracts
(100 mg) were subjected to SDS-PAGE, and Western blotting analysis was performed using the indicated antibodies. (F) Knockdown of WNT10A
suppresses the growth of NHDF cells (Control siRNA; closed circle, WNT10A siRNA #1; open square, WNT10A siRNA #2; open circle). **P,0.01
compared with the control siRNA group.
doi:10.1371/journal.pone.0015330.g004
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span. Orthotopic model will be a better way to confirm our results

because it more accurately reproduces the interactions between

tumor cells and their microenvironment [31]. Nevertheless, our

data clearly show that WNT10A has angio/stromagenic activity.

Further analysis is required to clarify whether WNT10A-Frizzled

binding mediates cell proliferation in both endothelial cells and

stromal cells. Examining WNT10A receptors and associated signal

transduction pathways may provide valuable insights into the role

of circadian rhythms in tumor progression [32,33]. Our findings

not only support the emerging links between circadian rhythm,

oxidative stress and tumor progression at the molecular level, but

also warn of the adverse effects of artificial light.

Materials and Methods

Primary cells, cell lines and culture conditions
HMVEC-d and NHDF cells were purchased from Lonza Co.

HMVEC-d and NHDF cells were maintained with EGM-2-MV

BulletKit and FGM-2 BulletKit (Lonza Co), respectively. HMVEC-

d cells were cultured in endothelial cell basic medium (EBM)

containing 5% FBS and a growth factor mixture containing

hydrocortisone, ascorbic acid, FGF, VEGF, IGF, EGF and

gentamycin. NHDF cells were cultured in fibroblast basic medium

(FBM) containing 2%, FBS containing the appropriate growth

factors (insulin, FGF, and gentamycin). The human prostate cancer

Figure 5. Immunohistochemical analysis of WNT10A expression in various human cancer specimens. (A) H&E and double
immunohistochemical staining of scirrhous-type signet-ring carcinoma cells. 3,39-Diaminobenzidine (DAB) was used as chromogen for WNT10A
staining (brown color) and Vulcan fast red was used for cytokeratin CAM 5.2 staining (red color). Anti-cytokeratin CAM 5.2 was used for staining of
signet-ring cell carcinoma cells. (B) WNT10A expresses cancer stroma cells in various human cancer specimens. 3,39-Diaminobenzidine (DAB) was
used as chromogen for WNT10A staining (brown color).
doi:10.1371/journal.pone.0015330.g005
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Figure 6. WNT10A is expressed in stromal cells of keloid tissue. H&E and anti-WNT10A antibody staining in (A) normal skin and (B) keloid
tissue. WNT10A was expressed around the vessels and in the peripheral nerve cells of normal skin, but not in stromal cells. In contrast, WNT10A was
expressed around vessels, in peripheral nerve cells and strongly in stromal cells of keloid tissue. Vulcan fast red was used for WNT10A staining
(red color).
doi:10.1371/journal.pone.0015330.g006
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Figure 7. WNT10A is induced by oxidative stress. (A) 8-hydroxydeoxyguanosine levels are significantly increased in the lung tissues of L/L
compared with L/D mice (*P,0.05). (B) Reporter assays. The promoter activity of the WNT10A gene was measured using a luciferase system after the
addition of hydrogen peroxide. 42 hours after transfection (exposure time 6 hr) or 36 hours after transfection (exposure time 12 hr) of the reporter
plasmid into PC3 cells, cells were treated with 10 mM of hydrogen peroxide. Luciferase activities were assayed after 48 hours of transfection. The
results shown are normalized against protein concentrations measured using the Bradford method and are representative of at least three
independent experiments. (C) Induction of mouse Wnt10a transcripts by oxidative stress. NIH3T3 cells were treated with or without H2O2 (10 mM) for
12 hours. Total RNAs were assayed by semi- quantitative RT-PCR. Mouse b-actin was used for internal control.
doi:10.1371/journal.pone.0015330.g007
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cell line PC3 was kindly gifted by Dr M Nakagawa (Kagoshima

University, Kagoshima, Japan) [34]. Although HeLa cell line was

kindly gifted by Dr S Akiyama (Tokushima University, Tokushima,

Japan) as human epidermoid cancer KB cell line [35], we carried

out STR profiling at National Institute of Biomedical Innovation in

Japan and revealed that KB cell line is same as Hela cell line. Mouse

fibroblast NIH3T3 cell line was obtained from the Japanese Cancer

Research Resources Bank (JCRB) [36]. HeLa cells and human

prostate cancer PC3 cells were cultured in Eagle’s minimal essential

medium as described previously [37,38]. NIH3T3 cells were

cultured in Dulbecco’s modified Eagle’s minimal essential medium.

These mediums were purchased from Nissui Seiyaku (Tokyo,

Japan) and contained 10% fetal bovine serum. Cell lines were

maintained in a 5% CO2 atmosphere at 37uC.

Anti-WNT10A antibody
A polyclonal antibody was raised against WNT10A by multiple

immunization of a New Zealand white rabbit with synthetic

peptides. The synthetic peptide sequences were RKLHRLQL

DALQRGKGLSHGVPEHPALPC (aa 172–199) and CGGQL

EPGPAGAPSPAPGAPGPRRRASPA (aa 307–334). This anti-

body was used for the Western blot and cell proliferation assays.

For the cell proliferation assays, antibodies were purified from

both control and WNT10A antisera using protein G columns

(Mab Trap, Amersham Pharmacia Biotech).

Mouse studies
All protocols were approved by the Ethics Committee of Animal

Care and Experimentation, University of Occupational and

Environmental Health (admission number; AE-07039), and were

performed according to the Institutional Guidelines for Animal

Experiments and to Law (number 105) and Notification (number

6) of the Japanese government. All surgery was performed under

anesthetization (mixture of ketamine 50 mg/kg and medetomidine

1 mg/kg), and all efforts were made to minimize suffering. Eight-

week-old male nude mice (BALB/c nu/nu; Kyudo Co.) were used

for subcutaneous xenografting. Mice were injected with 100 ml

(16106 cells) of Hela cells or PC3 cells suspension at two separate

dorsal sites. The subcutaneous xenegrafting experiments were

carried out four times for HeLa cells and twice for PC3 cells. Mice

were randomly caged (5/cage) and subdivided into L/L and L/D

groups. Tumor volume was measured using the two principal

perpendicular diameters: V = length (mm)6 (width (mm))2 61/2.

Preparation of human tissue samples
Human normal skin, keloid tissue and cancer samples from

different organ were examined in the Department of Pathology

and Cell Biology at University of Occupational and Environmen-

tal Health in Kitakyushu, Japan. The diagnosis was re-evaluated

and confirmed by at least three board-certified surgical patholo-

gists who had examined formalin-fixed, paraffin-embedded tissue

sections stained with haematoxylin and eosin (H&E) or other

appropriate immunohistochemical stains.

Immunohistochemistry and histpathology
Formalin-fixed tumors (transplanted to mice or human cancer

specimens), normal human dermal tissues and human keloid

tissues were embedded in paraffin and sections were immuno-

stained using anti-CD34 (1:50; Immunotech), anti-aSMA (1:150,

DAKO), anti-mouse Type I collagen (1:250; AbD Serotec), anti-

WNT10A (1:50, Sigma-Aldrich) and anti-cytokeratin CAM5.2

(1:10, Becton Dickinson) according to the manufacturer’s

instructions. The anti-WNT10A antibody recognizes both human

and mouse WNT10A. 3,39-Diaminobenzidine (DAB) or Vulcan

fast red were used as chromogen. The necrotic area/tumor area

ratio was evaluated using NanoZoomer Digital Pathology Virtual

Slide Viewer software (Hamamatsu Photonic Co.). Masson

trichrome staining is used for evaluating extracellular matrix. All

procedures were approved by the ethics committee of the

University of Occupational and Environmental Health.

DNA microarray analysis and RT-PCR
DNA microarray analysis was performed using 3-DGene (Toray

Industries). All data is MIAME compliant and that raw data has

been deposited in a MIAME compliant database (GSE23969). Only

one tumor from each L/D and L/L group which represent the

typical look of tumors size and color was used for RNA preparation

in same experiment. Total RNA was isolated from tumors and

cultured cells using QIAshredder and RNeasy-Mini kits (Qiagen).

RT-PCR was performed using the Qiagen OneStep RT-PCR kit.

The primers used in this study are listed in Table S2. Cycle number

is 30 excluding some exceptions. The cycle number of these

exceptions is listed in each figure legend. Human specificity of h-

WNT10A primers is shown using NHDF cells (Figure 4A) and

mouse specificity of m-Wnt10a primers is shown using NIH3T3

cells (Figure S2A). Specificity of human and/or mouse b-actin

primers is shown using Hela cells and NIH3T3 cells (Figure S2B).

Plasmid construction
WNT10A cDNA was constructed by PCR using a superscript

cDNA library (Invitrogen) (Table S2). The PCR product was cloned

into the pGEM-T easy vector (Promega) and the full-length cDNA

fragment was recloned into the pcDNA3.1 vector (Invitrogen). To

prepare the reporter plasmid containing the promoter region of the

human WNT10A gene, PCR of human genomic DNA was

performed using the appropriate primers (listed in Table S2). The

PCR product was then cloned into the pGL3-basic vector (Promega).

Cloning of stable transfectants
HeLa cells were transfected with pcDNA3.1-WNT10A using

the Effectene reagent (Qiagen) and cultured with 500 mg/ml

hygromycin for 15–20 days. The resulting colonies were isolated

and the cellular expression levels of WNT10A in each clone

analyzed by Western blotting with an anti-WNT10A antibody.

Western blotting analysis
Whole-cell lysates were prepared as previously described

[38,39]. The 100 mg of whole-cell lysates were separated by

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) and transferred to polyvinylidene difluoride (PVDF)

microporous membranes (Millipore, Billerica, MA, USA) using a

semi-dry blotter. The blotted membranes were treated with 5%

(w/v) skimmed milk in 10 mM Tris, 150 mM NaCl and 0.2% (v/

v) Tween 20, and incubated for 1 h at room temperature with the

primary antibody. The following antibodies and dilutions were

used: 1:1,000 dilution of anti-WNT10A and 1:5,000 dilution of

anti-b-actin. The membranes were then incubated for 45 min at

room temperature with a peroxidase-conjugated secondary

antibody, visualized using an ECL kit (GE Healthcare Bio-

Science, Buckinghamshire, England, UK). The detection was

performed with LAS-4000 mini (FUJIFILM).

WNT10A siRNA knockdown
Twenty-five base-pair double-stranded RNA oligonucleotides

were commercially generated (Invitrogen) (Table S3). siRNA

transfections were performed according to the manufacturer’s
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instructions with modifications (Invitrogen) [38,40]. StealthTM

RNAi Negative control Duplexes (Cat. No. 12935-300; Invitro-

gen) was used as control siRNA. Whole cell extracts (100 mg) were

prepared from fibroblasts 72 hrs after siRNA transfection and

Western blotting was performed.

Conditioned Media (CM)
Stable transfectants were cultured in MEM containing 10%

FBS until they formed confluent monolayers. The MEM was then

replaced with either conditioned EBM (all growth factors and FBS

are 0.1 fold compared to normal EBM) or conditioned FBM

(insulin, FGF and FBS are 0.1 fold compared to normal FBM) for

24 hours, after which the medium was collected. The CM was

then centrifuged and filtered to remove cells and debris. Control-

CM was prepared from the culture medium of growing control-cl2

cells, and WNT10A-CM was prepared from the cultured medium

of growing WNT10A-cl25 cells.

Cell Proliferation Assays
WNT10A-overexpressing cell lines and control cell lines were

seeded in 12-well plates and counted every 12 hours. NHDF cells

were seeded in 12-well plates and transfected with siRNA as

described above. For the purposes of analysis, ‘‘0 hours’’ was taken

to be 12 hours post transfection. The cells were harvested with

trypsin and counted with a Coulter-type cell size analyzer (CDA-

500, Sysmex). BrdU was incorporated using a cell proliferation

ELISA kit (Roche Diagnostics).

Luciferase assay
Transient transfection and luciferase assays were performed as

previously described [40]. Briefly, PC3 cells (16105) were seeded

into 12-well plates and, one day later, transfected with the

WNT10A reporter plasmid using the Superfect reagent (Qiagen).

Finally, the cells were incubated under normal culture conditions,

or in the presence of 10 mmol/L (10 mM) H2O2. Forty-eight hours

post-transfection, the cells were lysed with reporter lysis buffer

(Promega) and luciferase activity was detected using a Picagene kit

(Toyoinki). The results shown are normalized against protein

concentrations measured using the Bradford method and are

representative of at least three independent experiments.

Measurement of 8-hydroxydeoxyguanosine
The amount of 8-hydroxydeoxyguanosine (8-OH-dG) present

in the cellular DNA was measured using a high performance liquid

chromatography (HPLC)-electrochemical detector (ECD) system

as previously described [41]. The final 8-OH-dG value was

calculated as the number of 8-OH-dG residues/106 dG residues.

Statistical analysis
We compared continuous variables with repeated measure

analysis of variance (ANOVA), and differences between groups

were determined by Scheffe’s test. Student t test was used for

statistical analysis of the variables between the two groups. All

error bars indicate standard deviation.

Supporting Information

Figure S1 Comparison of HeLa cell tumors in L/L and
L/D mice. Eight representative tumors are shown.

(TIF)

Figure S2 Analysis of specificity of mouse Wnt10a
primers, human b-actin primers and mouse b-actin
primers. (A) Mouse Wnt10a primers amplified mouse Wnt10a

transcripts derived from mouse fibroblast NIH3T3 cells, but

human WNT10A primers did not. (B) Human b-actin primers

amplified human b-actin transcripts derived from human Hela

cells, but mouse b-actin did not. Mouse b-actin primers amplified

mouse b-actin transcripts derived from mouse fibroblast NIH3T3

cells, but human b-actin primers did not. The cycle number is 40

for all RT-PCR.

(TIF)

Figure S3 Immunohistochemical analysis of WNT10A in
control tumors and WNT10A-overexpressing tumors.

(TIF)

Figure S4 Immunohistochemical analysis of b-catenin
in L/D and L/L tumors, and control tumors and
WNT10A-overexpressing tumors.

(TIF)

Table S1 Genes differentially expressed between L/L
tumor and L/D tumor samples. The list of selected
genes with fold change marked .2.0 between L/L tumor
and L/D tumor samples.

(DOC)

Table S2 Primers used for construction of reporter
plasmid, protein expression plasmid and semi-quanti-
tative RT-PCR.

(DOC)

Table S3 Double-stranded RNA 25-base pair oligonu-
cleotides used for WNT10A kockdown analysis.

(DOC)
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