
Challenges in Identifying Sites Climatically Matched to
the Native Ranges of Animal Invaders
Gordon H. Rodda, Catherine S. Jarnevich*, Robert N. Reed

Invasive Species Science, U.S. Geological Survey Fort Collins Science Center, Fort Collins, Colorado, United States of America

Abstract

Background: Species distribution models are often used to characterize a species’ native range climate, so as to identify
sites elsewhere in the world that may be climatically similar and therefore at risk of invasion by the species. This endeavor
provoked intense public controversy over recent attempts to model areas at risk of invasion by the Indian Python (Python
molurus). We evaluated a number of MaxEnt models on this species to assess MaxEnt’s utility for vertebrate climate
matching.

Methodology/Principal Findings: Overall, we found MaxEnt models to be very sensitive to modeling choices and selection
of input localities and background regions. As used, MaxEnt invoked minimal protections against data dredging, multi-
collinearity of explanatory axes, and overfitting. As used, MaxEnt endeavored to identify a single ideal climate, whereas
different climatic considerations may determine range boundaries in different parts of the native range. MaxEnt was
extremely sensitive to both the choice of background locations for the python, and to selection of presence points:
inclusion of just four erroneous localities was responsible for Pyron et al.’s conclusion that no additional portions of the U.S.
mainland were at risk of python invasion. When used with default settings, MaxEnt overfit the realized climate space,
identifying models with about 60 parameters, about five times the number of parameters justifiable when optimized on the
basis of Akaike’s Information Criterion.

Conclusions/Significance: When used with default settings, MaxEnt may not be an appropriate vehicle for identifying all
sites at risk of colonization. Model instability and dearth of protections against overfitting, multi-collinearity, and data
dredging may combine with a failure to distinguish fundamental from realized climate envelopes to produce models of
limited utility. A priori identification of biologically realistic model structure, combined with computational protections
against these statistical problems, may produce more robust models of invasion risk.
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Introduction

In this introduction we first establish that climate matching is a

scientific activity with large public policy implications, using the

example of the python. Second, we give evidence that scientific

uncertainty over the optimal method for characterizing climate is a

major contributor to the controversy. Third, we outline a crucial

conceptual issue that distinguishes different modeling approaches

to identifying potential areas of invasion. This conceptual issue is

sometimes characterized as fundamental versus realized climate

space and sometimes characterized as ‘‘transferability.’’ We then

outline two other key areas of modeling controversy (overfitting,

and model validation), as resolution of these key issues is highly

sensitive to model conceptualization. Finally, we outline the scope

of our analysis.

In 2008 the U.S. Fish and Wildlife Service (USFWS) solicited

advice from the general public on the potential merits of restricting

importation to minimize risk of invasion of the U.S. by nine exotic

species of giant constrictor snakes [1], including the Indian Python

(Python molurus), best known through sales of the Burmese

subspecies, Python molurus bivittatus. At about the same time, we

published results of our analysis of the areas of the U.S. that are

climatically matched to the native range of the Indian Python [2],

henceforth simply ‘‘Rodda et al.’’ For reference, the key map from

that work is reproduced here as Fig. 1. The publication of our map

and the USFWS Notice of Inquiry were connected in the sense

that USFWS had joined the U.S. National Park Service in funding

our U.S. Geological Survey (USGS) study. Understandably, some

affected members of the public perceived our work as interagency

collaboration in support of regulation of trade in giant constrictors,

though USGS had no policy position on invasive species

regulation, and we were under no pressure, either imposed by

the funding sources or self-imposed, to support regulation, or bias

the size or extent of the U.S. area that climatically matched the

python’s native range. We provided the climate match to inform

the discussion.

Pyron et al. [3], henceforth simply ‘‘Pyron et al.’’, countered

with an alternate map showing areas of the U.S. that climatically

matched the python’s native range; their map was embraced by

opponents of regulation (e.g., [4]) because it showed a much
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smaller area of climatic agreement (Fig. 2). Indeed, Pyron et al.

concluded that ‘‘The Burmese python is strongly limited to the

small area of suitable environmental conditions in the United

States it currently inhabits…’’ They also averred, ‘‘The proposed

expansion of the python into the continental United States would

require an expansion of the actual tropical marshland habitat

comprising most of the Everglades, not simply the presence of

similar temperature and precipitation conditions.’’ If either of

these claims were true, no further areas of the U.S. would be at

risk of colonization, and regulation of U.S. trade in this species

would be largely moot. Although Pyron et al. did not expressly tie

their climate match to policy, they did lay claim to the policy high

Figure 1. Areas matching the climate envelope expressed by P. molurus as detailed by Rodda et al. [2]. The computation was based on
the snake’s native range under two hypotheses of hibernation duration: clim3 (assumed duration of hibernation 3 months) and clim4 (assumed
duration of hibernation 4 months). The original map was of the United States only, created using Daymet climate data (http://www.daymet.org; [69])
while the global inset was created using the WorldClim data at 30 arc-second resolution.
doi:10.1371/journal.pone.0014670.g001

Figure 2. Our recomputation of MaxEnt match for Pyron et al.’s original 90 locations, using worldwide background (Overfit-Global-
90 points). Novel condition localities are stippled gray. The upper inset is a global projection using the threshold adopted by Pyron et al. (minimum
training presence). The lower inset portrays suitability scores by gradations of red color, where intensity increments are set by the standard deviation
of training point suitability scores.
doi:10.1371/journal.pone.0014670.g002
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ground by asserting that, ‘‘The alarmist claims made by USGS

could potentially hamper scientific discourse and inquiry into the

problem, especially with regard to policy-making.’’

The notice of inquiry and subsequent proposed rulemaking

generated a substantial public response, with a large number of

comments received (55,600), and most of the criticism focused on

the climate matching result for one of the nine species under

consideration, the Indian Python (Art Roybal, U.S. Fish and

Wildlife Service, 2010 pers. comm.). The intensity of the public

reaction documents that climate matching can be a key element in

establishing environmental policy, and that differences among

approaches to climate modeling are critical for evaluating the

scientific basis for the policy. One element of this controversy is the

herpetological facts that were the basis for the models. In these,

Rodda et al. and Pyron et al. did not noticeably differ and the

herpetological facts will not be discussed further. Another element

of the controversy is the modeling approach, for which the two

teams took divergent approaches: Rodda et al. adopted a climate

suitability algorithm based on first principles, and Pyron et al. used

a statistical tool to discover a climate suitability algorithm. Ideally,

one would have some method for validating the projections, but

there is no obvious way to validate the likelihood of a hypothetical

event. Furthermore, the validity of these specific models might rest

on factors unique to the Indian Python, and therefore be of limited

interest. More generally, we can evaluate the internal validity of

the climate matching process. The general framework of the climate

matching process was the same for both teams.

Both Rodda et al. and Pyron et al. relied on the assumption that

the geographic boundaries of the species’ native range offer insight

into the boundaries of the species’ climate envelope. For both

studies, step 1 was linking native range geographic space to climate

space. Having estimated the boundaries of the species’ climate

envelope, step 2 was projecting from inferred climate space to

inferred geographic space, in this case to geographic areas where

the species might invade. Both studies followed this two-step

paradigm based on the native range distribution. Where the two

approaches differed was in how best to choose the axes upon

which to delineate the climate envelope boundaries. Rodda et al.

chose axes based on their interpretation of the key ecological

factors; Pyron et al. used an automated statistical algorithm

(Maximum entropy modeling or program MaxEnt [5,6]) to

identify the multivariate correlations between 19 climate axes

and climate conditions present at 90 geographic localities within

the species’ native range. Pyron et al. asserted that their model

represented ‘‘ecological niche modeling’’ whereas ours did not. In

actuality we both used the classical two step paradigm for inferring

climate constraints, but differed in the algorithm with which the

key climate axes were identified. We do not believe that either

approach characterizes ‘‘niche.’’

MaxEnt has been used for a very large number of species [7–

11], and is the most accessible tool for non-specialists. Thus, rather

than focus on the specifics of the Pyron et al. study, we here

undertake a critique of the conventional (default settings) invasive

animal species application of MaxEnt, with the objective of

refining climate matching in general. However, our observations

are intended neither to critique other applications of MaxEnt (e.g.,

habitat suitability mapping) nor to apply to other climate matching

situations (e.g., animal range expansion, plant species). We

recognize that climate matching for invasive species is a young

science and current approaches, including ours, will be improved

over time. We make no claim that any approach is flawless, but

hope to propel improvement by pointing out the flaws that need

resolution. Peterson [12] lists nine uses for species distribution or

ecological niche models, of which our remarks apply directly to

only one of these, the prediction of species’ invasions. Our

concerns apply most forcefully to inferences involving transfer of

climate associations from one region or continent (usually the

species’ native range) to another (typically a prospective invasion

range). Related issues arise when transferring inference from one

temporal context to another (e.g., climate change). Our remarks

specifically do not apply to plants (which lack behavioral options

for local climate adaptation), use of MaxEnt for geographic

interpolation (no transferability required), application to range

shifting species [e.g.,13,14], or execution of MaxEnt with different

(i.e., customized) settings. We also recognize that mechanistic

climate matching models [e.g.,13–16] offer dramatic advantages

over correlational models (e.g., Rodda et al., Pyron et al.), but

mechanistic models may not be available for the screening of

thousands of potential invasive species, because the requisite

species-specific knowledge does not exist. Below we present

concerns about the rote application of MaxEnt with regard to:

1) conceptualization of climate matching for the purpose of

invasive species risk assessment, 2) the statistical approach taken

when building and testing MaxEnt climate matching models, and

3) assumptions made by Pyron et al. and many other rote MaxEnt

users with reference to their choices when selecting presence and

background localities.

Having established that climate matching is a key tool for

environmental policy making, and that MaxEnt is a key tool for

climate matching, we address a conceptual issue, variously referred

to as fundamental versus realized climate space, or ‘‘transferability.’’

This issue is crucial because MaxEnt, as it is conventionally

applied, quantifies realized climate space, whereas the geographic

area at risk of invasion is associated with the fundamental climate

space. To fully understand this issue we need to explore the

distinction between fundamental and realized niche space [17,18].

As is frequent practice, however, we are referring solely to climate

factors, which are only one component of niche. In our view, the

fundamental climate space delineates the climatic conditions that

could be occupied by a species if climate were the only limiting

factor, and the realized climate space is the range of climate

conditions that are actually occupied. Historical, access, non-

climate abiotic, and a panoply of biotic factors can preclude

occupancy of portions of fundamental climate space [19], a point

ignored by many MaxEnt modelers such as Pyron et al., but

already clear to Darwin ([20], p. 137): ‘‘But the degree of

adaptation of species to the climates under which they live is often

overrated. We may infer this from our frequent inability to predict

whether or not an imported plant will endure our climate, and

from the number of plants and animals brought from warmer

countries which here enjoy good health. We have reason to believe

that species in a state of nature are limited in their ranges by the

competition of other organic beings quite as much as, or more

than, by adaptation to particular climates.’’

Darwin established that there is a difference between where a

species does occur (realized climate space) and where an invasive

species might occur if freed from other constraints (fundamental

climate space). This distinction is often represented by a Venn

diagram, with several different versions in print [e.g., 11,17,21].

However, none of the published versions represent our views

precisely, so we created our own, for clarity (Fig. 3). Our Venn

diagram of the native range (Fig. 3A) considers the overlap

between three sets of conditions: climatic conditions ( = funda-

mental climate space), biotic conditions, and accessible areas (e.g.,

not separated from occupied native range by a dispersal barrier

such as salt water). Hutchinson’s original formulation of niche [22]

distinguished only biotic from abiotic conditions. By restricting our

concern to only climatic abiotic conditions, we run the risk of

Climate Match Challenges

PLoS ONE | www.plosone.org 3 February 2011 | Volume 6 | Issue 2 | e14670



omitting consideration of non-climatic abiotic conditions; for

example, the availability of abiotic refugia such as rock crevices or

subterranean hibernacula. Thus a complete rendition of the

factors constraining occupied climate space would need to include

an additional set representing limiting non-climatic abiotic

conditions. For simplicity, we have omitted this set from our

diagram, but are mindful of the importance such factors could play

in the viability of populations, including that of the focal species.

The degree of overlap between the conditions represented in

our Venn diagram is contingent on the geographic location under

consideration; for Figure 3A this is the native range. In our view,

the boundaries of the fundamental climate space are usually stable

over a management time frame (decades); in this sense they are

fundamental. Fundamental niche attributes tend to be evolution-

arily conserved [12,23], and therefore evolution of the fundamen-

tal climate space boundaries will ordinarily occur slowly, over time

frames longer than is relevant for invasive species management

policy. The other two circles are highly contingent, moving their

shape and position in reference to differing focal locations [24].

The biotic conditions associated with a single potential introduc-

tion site (e.g., a given dashed circle in Fig. 3B) differ in overlap

with the fundamental climate space from that present in the native

range (Fig. 3A), because different biotic conditions prevail in

different geographic areas.

We treat the native range as occupying only the union of all three

conditions in Fig. 3A (Fundamental Climate Space>Biotically

Favorable>Accessible), which we call the realized climate space

[22]. The realized climate space in a Venn diagram of a specific

introduced range would also be the triple union (not illustrated), but

the region accessible to dispersers in a single introduction site might

be rapidly growing over time as the population spreads (i.e., the

boundaries of the access circle may be very dynamic [25]).

Our conceptualization differs from some others in that we take

no position on the importance of competition over other biotic

factors [21]. Under typical conditions of human-aided transport

(e.g., in the absence of hybridogenesis), we would expect

translocation to not affect the fundamental climate space [11],

but to alter the realized climate space, which would be prone to

expansion as a result of expanded access (by definition, human

translocation is manifest in a relaxation of access barriers), and

altered, often more permissive, biotic conditions [26,27].

One policy challenge to a regulator of prospective invasive

species is to determine what geographic space is potentially

occupiable (Fig. 3B). We concur with Peterson [12], Jimenez-

Valverde et al. [24], and B. Phillips et al. [13] that such areas are

best estimated by matching of the fundamental climate space to

the prospective location. This is the viewpoint expressed by

Darwin, though he did not use the newer terminology (‘‘funda-

mental’’ and ‘‘realized’’).

Instead of discussing this issue in terms of fundamental and

realized climate spaces, many observers refer to ‘‘transferability’’

of the climate match from a species’ native range to an introduced

range [27–30]. That is, researchers model the realized climate

space in one or more parts of the world and ask whether the

inferred climate envelope ‘‘transfers’’ to the realization of the

fundamental climate space that has occurred elsewhere. The few

such studies have produced inconsistent records of transferability

[27,31], and have been generally unfavorable in the few studies of

reptiles or amphibians [9,11,16]. Although there have been

examples of birds whose introduced population’s equilibrium

range limits reflect a climate envelope that was smaller than one

similarly derived from its native range [32], the majority of

examples, especially of herpetofauna, reflect the converse:

introduced ranges reflect a greater climatic range than was found

in the native range [16,33,34]. The general pattern of greater

climatic scope in the introduced ranges has led some observers to

seek a general explanation based on more favorable biotic

conditions (fewer predators, less disease, fewer parasites, etc.) in

the introduced range [26]. Constraining possibilities include the

absence or presence of dispersal barriers in the introduced range;

failure to model a limiting factor that applies in both ranges, but is

more geographically limiting in one of the ranges; and an

introduced range that is not at ecological equilibrium (spread still

progressing).

This discussion of realized and fundamental climate spaces

highlights the problems of verification of climate matching models.

If one were to withhold a portion of the native range points to

validate one’s model of the realized climate space, and if one were

to target in the model fit a balancing of geographic errors of

commission (unoccupied range judged suitable) and omission

(native range judged unsuitable), as Pyron et al. and many others

have done (see [35]), one might obtain a relatively ‘‘accurate’’

model, but it would be of the wrong (i.e., realized) climate space.

Figure 3. Our concept of the relationship between fundamen-
tal climate space and realized climate space. The fundamental
climate space is shown by a solid line and represents conditions for
which only climate is limiting. A. With reference to native range. See
text for further discussion. B. With reference to prospective introduction
localities (blue zone). The limitations associated with access disappear
when one is considering all possible localities where a species might be
introduced by human agency.
doi:10.1371/journal.pone.0014670.g003
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An impressive test AUC (Area Under the receiver operating

characteristic Curve) is no indicator of model value if you’re

modeling the wrong target. Transferability is more likely to be

robust if the fundamental climate space is modeled well (axes

represent true ecological drivers), or in the unlikely event that

biotic and dispersal factors present in the native range are

functionally and geographically equivalent to those in the

introduced range and the covariance structure among the climate

axes is unchanged between native and introduced ranges [25,28].

Overfitting of the realized climate space is a problem often cited

with highly parameterized species distribution models

[25,28,36,37] such as MaxEnt models created with default

parameter settings. Overfitting will induce underprediction when

the climate model is applied to new geographic locations.

Overfitting also affects the application of a climate model to novel

conditions (those climates not considered in the calibration of the

original model). With overfitting, additional geographic areas are

subject to the ‘‘novel’’ descriptor as additional climate dimensions

(axes) are used in the model. However, statistical overfitting is

usually referenced only to the realized climate space; overfitting

metrics do not ordinarily consider overfitting with reference to the

larger, fundamental climate space.

MaxEnt in the default settings uses ‘‘regularization’’ parameters

that are optimized on the basis of external calibration data, not the

actual data set used, to constrain overfitting, but the target for

these ‘‘rule-of-thumb’’ regularization parameters is the training

(i.e., realized) climate space not the fundamental climate space

[38]. In the version of MaxEnt we used (3.2.3a), the rules-of-

thumb for regularization parameters were based on twelve species

(one frog, one reptile, three birds, seven plants: [38]) with 11 to 13

environmental variables and numerous well-behaved locality data

(more regularization may be needed for more complex models,

such as the 19 environmental variables used by Pyron et al., or

weaker locality data). MaxEnt’s regularization parameter settings

based on a mix of plants and animals might or might not be

appropriate for pythons, or for a particular set of localities such as

clustered point locations. Thus it would be useful to have a

mechanism for applying regularization to the actual data used.

One possible data-specific test is based on splitting the data

between training and test fittings [39]; overfitting of the realized

climate space should result in a lower accuracy for the test data

relative to the accuracy associated with the training data.

Correct fitting of the realized climate space will result in an

equivalent accuracy for the test data, but it has to be recognized

that even an optimal fitting of the realized climate space will result

in an underprediction of the fundamental climate space that is of

interest. For this reason, Jimenez-Valverde et al. [24] concluded

that simple models (fewer parameters, simpler relationships)

should be favored over complex ones (more parameters, more

complex functions: overfit) for modeling potential invasive

distributions. Therefore the penalties for underfitting and over-

fitting are asymmetric in the case of projecting potential invasive

ranges. Underfitting of the native range (realized climate space)

will more closely approximate the fundamental climate space than

will the optimal fit, whereas overfitting of the native range will

underpredict the realized climate space and err even further from

accurately predicting the fundamental climate space that is of

interest for projecting potential invasive ranges. As we show below,

Pyron et al. grossly overfit the realized climate space, thereby

underpredicting both realized and fundamental climate space.

This phenomenon is likely to occur with many default applications

of MaxEnt to invasive species climate matching.

We also discovered that Pyron et al. used several localities for

the wrong species, and chose background points from a global

pool, rather than true absences or the regional background

recommended by the developer of MaxEnt [30,34,40]. Such data

errors appear often in data sets; by comparing MaxEnt output

with and without correction we explore MaxEnt sensitivity to their

occurrence. To subject our rule-based method for climate

matching to a similar challenge of input variation, we estimated

the climate space captured by a range of sample sizes with our

algorithm. To address Pyron et al.’s criticism that we erred by

including empirical climate data from native range weather

stations rather than using modeled climate for point presences, we

also consider two presence point data sets using modeled rather

than empirical climate statistics.

Materials and Methods

In this work we recomputed MaxEnt models using the

published protocol of Pyron et al., with the exceptions stated

below. However, we were unable to exactly duplicate their results

in all details, despite contact with the authors to determine what

settings may have differed from those used in their paper.

However, only a very sharp-eyed observer will be able to detect

any discrepancies, and they do not affect the issues raised. We

followed Pyron et al.’s lead in using the least-probable training

point likelihood (‘‘minimum training presence’’) to set the

threshold for discriminating suitable from non-suitable habitat.

Except for two specified model runs, our input localities differed

from that of Pyron et al. only in that we used 86 rather than 90

localities. The four excluded localities were taken by Pyron et al.

from Nabhitabhata and Chan-ard [41], but in that document they

are labeled as localities for a different python, the Blood Python

(Python brongersmai). Thus our use of 86 rather than 90 localities

simply corrected an input error (included points and omitted

points shown in Fig. 4). The other key change we made regarded

the choice of background conditions, often discussed as ‘‘pseudo-

absences’’ (MaxEnt developer Phillips (pers. comm.) rejects the

characterization of ‘‘absences,’’ as MaxEnt assumes that back-

ground conditions include true presences;). We considered three

alternative suites of background conditions, utilizing the exact

same background points in each set of models for the three suites.

The first set of two models (worldwide background) followed

Pyron et al. The second set, of three models, used the conventional

choice of background localities from the region of the presences

(here defined as the minimum convex polygon (MCP) of Pyron

et al. localities plus 2 pixels (2.5 min resolution; Fig. 4)). The

conventional MCP choice of background localities has been

criticized for minimizing the contrast between presence and

absence, especially for wide-ranging species of low detectability,

such as our subject. For this reason, Lobo [42,43] recommended

selecting background from areas that are immediately adjacent to

occupied habitat but are known to be unoccupied. To determine

the impact of such a choice on MaxEnt’s background selection, we

adopted this rationale for our third choice of background (one

model), which were taken from the Thar Desert, eastern China

north of the known range, central China west of the known range,

the Malay Peninsula south of the Isthmus of Kra, Borneo,

Sumatra, and small islands offshore of those large Indonesia

islands (Fig. 4).

Using the conventional MCP background choice, we computed

three MaxEnt models, based on: 1) 86 localities modeled using the

default regularization setting, 2) 90 localities using increased

regularization, as determined by the application of the small

sample corrected variant (AICc) of Akaike’s Information Criterion

(AIC) recommended by Warren and Seifert [39], and 3) 86

localities modeled using the same AIC-based regularization.

Climate Match Challenges
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Contrasting the latter two models allowed us to assess the degree to

which reduced-complexity models remained sensitive to input

variation, and how variation in reduced-complexity models altered

identification of key climate axes and thresholds associated with

minimum training presence. We projected these three MCP

models to the globe, and had MaxEnt calculate locations with

novel conditions (i.e., locations with climate outside the range of

that covered by the presence and background locations used to

develop the model) via the MESS analysis tool [14].

To estimate the precision of each of the six MaxEnt models, we

ran each 25 times, withholding a different 10% of the localities

each time. For direct comparison to Pyron et al., we also ran a

single run of each model, specifying the training and test data

locations to ensure consistency. We judged a climate axis to be

‘‘important’’ if its percent contribution exceeded 10%, and we

evaluated the suitability of each climatic condition on the basis of

the marginal response curves. To assess whether the alternate

metric of climate variable importance - permutation importance -

was consistent with the pattern exhibited by percent contribution,

we computed r2 for the correlation between ‘‘important’’ variable

weights in these two metrics (we omitted variables which were

rated unimportant with both metrics), separately for overfit and

AICc constrained models. For each model we counted parameters

using the algorithm of Warren and Seifert [39].

We computed the correlation matrix of the 19 climate axes used

by Pyron et al., based on the climatic conditions prevailing at 5000

random localities within the native range region.

In addition to recomputing MaxEnt with alternate presence

localities and alternate selections of background, we recomputed

our rule-based model using alternate native range climate inputs,

and we tabulated our climate space under a variety of reduced

sample sizes to judge the sensitivity of our method to small

samples. Our alternate native range climate inputs were selected to

match the localities and procedure of Pyron et al., who used

modeled climate from museum collection localities, a method they

judged superior to our use of empirical climate records from areas

within the native range (but not demonstrably occupied by

pythons). However, as Pyron et al. had substantially fewer

localities than was used in our original model, we considered

both the small Pyron et al. locality list and an augmented list to

assess the sensitivity of this result to a range of sample sizes. For the

small list of localities (84 points) we omitted two additional

questionable localities from Pyron et al.’s 86, one of which simply

failed to generate usable climate data from the WorldClim dataset

(available at http://www.worldclim.org; [44]); the other locality

was outside of the known range of the Indian Python (south of

Isthmus of Kra), and may represent a recent range extension, a

human translocation, a recording error, or inaccurate character-

ization of the native range. For the larger list (98 localities) we

added 14 localities at the northern and western fringes of the

native range, which were poorly represented in the Pyron et al.

data set. The additional localities were from the literature [45–49]

or from specimens at the California Academy of Sciences.

To judge the sensitivity of our rule-based method to reductions

in sample size, we computed the relative amount of climate space

that would have been detected by our method had our sample

been a random subset of the original 149 localities [2]. Subsequent

to the original analysis, we identified 2 additional suitable

localities; thus our estimate of the sensitivity of our method to

sample size was based on ten random draws for each decile of the

151 localities, with area computed in units of 0.1 log10(Precipita-

tion in mm/mo) and degrees C.

Figure 4. Backgrounds and locality points used for Maxent models.
doi:10.1371/journal.pone.0014670.g004
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Results

The six MaxEnt model results are summarized in Table 1; the

geographic projections for the six models are in Figs. 2, 5, 6, 7, 8,

9, and a graphical summary of important climate variable

contributions is in Fig. 10. The original Pyron et al. model

(Overfit-Global-90 points), replicated 25 times, produced a

minimal but plausible geographic match to the U.S. (Fig. 2),

minimal match to tropical areas of the world outside of the native

range (Fig. 2 insets), geographic evidence of overfitting (deeply

fragmented matches in much of the tropical world), high

parameter counts (approaching the number of localities used as

input: Table 1), an exemplary test AUC (0.971), and a very low

minimum training presence (0.092). The important input variables

(fig. 10) were isothermality (11%; lower daily range more suitable),

precipitation of the wettest month (35%: wetter sites more

suitable), and precipitation seasonality (12%: more variable rainfall

was more suitable).

Removal of the four Blood Python localities (Overfit-Global-86

points) produced a radically different climate match to the U.S.

(Fig. 5). Whereas inclusion of the Blood Python points had

produced a MaxEnt model that matched only the extreme southern

tips of Florida and Texas (Fig. 2), exclusion of the 4 erroneous

points led to matches throughout the Gulf Coast, and the Atlantic

coast north to the Outer Banks (North Carolina), as well as climate-

matched localities on the Pacific coast from northern California

northward to Alaska. The model found climatically suitable inland

sites in Arizona, New Mexico, Texas, and Oklahoma. The match

also included some surprisingly temperate zones in the southern

Andes (Fig. 5 insets). Like the original model, Overfit-Global-86

points had minimal match to tropical areas of the world outside of

the native range (Fig. 5 insets), geographic evidence of overfitting

(fragmented matches in much of the tropical world), high

parameter counts (Table 1), an exemplary test AUC (0.973), and

an extremely low minimum training presence (0.013). The

important input variables (fig. 10) were isothermality (14%;

intermediate daily ranges more suitable), precipitation of the

wettest month (44%: wetter sites more suitable), and precipitation

seasonality (12.2%: more variable rainfall was more suitable).

Because all of the world’s terrestrial climates were present in the

background training conditions, MaxEnt identified few novel

conditions for these models (Figs. 2, 5).

The Overfit-Regional absences-86 points model had a substan-

tially larger geographic projection to the U.S., with appreciable

portions of all coastal states (and inland as far as Arkansas) from

North Carolina to Alaska (Fig. 6). The model did not produce any

climate matches in the interior, and novel conditions existed

throughout the interior (Fig. 6). The geographic match included

some remarkably temperate coastal localities (extreme Southern

Andes, Norway, Iceland, Aleutians), but the tropical areas were

less fragmented than in the preceding two models, suggesting

reduced overfitting. Nonetheless, it had a high parameter count

(Table 1), a high test AUC (0.976), and an even lower minimal

training presence (0.003). Three of the five important climatic

variables did not appear in the global models (temperature

seasonality: 14%, aseasonal areas more suitable; mean tempera-

ture of the driest quarter: 12%, intermediate temperatures

favorable; precipitation of the driest month: 12%, least precipita-

tion more suitable), but isothermality (29%, low daily ranges more

suitable) and precipitation of the wettest month (16%, wetter sites

more suitable) were again found to be important.

The three remaining models all used for background the

minimum convex (MCP) polygon surrounding the native range.

Overfit-MCP-86 points had an extensive area of suitability in the

U.S. (Fig. 7), primarily interior sites (and peninsular Florida and

coastal British Columbia). However, most of these interior sites

exhibited novel conditions, reducing certainty about their

suitability. Locations with novel conditions were identical for all

the MCP models (i.e., extensive in interiors of subtropical and

temperate continental areas). Global matches were mostly tropical

and coastal, but included a large area in the interior of South

America, and small unexpected patches in places like Japan and

Figure 5. Our recomputation of MaxEnt match based on Pyron et al.’s 86 locations using worldwide background (Overfit-Global-86
points). The localities distinguishing the input data set for this figure from that of Fig. 2 were the four sites occupied by a different species (Blood
Pythons, as indicated in Fig. 4). Other mapping conventions as in Fig. 2.
doi:10.1371/journal.pone.0014670.g005
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Denmark. Geographic fragmentation was intermediate, the

parameter count was again high, the mean test AUC was

substantially lower than the preceding models (0.702), and the

minimum training presence was much higher (0.159). Isotherm-

ality was the most important climatic variable (20%, low daily

ranges more suitable), mean temperature of the driest quarter

reappeared (13%, low and intermediate values equally suitable), as

well as a new climate variable: precipitation of the driest quarter

(11%, all except the lowest values suitable).

AICc-MCP-90 points produced a relatively modest fit to the

U.S., largely limited to peninsular Florida and coastal Texas, with

most continental interiors masked due to novel conditions

worldwide at subtropical and temperate latitudes. Suitable areas

included most of the wetter tropics, for which suitable blocks were

mostly unfragmented (Fig. 8), as was expected given the much

lower parameter count. The mean test AUC was again low

(0.711), but the minimum training presence was higher (0.237).

The important climatic variables had little similarity with those

Figure 6. Our recomputation of MaxEnt match based on Pyron et al.’s 86 locations using regional absences (Overfit-Regional
absences-86 points). Other mapping conventions as in Fig. 2.
doi:10.1371/journal.pone.0014670.g006

Figure 7. Our recomputation of MaxEnt match based on Pyron et al.’s 86 locations using for background the minimum convex
polygon around the native range (Overfit-MCP-86 points). Other mapping conventions as in Fig. 2.
doi:10.1371/journal.pone.0014670.g007
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identified in the previous models: 19% annual mean temperature

(hotter better); 17% mean diurnal temperature range (reduced

variability better); annual temperature range: 11% (reduced

variability most suitable), and precipitation seasonality: 11% (high

variability most suitable).

AICc-MCP-86 points hardly differed from AIC-MCP-90 points

in its geographic match to the U.S. or to the world (Fig. 9 and

Fig. 9 inset), placement and extent of novel climates, parameter

count, fragmentation, minimum training presence, and the role of

the top two climatic variables. Test AUC was slightly lower

(0.624), and precipitation of the driest month emerged in

importance (18%, precipitation of the driest month: least

precipitation most suitable) in apparent replacement for annual

temperature range and precipitation seasonality.

The relationship between the two metrics of climate variable

importance (percent contribution and permutation importance)

was negligible for both the four overfit models (r2 = 0.04) and the

two AIC models (r2 = 0.01).

Figure 8. Our AICc-constrained recomputation of MaxEnt match based on Pyron et al.’s 90 locations using for background the
minimum convex polygon around the native range (AICc-MCP-90 points). Other mapping conventions as in Fig. 2.
doi:10.1371/journal.pone.0014670.g008

Figure 9. Our AICc-constrained recomputation of MaxEnt match based on Pyron et al.’s 86 locations using for background the
minimum convex polygon around the native range (AICc-MCP-86 points). Other mapping conventions as in Fig. 2.
doi:10.1371/journal.pone.0014670.g009
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We estimated the effect of sample size on the Rodda et al. rule-

based algorithm for climate matching (Fig. 11), in which about

55% of the climate space was detected in an average sample of

10% of our localities. A sample size of 50% (75 of 151 localities)

averaged 88% of the climate space of the full data set, and larger

samples captured an average of at least 90%.

The 19 climate axes used by Pyron et al., were multi-collinear

(Table S1). The modal r value among the 171 pairwise comparisons

was in the 0.8–0.9 decile, with 28% of the available correlations in

excess of 0.8. Two-thirds (115 of 171) of the r values exceeded 0.5.

We applied two samples of documented presence localities (84

localities or 98 localities) to our rule-based algorithm for

characterizing climate space in the Indian Python. As estimated

with modeled climate from Hijmans et al. [44], these two sets

yielded very similar climate envelopes and closely bracketed those

we obtained using empirical climate data (Fig. 12) and inferred

presence localities. For the models that treated the Indian Python as

being capable of three months of hibernation, climate space in

relation to our original computation [2] was 94% and 107% for the

84 locality and 98 locality compilations respectively. The equivalent

values for four months of hibernation were 95% and 105%.

Discussion

Our results highlight the variation among MaxEnt models with

slight differences in inputs or parameter values. It is evident that no

Figure 10. Important climate variables for each of the six MaxEnt models. Variables contributing less than 10% to the model are
aggregated in ‘‘Drivers,10%.’’
doi:10.1371/journal.pone.0014670.g010
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single run or single model constitutes a definitive solution [c.f. 3].

How does one go about choosing among the various iterations? In

our experience, AUC is not useful for choosing among the models.

For example, the first three models we considered (Overfit-Global-

90, Overfit-Global-86, and Overfit-Regional absences-86) had

widely divergent geographic matches to the U.S. and yet all had

statistically indistinguishable test AUCs of 0.971–0.976 (Table 1).

What alternate metrics could be used to distinguish the relative

merits of these models? We identified four screening tools that are

insufficient for careful ranking of models, but can be used to screen

out unacceptable models, and could in some cases be refined into

tools for relative or absolute ranking. They are as follows:

Table 1. Overview of MaxEnt models considered.

Name Over-fit? Back-ground Local-ities Beta Runs Para-meters
Minimum training
presence AUC train AUC test

Overfit-Global-90 pts Yes Global 90 1 25 62 (5) 0.092 (0.025) 0.984 (0.001) 0.971 (0.010)

1 1 66 0.101 0.985 0.965

Overfit-Global-86 pts Yes Global 86 1 25 59 (4) 0.013 (0.019) 0.982 (0.001) 0.973 (0.011)

1 1 60 0.008 0.982 0.971

Overfit-Regional
absences- 86 pts

Yes Regional Absences 86 1 25 50 (5) 0.003 (0.001) 0.988 (0.002) 0.976 (0.029)

1 1 57 0.002 0.990 0.972

Overfit-MCP-86 pts Yes Native Range MCP 86 1 25 56 (5) 0.159 (0.021) 0.816 (0.007) 0.702 (0.074)

1 1 52 0.156 0.829 0.632

AICc-MCP-90 pts No Native Range MCP 90 3 (0.7) 25 13 (2) 0.237 (0.230) 0.747 (0.010) 0.711 (0.077)

4 1 10 0.261 0.739 0.739

AICc-MCP-86 pts No Native Range MCP 86 4 (1.2) 25 10 (2) 0.222 (0.239) 0.718 (0.010) 0.624 (0.093)

3 1 14 0.184 0.748 0.748

The bolded values represent the model presented in the original Pyron et al. work; the other single run models are provided for direct comparison. ‘‘MCP’’ indicates a
minimum convex polygon surrounding the native range. ‘‘Overfit?’’ indicates use of default regularization in lieu of the small sample corrected AICc (Akaike’s
Information Criterion) method of Warren and Seifert (2010). ‘‘Localities’’ references number of native range geographic localities used, and indicates inclusion/exclusion
of the four Blood Python points. ‘‘Beta’’ indicates the regularization multiplier used. Parenthetical values are standard errors.
doi:10.1371/journal.pone.0014670.t001

Figure 11. The relative climate space captured by samples of various sizes (our full sample = 100%). Shown are means of ten random
draws for each decile +/2 S.E.
doi:10.1371/journal.pone.0014670.g011
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Native range inclusion
As we indicated in the introduction, the fundamental climate

space is expected to be more inclusive than the realized climate

space. Thus a climate matching model that showed low suitability

of any major portion of the occupied native range (see Rodda et al.

Fig. 1 or Pyron et al. Fig. 1 for native range delineation) would

have failed to capture the full realized climate space, much less the

fundamental climate space [19]. The native range screening tool is

asymmetric: false omissions of geographic space are penalized, but

false commissions of geographic space are not. Pyron et al.

criticized the ‘‘false’’ commissions associated with our model, but

this reflected a misunderstanding of the relationship between

realized and fundamental climate space. Three of our six MaxEnt

models showed low suitability for large occupied regions of interior

India (false omissions), and thus were judged to fail the native

range inclusion screen (Table 2).

A consideration important to the evaluation of native range

occupancy is whether existence of a specimen from a given area is

sufficient proof that the area is occupied (i.e., the population is self

sustaining). Sink habitats are only temporarily occupied, and yet

may yield a specimen on occasion. This issue is very dependent on

the taxon under consideration. Plants that are wind or bird

dispersed may sprout in areas far from self-sustaining populations.

Birds and marine organisms may fly, swim, or drift enormous

distances from the climatically suitable ranges. However, the

vagility of most reptiles and amphibians is miniscule by

comparison. Having relatively limited ability to create internal

thermal and hydric conditions suitable for their survival, they are

extremely sensitive to climate, and refractory to crawling beyond

their climatic limits. Furthermore, their limited vagility puts an

upper bound on vagrant dispersal distance. Even wandering

reptiles are likely to be within the pixel diameter (,1 km) used in

this study. In addition, in most terrain, climate changes on a much

larger scale than 1 km. Sink habitats can be a problem associated

with climate inference of some taxa (for which minimum training

presence would not be an appropriate threshold), but are unlikely

to be a concern with most reptiles and amphibians (sea turtles and

crocodilians excepted) in their native range.

Minimum training presence
If demonstrably occupied localities correspond to realized

climate space, the discriminating power of a model can to some

degree be quantified by the degree of separation between presence

points (high suitability only) and the background (high and low

suitability). Under ideal conditions, suitability scores for occupied

habitats would have a very sharp suitability cutoff (,square wave),

which would give confidence that the correct environmental

factors had been identified, and occupied localities would be

uniformly characterized by high (e.g.,.0.5) suitability scores.

However, some of our MaxEnt models had shockingly low

minimum training presences (Table 1). The most extreme example

was the Overfit-Regional absences-86 model, which associated

one occupied locality with a suitability score of 0.003. This

indicates that 99.7% of the suitability range was suitable for the

species, evidence of an extremely poor discriminator. Similarly,

the first three models scored more than 90% of the suitability

range as suitable, and therefore we judged those models to fail as

credible discriminators (Table 2). One could skirt this problem by

arbitrarily eliminating some of the occupied localities (which was

not done by Pyron et al. or Rodda et al., but is recommended by

Phillips (pers. comm.), and is embraced by some researchers

working on taxa with high vagility or drift potential; Pyron has also

chosen (2010 pers. comm.) to reverse his earlier position on this

point). We do not think that arbitrary omission of localities is

appropriate for most reptiles in the invasive species context under

consideration.

Overfitting
Overfitting is discussed in more detail below, but as an initial

screen for unsuitable models, we believe that Akaike’s Information

Criterion (AIC, in our case specifically AICc) has considerable

merit and should be applied. This does not address the

discrepancy between fundamental and realized climate space,

but it ensures that one’s top models are in a reasonable range of

complexity. As a screening tool, we eliminated all models that had

more than twice the number of parameters included when

regularization is optimized using AIC (Table 2). In the absence

Figure 12. Climate space as inferred from the specimen localities and modeled climate. Climate space tabulation following the method of
Rodda et al. with the assumption of three (Clim3P) or four (Clim4P) months of hibernation. The equivalent polygons derived from empirical native
range climate data associated with inferred occupancy are given by the thinner lines, Clim3 and Clim4, respectively. Panel A is based on the 84
specimen localities in Pyron et al., and shows slightly reduced climate space in comparison to the 151 climate station localities computed by Rodda et
al. Panel B is based on 98 specimen localities, and shows slightly greater climate space in comparison to the 151 climate station localities.
doi:10.1371/journal.pone.0014670.g012

Table 2. Screening scores of MaxEnt models considered.

Name Native Range Minimum Training Presence Overfitting Eco-plausibility Test

Overfit-Global-90 pts fail fail fail pass

Overfit-Global-86 pts fail fail fail fail

Overfit-Regional absences-86 pts pass fail fail fail

Overfit-MCP-86 pts fail pass fail fail

AICc-MCP-90 pts pass pass pass pass

AICc-MCP-86 pts pass pass pass pass

Low suitability for significant parts of the species’ native range earned a failing score under ‘‘Native Range.’’ Low suitability scores (,0.1) for occupied localities earned a
failing score under ‘‘Minimum Training Presence.’’ Parameter counts in excess (62) of those warranted by Akaike’s Information Criterion earned a failing score under
‘‘Overfitting.’’ Ecologically implausible geographic matches (e.g., Scandinavia, British Columbia, Aleutians) for this heliophilic sub-tropical snake earned a failing score
under ‘‘Eco-plausiblity Test.’’
doi:10.1371/journal.pone.0014670.t002
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of AIC computations, one can get some sense from the

fragmentation observed in geographic matches to climatically

uniform regions (e.g. central Amazon basin). The screenings

portrayed in Table 2, however, were based exclusively on AIC-

determined parameter counts, as AIC scores were available.

Eco-plausibility test
The basic ecology of Indian Pythons is known in enough detail

to understand that they are unlikely to do well in fog-bound high

latitude maritime places such as Scandinavia, the coast of British

Columbia, or the Aleutian Islands. It would be difficult to refine

this assessment into a quantitative metric of model value, but as a

screening tool it is credible to assess that three of the models did

not pass the eco-plausibility test (Table 2).

The aggregate application of these four screening tools results in

the retention of only two models (AICc-MCP-90, AICc-MCP-86),

which were virtually identical in geographic projections, minimum

training presence, and relative lack of overfitting. It is notable that

these two models had relatively low AUC values, supporting Lobo

et al.’s [35; see also 39] assertion that AUC can be a misleading

guide to model utility. There were some major differences in

climate variables identified by the two plausible models, even

though these two models’ input differed only in the inclusion of

four nearby localities.

Unfortunately, we have no assurance that appropriate applica-

tion of screening tools will guarantee the removal of all erroneous

models in all circumstances. The full suite of models indicated that

relatively minor variations in MaxEnt presence or background

localities could produce radically divergent climate matches and

sharply varying identification of climate drivers. The divergence

was evident both within MaxEnt models (Figs. 2, 5, 6, 7, 8, 9) and

between MaxEnt models and our rule-based method (Figs. 1, 2, 5,

6, 7, 8, 9). The dramatic divergences focus attention on sensitivities

in the conventional application of MaxEnt, but the analyses

conducted suggest but cannot pinpoint more general reasons for

the discrepancies between and among models. In the following

sections we present our assessment of the likely reasons for the

discrepancies, and what those reasons might mean for invasive

species climate matching, organized around: 1) conceptual issues,

2) statistical concerns, and 3) the selection of presences and

absences. We recognize that proper execution of a model is the

responsibility of the modeler, and that software is not good or bad

but useful or less so. The choices made by Pyron et al. when using

MaxEnt mirror those by many other users; we leave it to readers

to assess the degree to which the identified problems can be

satisfactorily resolved within the options provided by MaxEnt.

Conceptual issues
We have two major concerns about how MaxEnt and other

climate space models are routinely used for the purpose of

projecting potential invasion localities: 1) modeling is targeted at

one (occasionally more) realized climate space(s), whereas the

greatest interest lies with the more inclusive fundamental climate

space; and 2) modeling is typically premised on the assumption

that a single ideal climate exists for each species, and that this

archetype can be discovered by tallying the central climate

tendency associated with localities tied to museum specimens.

The first issue (realized versus fundamental climate space) has

been discussed in the Introduction. Pyron et al. claimed (p. 2) that

they were characterizing the fundamental climate space, but their

methods make it clear that they were trying to characterize the

climate of the native range only (realized climate space). Given

that biotic factors rather than climate are believed to be the main

drivers of distributional limits at low latitude [5,50,51], the

discrepancy between the two is likely to be especially important for

low latitude species.

Although the desirability of characterizing fundamental rather

than realized climate space was outlined in the Introduction, a

method for doing so is not clear [52]. There is an interaction

between this challenge and the risk of overfitting. Overfitting

reduces the projection to potential invasive localities (under-

predicts), as does calibration of a model to the realized climate

space rather than the fundamental climate space. Overfitting also

adds axes upon which an occupied locality might be judged less

suitable, lowering the minimum training presence and in that way

altering the geographic projection. In this respect it is notable that

the AIC-constrained models exhibited minimum training pres-

ences that were high and nearly indistinguishable (6% change:

0.222 versus 0.237), whereas the same change in input for the

Overfit-Global models produced a seven-fold difference (0.092

versus 0.013) in low minimum training presences.

A strong suggestion for improved estimation of fundamental

climate spaces is to include introduced ranges in the character-

ization of the realized climate spaces [10,31], as illustrated in

Fig. 3B. We see no disadvantage to this approach, especially as it

at least doubles the sample size of realized climate spaces (from

one to at least two). For species such as Hemidactylus frenatus that

have colonized dozens of times [11,53], the sample size of realized

climate spaces can be greatly increased. Fortunately for biodiver-

sity preservation, and unfortunately for climate modelers, many

potential invasive species do not have a track record of extralimital

colonization.

A limitation on the inclusion of realized climate spaces

expressed by species introductions is that many introduced

populations are still spreading (e.g., the Florida population of the

Indian Python; see also [25,54,55]), or they are bounded by access

limitations (e.g., the species is on an island: [56]) that limit the

climate space that can be occupied. Failure of an introduced

population to widen the boundaries of realized climate space is not

evidence that the limits of fundamental climate space has been

fully captured by characterizing realized climate space, for the

reasons given above.

Model averaging is a form of meta-analysis that provides some

protection against the most egregious errors in model construction

(e.g., inclusion of the Aleutian Islands as suitable for a giant

heliophilic semi-tropical snake). However, in the absence of an

appropriate characterization of fundamental climate space, there

may be no objective basis for weighting competing models to be

averaged by their relative merits. If unweighted averaging is

conducted, the average outcome will simply reflect the distribution

of models chosen by the modeler for inclusion. If all models are

biased by collection locality biases or inappropriately targeting

realized climate space, model averaging may not reduce the

shared bias.

Our second major concern about characterizing a fundamental

climate space is that MaxEnt effectively assumes that the central

tendency of native range localities is an unbiased way to

characterize the realized climate space boundaries. If there are

more documented presence localities exhibiting low variability in

daily temperature range (compared to background), for example,

MaxEnt will judge low variability to be a feature indicating high

suitability. This approach is untested and indirect, and in conflict

with the conclusion that different factors limit distribution in

different parts of the range [50]. It may be that the best way to

estimate the boundaries is to find the central tendency and include

all conditions within a specified threshold distance from this

archetype (the MaxEnt approach, which we call ‘‘conical’’ because

in some sense it assumes a central peak surrounded by
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concentrically declining suitability). Alternately, it may be that the

central tendency expressed by museum locations is severely off

center with regard to the fundamental climate space, with optimal

climate space conditions prevailing at the edge of the occupied

conditions. Asymmetry might be especially likely if a dispersal

barrier prevents the species from spreading in the desired

direction, or the native range is skewed by biotic factors such as

competitive exclusion coming from only one side. Or the response

surface may have local optima and therefore lack a central mode.

Tabulating the number of presences in each condition may not

reveal this deep structure, insofar as collection localities are not a

random sample of suitable climate (see below). Our approach

directly probes the climatic limits of the native range rather than

inferring them from the central tendency of presence localities.

Treating each edge of the native range as an element of interest

also increases the sample size of information that can contribute to

fundamental climate space characterization.

Unless constrained by regularization parameter values or user-

defined constraints, MaxEnt is capable of fitting climate functions

that accommodate different thresholds for different parts of the

climate space. For example, if a temperature function was a square

waveform with low suitability below 10 C and above 25 C, it

would be plausible for the climate match limit at high latitudes to

be associated with the 10 C isobar and that at low latitudes to be

truncated the 25 C isobar. In the case of the climate model

generated by Pyron et al., however, such dual thresholds were not

present. The key climate functions showed maximal suitability at

one end of the spectrum of conditions. We don’t know how often

this single optimum is manifest in MaxEnt climate models for wide

ranging species such as the Indian Python, but its occurrence with

this species undermines our confidence that MaxEnt is character-

izing climate suitability appropriately at different edges of the

range [50].

The radical shifts we observed in climate match with different

choices of background conditions may be related to MaxEnt’s

reliance on collection localities (as applied in MaxEnt by Pyron et

al. and many others). Several authors have highlighted the biases

inherent in collection localities [30,57]. After publication of Pyron

et al., MaxEnt developer Phillips [58] suggested the pool of

museum specimen collection sites where the focal species was not

collected (non-collection sites, a technique known also as ‘‘target-

group background’’ [38]) be used to characterize background with

MaxEnt. Pyron et al. did not did not have the opportunity to apply

this correction tool, so we cannot evaluate it on the basis of their

model. However, we are skeptical that it would solve the problem

of collection site bias for low-detectability species such as the

Indian Python. Collection locality biases are especially severe in

cryptic and wide-ranging top predators such as the Indian Python.

These snakes are rarely seen; Reed and Rodda [59] reported that

radiotracked pythons in Florida are seen by someone other than

the radiotracker an average of once per 3.5 years. The locations

where they are seen are generally sites with high human activity

(roadsides) and good visibility (mowed grass); human activity and

good transmission of light are misleading attributes to associate

with the fundamental niche of a top predator; they characterize

species detectability, not species presence. Thus the activity of

characterizing the central climate tendency of the distinction

between where pythons have and have not been collected may be

grossly misleading. This may account for some of the peculiarities

of our MaxEnt models, five of six of which exhibited a strong

association with maritime climates (Figs. 2,5,6,8,9). Until recently,

collection of museum specimens of giant constrictors was probably

biased towards localities which were readily accessible, and from

which it would be easier to ship giant specimens. The clustering of

specimen locations near coasts, major ports, and large rivers

evident from the map in Fig. 4 may account for the preponderance

of MaxEnt models emphasizing maritime climates. Species

distribution models that assign relative suitability by the number

of specimen localities in a given climate are vulnerable to such

collection site biases.

Statistical concerns
We have four concerns regarding the typical application of

MaxEnt models to invasive species climate matching: 1) the

models are based on data dredging, 2) there are few restraints on

overfitting, 3) the originating locations are often not statistically

independent, and 4) the climate axes are not statistically

independent. We believe that these four factors in aggregate

contribute significantly to the model instability observed in

MaxEnt models of the Indian Python (Figs. 2, 5, 6, 7, 8, 9), and

may produce results with low validity.

Data dredging is the practice of drawing explicator variables

blindly from a large number of possible hypotheses [60,61]:

‘‘Running all possible models is a thoughtless approach and runs

the high risk of finding effects that are, in fact, spurious if only a

single model is chosen for inference’’ [62]. In the Pyron et al.

example, the large number of climate axes, the lack of restraint on

how each axis might be fitted (Pyron et al.’s fit for mean

temperature of the wettest quarter and precipitation seasonality

involve multiple local peaks and complex reversing functions;

MaxEnt can perform similar gyrations for improvement in fit of

any continuous axis), and the unlimited number of possible

weightings of variables provide potentially thousands of plausible

hypotheses about the causes of python distribution. ‘‘Spurious

results are virtually certain with small n, a large number of

explanatory variables, and an intense search…’’ [63]. Although

this problem is widely recognized, MaxEnt does not solve it when

used with the default settings.

A solution to the problem of data dredging is to consider only

models that are chosen a priori on biological grounds [51,62]. This

was the approach in Rodda et al.; we identified mean monthly

precipitation and temperature as good predictors of prey

productivity (low-latitude rodent activity and recruitment are

routinely positively correlated with seasonal rainfall) and python

activity (subtropical reptiles normally limit activity to the warmer

months), the requirement of suitable climates for each month of

the active season (but we did not worry about inactive period

extremes, as pythons can buffer themselves from those), and the

durations of hibernation and aestivation as key limiting factors,

and built a rule-based model structured on a plausible hypothesis

from the known biology of the snake. In contrast, Pyron et al.

dredged. Our more restrained approach was criticized by Pryon et

al., who argued that we did not consider seasonal variability. This

is incorrect. We examined the climate polygons (and we provided

these for the reader to inspect: Rodda et al. Fig. 2, and in slightly

modified form in Fig. 12 in the present work) for evidence of

consistency among sites in the type and degree of seasonality.

Although there were no sites lacking in seasonality within the

accessible area (as there are, for example, in localities inhabited by

the Brown Treesnake: [56]), we saw a wide range of degrees and

types of seasonality. Some sites (e.g., Pakistan) showed long seasons

of extremely dry climate, whereas some sites in southeast Asia and

Sri Lanka exhibited no arid periods. Conversely, some sites (e.g.,

interior China) showed wide swings in seasonal temperature while

maintaining stable precipitation levels, whereas many monsoonal

sites further south (e.g., India, Java, southeast Asia) showed

minimal temperature variability concurrent with radical seasonal

shifts in rainfall. Thus we did consider seasonality, but did not
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detect a seasonality signal of sufficient consistency to merit

inclusion in our model. In the absence of evidence to the contrary,

we judged it prudent to include the four necessary axes, but no

others, especially as additional axes were highly likely to be

collinear with those already adopted (see below). Pyron et al.

objected to our model because only two climate axes were

included (actually, we used four, mean monthly precipitation and

temperature, plus duration of hibernation and duration of

aestivation, none of which Pyron et al. considered). Unlike Pyron

et al. and most MaxEnt users, our axes were chosen a priori, to

prevent data dredging. There is nothing about the structure of

MaxEnt that dictates unconstrained data dredging, but default use

of all available climate axes in MaxEnt constitutes data dredging.

Pyron et al. asserted that our rule based method does not

consider statistical interactions among the variables. Ours did by

considering not just the rectangle bounding climatically suitable

localities, but the minimum convex polygon. Thus although mean

monthly rainfalls of 1000 mm/month are within the range of

conditions occupied by Indian Pythons in their native range, and

monthly mean temperatures of 10uC are also occupied, there are

no occupied sites with that combination of conditions, and any

places bearing that combination would be judged unsuitable under

the interaction rule of our model. One does not need to use

MaxEnt to invoke ecologically relevant statistical interactions.

MaxEnt does not invoke statistical protections such as AIC

against overfitting the specific data set under consideration

[62,64]. Burnham and Anderson [62] also point out that data

dredging causes overfitting. Pyron et al. did not address the

overfitting problem in their model. Phillips and Dudı́k [38]

expressly state that application of MaxEnt to projection of

potential invasion areas should invoke overfitting protections

(regularization parameter values) stronger than those that are the

MaxEnt default (used by Pyron et al.). Other lines of evidence for

overfitting include the extreme model instability, and the

projection of highly fragmented patches of habitat suitability

within relatively climatically uniform sites such as the northwest

lowland Amazon basin (e.g., Fig. 2), which contrasts with the

broad areas of continuous habitat historically occupied by this top

predator in Asia.

Overfitting is not only undesirable in its own right, but it

complicates other issues that arise in interpretation of MaxEnt

models. For example, the application of thresholds, such as

minimum training presence, for geographic projections is

contentious when applied to overfit models, but stable and

relatively uncontroversial when applied to less complex models

(e.g., AICc-MCP-90 versus AICc-MCP-86). Novel conditions are

more difficult to interpret with highly parameterized models

(additional areas may be denoted as novel (or unsuitable, if the

user fails to make that distinction) by axes that are in actuality

irrelevant), but exclusion of these areas is relatively straightforward

to interpret with models of appropriate complexity. Model stability

is higher, geographic matches are more stable, and the problems

due to data dredging are minimized, with models of appropriate

complexity.

The problem of lack of statistical independence of originating

localities is a chronic problem with models like MaxEnt that

identify the central tendency of an inferred climate space from the

number of geographic locations in each condition [57,65–67].

Pyron et al. reduced this problem by selecting only one locality

point from each ,1 km pixel, but they did not test the statistical

independence that resulted, nor correct for lack of statistical

independence among the pixels used [57,58,67]. Our model does

not seek to identify a central tendency and does not weight such a

choice by the number of points in each condition. Lack of

independence in our localities (if it were to occur) simply results in

redundant climate polygons; these do not bias our assessment of

the boundaries of the aggregate climate space. Only divergent

climate polygons enlarge the assessed climate space. Thus one may

create species distribution models that are not dependent on

statistical independence of the originating localities, but MaxEnt

with default settings does not do so.

Finally, the 19 climate axes used by Pyron et al. and many other

MaxEnt modelers are multi-collinear (Table S1), with the majority

of axes to some degree redundant. This was particularly

problematic for annual values: seven of seven precipitation axes

were tightly (r.0.84) correlated with annual precipitation and

nine of ten temperature axes were r.0.5 correlated with mean

annual temperature (Table S1). Three pairs of correlated axes

(r.0.8), annual mean temperature, minimum temperature of the

coldest month, and mean temperature of the warmest quarter, all

had relative variable contributions.5% to the Pyron et al. model.

Multi-collinearity makes for unstable model building [62]. For

example, in our recomputation of the Pyron et al. model using

regional absences, two of the top three explanatory axes -

constancy of temperature (Isothermality) and seasonal inconstancy

of temperature (Temperature Seasonality) – were nearly perfect

inverses (r = 20.964). Inclusion of one in the model would largely

negate inclusion of the other, and therefore models including both

are apt to exhibit highly unstable structure with slightly varying

inputs (c.f. Figs. 5,6). Pyron et al. did not address axis redundancy

through axis reduction, though Pyron and Burbrink [68] did so

when modeling a different species. To reduce axis redundancy one

must go beyond the default settings of MaxEnt.

Presences and absences
Pyron et al. criticized our work on the grounds that we did not

use demonstrable presences, but inferred presences. We did so

because demonstrable presences (museum specimen locations) are

often georeferenced imprecisely (some of Pyron et al.’s localities

were only recorded to the nearest degree); many collection

localities for giant constrictors reference the market town in which

a snake was purchased, rather than the locality in which snake was

actually living), and use of demonstrable presences requires

reliance on modeled climate, which can be misleading in

mountainous areas [44]. As the key climate boundaries for the

Indian Python are in mountainous areas (Hindu Kush, Kashmir,

Himalayas, Tibetan Plateau), we worried that climate modeled at

30 arc sec (,1 km) might reflect an average elevation that did not

match the microenvironment actually occupied by Indian

Pythons. These potential data inaccuracies probably had minimal

influence on the aggregate climate envelope inferred, however, as

demonstrated by our computation of climate space based on 84 or

98 point localities (Fig. 12). Users may judge whether uncertainty

in georeferenced locality or uncertainty in climate modeling is a

greater threat to model accuracy, but it appears not to have

appreciably influenced the results of climate modeling of the

Indian Python. Note that MaxEnt can be used with either type of

locality.

One hazard of data dredging from a long list of covarying

climate axes is that models with identical input localities but

slightly differing background will produce substantially different

climate variable importances (Fig. 10). This variability suggests

that these climate variables should be treated with considerable

circumspection, especially insofar as the two measures of

importance given by MaxEnt were statistically uncorrelated

(r2,0.04) in our example. The lack of correspondence is probably

due to covariation among alternate axes, as suggested by the

MaxEnt output warning.
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One subset of the Pyron et al locality records that caught our

eye was that in peninsular Thailand, south of the Isthmus of Kra

and the known limit of the species. The questionable points were

localities for Python brongersmai (Blood Python) mis-tabulated by

Pyron et al. as Python molurus localities when extracted from the

literature [41, P. Andreadis, pers. comm.]. As these points are

immediately adjacent to known Python molurus habitat, and possess

climates that are nearly identical to those occupied by Python

molurus, one would not expect their removal to have a great impact

on the inferred climate match, but they apparently shifted the

weighting of axes in a consequential way (c.f. Figs. 2,5). This model

sensitivity is very important in light of Pyron et al’s primary

conclusion that the python ‘‘…is strongly limited to the small area

of suitable environmental conditions in the United States it

currently inhabits…’’ Although the climatically suitable inland

sites were relatively minor in area, the revised Overfit-Global-86

points MaxEnt model casts regulatory action in a much different

light because it includes substantial areas of the U.S. (Alaska,

Washington, Oregon, California, Arizona, New Mexico, Texas,

Louisiana, Mississippi, Alabama, Florida, Georgia, South Car-

olina, and North Carolina) that are not presently inhabited by

Burmese Pythons. We think MaxEnt’s instability is due to the

factors listed under Statistical Concerns, and it highlights the

importance of careful locality selection. We also note that Pyron

et al.’s assertion (see Introduction) that Indian Pythons in Florida

require Everglades-like marsh habitat is not based on their

MaxEnt model, information that they provided in their paper, or

information published elsewhere. It is notable that pythons in

Florida have already expanded beyond the boundaries of this

habitat type.

Unlike MaxEnt, our method does not produce radically

different climate matches depending on the exact sample points

used. Thus model instability is not an inherent property of species

distribution models for this species. Inclusion of the four erroneous

Blood Python points would have produced no change in our

climate match, as the climate in the Blood Python area was within

the perimeter of the climate space outlined for the Indian Python

using our method (Rodda et al. Fig. 3 shows inclusion of the Blood

Python area in our match). Thus in comparison to MaxEnt

modeling with default settings, other species distribution models

may be relatively stable, and are not inherently vulnerable to the

overfitting, sample locality biases, and background selection

uncertainties apparent in the method of Pyron et al. It is not

entirely clear what factors are responsible for the MaxEnt model

instability, and identification of the responsible factors would be an

appropriate research priority for MaxEnt users. Model instability

may be due to the insensitivity of a wide ranging generalist

predator such as the Indian Python to climate specifics, but if so,

climate modelers need additional guidance on the conditions

under which MaxEnt will perform well. In the absence of

documented validity, it seems particularly premature to assert the

prima facie validity of a specific MaxEnt model or to use one for

even more speculative projections into a climate-changed future,

as Pyron et al. and many other climate modelers have done.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0014670.s001 (0.06 MB

DOC)
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51. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution

modelling. J Biogeogr 33: 1677–1688.

52. Rödder D, Lötters S (2010) Potential distribution of the alien invasive Brown
Tree Snake, Boiga irregularis (Reptilia: Colubridae). Pac Sci 64: 11–22.
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