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Abstract

We applied a novel application of FLIM-FRET to in situ measurement and quantification of protein interactions to explore
isoform specific differences in Ab-ApoE interaction and ApoE tertiary conformation in senile plaques in human Alzheimer
brain. ApoE3 interacts more closely with Ab than ApoE4, but a greater proportion of Ab molecules within plaques are
decorated with ApoE4 than ApoE3, lending strong support to the hypothesis that isoform specific differences in ApoE are
linked with Ab deposition. We found an increased number of ApoE N-terminal fragments in ApoE4 plaques, consistent with
the observation that ApoE4 is more easily cleaved than ApoE3. In addition, we measured a small but significant isoform
specific difference in ApoE domain interaction. Based on our in situ data, supported by traditional biochemical data, we
propose a pathway by which isoform specific conformational differences increase the level of cleavage at the hinge region
of ApoE4, leading to a loss of ApoE function to mediate clearance of Ab and thereby increase the risk of AD for carriers of
the APOEe4 allele.
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Introduction

Inheritance of the Apolipoprotein E (APOE) e4 allele is the

strongest known genetic risk factor for late onset Alzheimer disease

(AD). Compared to the more common APOEe3 genotype,

homozygous APOEe4 carriers have a ,10 fold increased risk

[1,2,3]. Despite the fact that APOEe3 has an allele frequency of

70–80% compared to only 15–20% for APOEe4 [4], approx-

imately 40–65% of AD patients have at least one copy of APOEe4
[5,6].

Apolipoprotein E (ApoE) is a polymorphic protein with 299

residues (Mr = 34000) [7]. The three common isoforms ApoE2,

E3, and E4 differ by only two amino acid residues at positions 112

and 158 [8]. ApoE3 and ApoE4 associate with different lipid

particles in plasma and appear to adopt different tertiary structures

as a result of an Arg61-Glu255 salt bridge, which is altered by the

presence of Arg112 in ApoE4. There are two major functional

domains, the N-terminal domain (NT), contains the major

receptor binding region, the C-terminal domain (CT), contains

the lipid binding region, which is also thought to bind Ab [9,10].

The two are connected by a flexible hinge region.

The mechanism by which ApoE isoform affects risk of AD is

uncertain, with roles proposed in all three of the major

pathological hallmarks: Cell death [11], neurofibrillary tangles

[12,13] and senile plaques [3,14]. Studies in vivo show that ApoE4

is associated with increased amyloid deposition in the brain

[14,15], and ApoE protein decorates senile plaques [16]. In vitro

experiments have shown that there are isoform specific differential

interactions of ApoE with Ab, [17,18,19] but it is uncertain

whether this is true in the brain because 1. senile plaque structure

likely differs from synthetic Ab fibrils and 2. the lipidation status of

ApoE associated with plaques, and possible post-translational

modifications including cleavage, are difficult to model in vitro.

Computation biophysics work recently published by the Paralvrez-

Marin group in Sweden [20] has shown that ApoE4 is expected to

have a pathological stable intermediary conformation that is

mediated by the inter-domain interaction. In addition, there is

evidence that ApoE4 is more susceptible to proteolytic cleavage

than ApoE3 [21].

The hypothesis that ApoE isoforms adopt different structures in

the context of AD pathology therefore remains open (for reviews;

see [22,23,24]). A potentially useful method for such measure-

ments would be fluorescence lifetime imaging microscopy (FLIM)

[25], making use of Förster resonance energy transfer (FRET) [26]

to measure the closeness of two protein epitopes. FLIM-FRET

makes use of the characteristic fluorescent decay profile of a

fluorophore, in particular, its lifetime (t). When a higher energy

(more blue) flourophore (donor) is placed in very close proximity

(,1–10 nm) to a lower energy (more red) fluorophore (acceptor)

whereby the emission profile of the donor overlaps with the

excitation profile of the acceptor, the donor fluorophore will lose

energy to the acceptor resulting in a dimming and shortening of
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lifetime. By analyzing the time-dependent decay profile of the

donor with ultra-high temporal resolution (<80ps), it is possible to

calculate both the percentage of donor molecules that are

interacting with acceptors and the distance between the interacting

molecules. Until recently, this technique has proved challenging

for in situ measurements due to contamination of the signal with

background tissue autofluorescence. In order to perform FLIM-

FRET measurements in situ, we have previously developed a suite

of analysis techniques [27] called x2 filtering and multiple

Gaussian fitting for lifetime evaluation (MUGLE). The consider-

ation of interacting fraction and FRET efficiency as separate

parameters is vital to the interpretation of FLIM data, especially

with regards to immunohistochemical stains. FRET efficiency is

not subject to confounds of differences in labeling efficiency,

provided interacting fraction is considered separately.

We reasoned that if ApoE isoforms differentially interact with

Ab in senile plaques, we may be able to detect, using advanced

imaging techniques that are sensitive to protein conformation,

distinct conformational patterns of ApoE3 and ApoE4, when

associated with senile plaques. These analyses found both

differences in conformation between ApoE3 and ApoE4, and also

evidence for differences in post-translational modification (cleav-

age) between ApoE3 and ApoE4 protein associated with plaques,

which were confirmed with standard biochemical analyses.

Results

We conducted a series of FLIM-FRET experiments using

human postmortem tissue sections obtained from the Massachu-

setts Alzheimer Disease Research Center (ADRC) brain bank

(table 1) to examine ApoE conformation when it is associated with

senile plaques in situ in the Alzheimer brain (figure 1). The sections

from individuals were homozygous for either APOEe3 or APOEe4

genotype and all had a diagnoses of AD confirmed at autopsy.

Initially, Ab was immunolabeled with the donor fluorophore

(A488) using the Ab specific antibody (3D6), and either ApoE CT

or ApoE NT were immunolabeled with Cy3 using terminal

specific antibodies, 3H1 and 6C5 respectively.

To determine the effect to which the proteins were colocalized,

two channel confocal images (figure 1a) were acquired and a

correlation coefficient was calculated based on the pixel wise

correlation of the green and red channels. For all images, strong

correlations were observed (R2.0.9, p,1e-6), but no difference

was observed in the extent of co-localization of ApoE and Ab
between the isoforms.

As a more informative method of determining the degree of

interaction, FLIM analysis was applied to the data. The advantage

of using FLIM-FRET is that both the proportion of epitopes that

are interacting and the closeness of that interaction can be

independently calculated from the same data set [26], allowing us

to address both the question of propensity to bind and closeness of

interaction, in a well separated fashion. Three epitopes were

labeled in FRET pairs (figure 1b).

Difference in Ab-ApoE distance for each isoform (figure 1c)

reached trend levels in the initial Bonferroni-Dunn post-hoc tests

(p,0.1). If we examine the data by terminal, we see that Ab-ApoE

NT distance is less for ApoE3 than ApoE4 in the (p,0.05), but this

is not the case for Ab-ApoE CT (p = 0.125). These data suggest

that the CT of both ApoE3 and ApoE4 interact with Ab in senile

plaques in a similar fashion, but that the NT domains adopt an

isoform specific tertiary structure.

ApoE CT is closer to Ab than ApoE NT for both isoforms.

(p,0.0001: post-hoc test split by isoform; p,0.0005, -ApoE3-,

p,0.0001, -ApoE4-). These data support a model, based on in vitro

Table 1. List of cases used for the FLIM-FRET study.

case # APOE genotype age at death Sex PMI (hrs) ApoE NT, Ab ApoE CT, Ab ApoE CT, NT

1 e3/3 88 F 12 3

2 e3/3 83 F 3 3

3 e3/3 75 F 3 3

4 e3/3 88 M ,12 3 3

5 e3/3 87 F 4 3

6 e3/3 82 M 9 3

7 e3/3 73 F 3

8 e3/3 82 F 7 3

Total number of plaques 20 20 14

9 e4/4 78 F 3 3 3

10 e4/4 74 M 18 3 3

11 e4/4 78 M 16 3 3

12 e4/4 68 F 23 3

13 e4/4 81 M 3

14 e4/4 84 F 3

15 e4/4 84 M 24 3

16 e4/4 80 F 10 3

17 e4/4 3

Total number of plaques 19 25 22

The genotype, age of the patient at death, sex and postmortem interval (PMI) is given where available from ADRC records. The check marks show which of the three
experiments in which the brain was used. Some brains were used in more than one comparison depending on availability of tissue. For each of the 6 comparisons, the
total number of plaques imaged (‘n’) is also given.
doi:10.1371/journal.pone.0014586.t001

ApoE3 vs 4 in Senile Plaques
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data, that Ab interacts with the amphipathic domain in the C-

terminal of ApoE [9,10].

Comparisons of the interacting fractions (figure 1d) of Ab-

ApoE3 and Ab-ApoE4 for both termini of ApoE show that a

larger number of the Ab molecules interact with ApoE4 than with

ApoE3 (p,0.0001: post-hoc split by termini; p,0.05, -ApoE CT-,

p,0.05, -ApoE NT-). Surprisingly, we also observed a clear and

significant difference in the interacting fraction of Ab-ApoE CT

compared to Ab-ApoE NT (p,0.0001, post-hoc split by isoform;

p,0.01, -ApoE3-, p,0.01, -ApoE4-), raising the intriguing

possibility that some Ab peptides are bound to isolated ApoE C-

terminal fragments (CTFs) or that some N-terminal domains

become hidden from access by the reagents.

To control for the effect of autofluorescence, plaques stained

only with donor fluorophore were subjected to the same analysis;

no significant FLIM signal was observed. While comparison to

plaques in which the acceptor fluorophore is used to stain a non-

interacting, yet co-localized protein would be ideal, there is no

Figure 1. FLIM-FRET study of ApoE conformation and Ab-ApoE interaction reveals multiple aspects of ApoE4 associated plaque
pathology. Inter-epitope distances are normalized to the Förster radius. a) A dense core senile plaque from the cortex of a patient homozygous for
ApoEe3. Ab (green) and ApoE NT (red) are extremely well co-localized which illustrates that the plaque is decorated with ApoE. b) Schematic showing
the three FLIM-FRET measurements that were made. We independently measured the interacting fraction and distance between Ab and both ApoE
terminal domains as well between the two ApoE domains. c) ApoE CT is in closer apposition to Ab than ApoE NT, consistent with the assumption that
the hydrophobic lipid binding region interacts with Ab. The difference in distance is small enough to suggest that ApoE envelops Ab in a similar
fashion than it is known to interact with lipids. d) A significantly greater proportion of Ab is bound to ApoE in the case of ApoE4. The data suggest a
reduced capacity of ApoE4 to induce clearance of Ab. e) ApoE4 has a slightly tighter terminal interaction. This is surprising because a large difference
in inter-terminal interaction is expected from the in vitro data. f) ApoE shows a significantly lower numbers of interacting terminal domains. These
data are proof that ApoE4 undergoes a greater amount of cleavage either before or after binding to Ab. Differential cleavage may mediate Ab
clearance or deposition.
doi:10.1371/journal.pone.0014586.g001

ApoE3 vs 4 in Senile Plaques
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settled candidate protein for this, according to the literature.

However, we can state that this technique, including choice of

filters and fluorophores is a long standing technique that may be

considered validated. [28]

To directly test the model that ApoE CT binds plaques, and

that ApoE NT are differentially positioned in ApoE3 and ApoE4,

we performed FLIM-FRET experiments comparing the distance

between the two terminal domains of ApoE associated with

plaques. ApoE CT and ApoE NT were immunolabeled with

donor and acceptor fluorophore respectively (figure 1e). A

significant (p,0.05) but small difference in inter-terminal distance

suggests that the N and C termini of ApoE decorating a plaque are

quite close to one another, but that ApoE4 isoform differs from

ApoE3 in that the N and C termini are slightly closer together.

In addition to this subtle difference in C-N termini distance, we

observe that the N and C termini have a much higher interacting

fraction for ApoE3 than ApoE4 (p,0.0001) (figure 1f). This result is

consistent with the isoform specific difference in interacting fraction

observed for ApoE-Ab interactions (figure 1a), and strongly supports

the hypothesis that the N-terminal domain of ApoE4 is either

hidden or missing in some ApoE molecules associated with plaques.

To examine whether the observed differences between ApoE3

and ApoE4 were the result of differences in ApoE cleavage in the

brain, or if they are local effects associated with the plaques

themselves, brain samples, taken from the Massachusetts Alzhei-

mer Disease Research Center brain bank were homogenized and

ApoE was characterized using western blot. Samples were selected

to be confirmed AD and homozygous for either APOEe3 or

APOEe4; non-AD control brains (homozygous for APOEe3) were

also sampled. The antibody used was a commercial polyclonal

goat anti-ApoE (Calbiochem, catalog #179478). Figure 2a shows

an exposure that illustrates the differential banding patterns

between genotypes. Densitometry data, which was obtained from

a lower exposure than that shown, were averaged over 3 blots with

‘n’s of 9, 13, and 11 (cognitively normal, AD 3/3, and AD 4/4).

The total concentration of ApoE was found to be significantly

Figure 2. Western blots of brain homogenates from AD patients and normal aged brains. a) Using poly-clonal antibody, the distribution
of ApoE fragments is clearly different between healthy aged brains and AD brains with further marked differences between genotypes. b)
Comparisons of densitometry show significant increases in the amount of ApoE in Alzheimer brains, with the greatest amount in individuals
homozygous for ApoE4. c) We also measured an increase in LMW (7–10 kDa) fragments in the case of AD, the presence of APOEe4 further amplifies
the effect. The effect is similar but less subtle for HMW (17–34 kDa) fragments. In all cases asterisks indicate significance as assessed using ANOVA and
Bonferonni-Dunn post-hoc test.
doi:10.1371/journal.pone.0014586.g002

ApoE3 vs 4 in Senile Plaques
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elevated in AD patients with APOEe3/3 genotype (p,0.001) and

APOEe4/4 genotype (p,0.0001 figure 2b).

To investigate degradation and fragmentation, two ranges of

interest of molecular weights were defined. The low molecular

weight (LMW) band between 7–10 kDa; appears among AD

patients with both APOEe3/3 and APOEe4/4, and doesn’t seem

to be present in normal brains. A strong band of fragments

between about 17 and 34 kDa, designated High Molecular Weight

(HMW), is present in all brains but is stronger and broader in AD,

and particularly so in ApoE4, AD brains. Densitometry (figure 2c)

reveals significant differences in the amount of LMW fragments

between normal and AD(4/4) brains and between AD(3/3) and

AD(4/4) brains, with the difference between normal and AD(3/3)

narrowly missing significance, (3 way ANOVA P,0.0001,

Bonferonni-Dunn post-hoc test: control vs AD(3/3), p,0.05;

control vs AD(4/4), p,0.0001; AD(3/3) vs AD(4/4), p,0.0001).

The differences in HMW fragment density were more subtle with

significance detected only between normal and 4/4 (p,0.01).

To separate CTFs and NTFs of ApoE, new samples were

prepared from brains with the greatest proportion of fragments for

both ApoE3 and ApoE4. These samples were probed with

terminal specific antibodies 3H1 and 6C5 (figure 3a). Results were

similar across genotypes in terms of antibody specificity for

fragments. HMW fragments were detected with the anti-CTF and

anti-NTF antibodies, whereas LMW fragments were detected only

with anti-CT antibody. Therefore, the LMW fraction can be

Figure 3. Western blots probing for the termini of ApoE. a) Blots using terminal specific antibodies reveal that the LMW band, and the lower
portion of the HMW band are almost exclusively composed of C-terminal fragments. b) Blots of fractional brain extracts show that some higher
molecular weight fragments exist in the TBS fraction. The Triton fraction contains comparatively few fragments of any size. The bulk of the degraded
ApoE, particularly the LMW band appears in the SDS and formic acid fractions, implying that the degraded C-terminal fragments of ApoE are
associated with amyloid plaques.
doi:10.1371/journal.pone.0014586.g003

ApoE3 vs 4 in Senile Plaques
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considered to be primarily CTF, whereas the HMW fraction is a

mixture of fragments from both terminal domains.

To discover if the ApoE fragments were soluble in the brain or

associated with aggregated protein, samples were sequentially

homogenized in 5 volumes of pure TBS with protease inhibitor

cocktail, 2% Triton X-100, and 2% SDS, the SDS insoluble pellets

were sonicated in 70% formic acid (see methods). Blots of these

protein fractions (figure 3b) show that there are limited numbers of

HMW soluble ApoE fragments in both APOEe3/3 and APOEe4/

4 brains. Very few fragments were observed in the Triton fraction.

Almost all of the LMW CT fragments were found in the SDS

fraction, confirming that these ApoE fragments are insoluble and

therefore likely to be at least partially aggregated or associated

with senile plaques.

Taken together, these data suggest that ApoE undergoes

isoform specific differential cleavage in the AD brain with

significantly more degradation, particularly of the CTF, for

ApoE4 than ApoE3. We can also say that, consistent with our

FLIM data, isolated CTFs are associated with senile plaques.

Discussion

Inheritance of APOEe4 is known to be associated with

increased risk for AD compared to the more common APOEe3.

The proteins ApoE3 and ApoE4 are known to differ in the

periphery where they associate with low and high density lipids

respectively [29], likely because they adopt different conforma-

tions. In the brain, however, there is only one class of ApoE

containing lipoprotein particle, an HDL-like particle; ApoE is also

associated with Ab deposits in senile plaques. Whether or not

ApoE3 and ApoE4 present different conformations when

associated with senile plaques is unknown. We utilized a new

application of FRET-FLIM to interrogate ApoE-Ab interactions,

and ApoE conformation when associated with plaques in the

Alzheimer brain.

We show that 1. Both isoforms of ApoE interact closely with

fibrillar Ab, but that 2. ApoE3 interacts more closely with Ab
than ApoE4. 3. For both isoforms, the amphipathic C-terminal

interacts most closely with Ab. 4. A greater number of Ab
molecules interact with ApoE4 than with ApoE3. 5. ApoE4

adopts a conformation with slightly shorter CT-NT distance than

ApoE3. 6. Fewer CTs interact with NTs in the case of ApoE4,

indicating a greater level of degradation. 7. Greater amounts of

ApoE can be found in Alzheimer brain than normal brains and

that the effect is most pronounced among APOEe4/4 individuals.

8. In the AD brain ApoE undergoes significantly more cleavage

than in normal brains, and the effect is further amplified amongst

carriers of APOEe4. 9. Isolated CTFs are associated with senile

plaques especially for ApoE4. The major findings of this work are

summarized in a schematic form in figure 4, with the distances

translated into approximate nm units. For this calculation, the

Forster radius of A488 and Cy3 was approximated using the

value for A488, and Alexafluor 555 (70 nm) given on the

Invitrogen website, which has an almost identical excitation

spectrum to Cy3.

FRET has become an established technique for assessing

protein interactions and changes in protein conformation in living

cells and in stained tissue [30]. While it is sometimes said that the

distance over which interactions are measured in FRET are too

great to prove molecular interactions, it is also true that FRET

does not measure the distance between nuclei of bound atoms,

rather the distances measured here, of the order of 5–10 nm, are

entirely reasonable for the detection of distances between two

epitopes on large proteins. It is also the case that while for single

molecule FRET it is conceivable that the FRET signal is due to

happenstance proximity between two molecules, in a real system,

with many molecules, such statistical anomalies are rare and

would not create a significant signal. This point was elegantly

demonstrated in work by Server et al [28], by comparing a

colocalization and FLIM measurement of dynamin-auxilin

interaction for both wild-type and a mutated dynamin whereby

the interaction was disrupted without altering the spatial

distribution of the proteins. It is worth noting however, that this

technique does not tell us about the nature of the interaction, these

molecules may interact either by hydrogen bonding or purely

through hydrostatic bonding. This uncertainty, however, does not

change the interpretation of the data.

These data directly test the hypothesis that an isoform specific

difference in ApoE-Ab interaction can be observed in fibrillar Ab
deposits. Natively lipidated ApoE3 has been shown to have a

greater binding affinity to Ab than ApoE4 [31]. We confirm that

of the two ApoE domains, the ApoE CT is in closer apposition to

Ab, supporting the notion that the C-terminal domain, containing

the major lipid binding region is the region that interacts with Ab,

and that the CT of both ApoE3 and ApoE4 interact closely with

Ab. However, the difference between the two distances is small

enough to suggest that ApoE might encapsulate Ab, in a similar

fashion to the way in which it interacts with lipids [32].

There are however, distinct differences in the nature of the

interaction. Specifically, ApoE3 interacts more closely with Ab in

senile plaques. In addition, a greater number of Ab molecules

interact with ApoE4 than ApoE3. Finally, the ApoE N-terminus

appears to be buried or missing, especially in ApoE4 cases;

biochemical analyses suggest that ApoE undergoes cleavage, again

especially for ApoE4, suggesting that the N-terminus is indeed

separated from the C-terminus in ApoE4 plaques. This interpre-

tation is consistent with the previous studies which indicate that

ApoE4 undergoes more degradation in the AD brain than ApoE3

[33].

There is a well documented conformational difference between

ApoE3 and ApoE4 caused by an interaction between the two

highly structured terminal domains that is stronger in the case of

ApoE4 [4,34]. One consequence of the isoform specific domain

interaction and conformational change may be the relative

vulnerability to cleavage of the unstructured hinge region. If this

were the case, then we postulated that we might detect a

differential likelihood in observing N-C terminal interactions. Our

analysis directly tested this hypothesis and revealed that ApoE4

adopted a slightly tighter conformation with an increased closeness

of N-C terminal interaction. It is surprising that the conforma-

tional difference between the isoforms was comparatively small

compared with expectations based on in vitro data [34,35,36]. It is

worth noting that the effects of ApoE isoform take many decades

to cause an effect in patients, a more drastic effect might be

expected to result in onset of symptoms far earlier, as is observed

in familial AD cases. This result particularly highlights the need for

in situ measurements of endogenous proteins to confirm that

observations made in reduced preparations, like tissue culture or in

solution, can be extended to the native environment.

We also note a greater interacting fraction between the Ab and

ApoE CT, compared with ApoE NT. At the same time, the lower

interacting fraction between the NT and CT of ApoE, especially

for ApoE4, indicates that either the epitope for the N-terminal

specific ApoE antibody has been partially occluded or an

increased number of isolated C-terminal fragments exist in senile

plaques in the case of ApoE4. Since previous biochemical studies

suggest that ApoE4 is cleaved at the hinge region to a greater

extent than ApoE3 [21,37], and that elevated levels of ApoE4

ApoE3 vs 4 in Senile Plaques
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CTFs are found in the brains and cerebral spinal fluids of carriers

of APOEe4 [37], we tested the possibility that the decreased

interacting fraction that we observed indicates a pathologically

elevated cleavage of ApoE4. Work by Riddell and Zhou [38] in

mice suggests that enhanced degradation of ApoE4 by astrocytes

leads to lower levels of ApoE and thereby impacts clearance, while

recent work from the Garner lab [39] suggests that ApoE3 suffers

greater fragmentation without regards for whether the patient had

AD as assessed in the TBS fraction of human brain. By contrast,

we find increased cleavage in AD, and especially, in ApoE4

individuals, using both biochemical assays and, importantly,

FRET based assays of the protein in situ. Since ApoE contains

an unstructured region and is somewhat prone to aggregation, it is

possible that differences in antibody choice and specificity may

play some role in the differences between observations.

The question remains as to how these observations shape our

understanding as to the differential role of these two isoforms of

ApoE on Ab clearance and deposition. We must consider how

these data fit with the observation that ApoE4 is associated with

greater Ab deposition or clearance of Ab from the neuropil. One

set of hypotheses states that Ab is cleared through the blood brain

barrier to the periphery and ApoE is thought to impede that

process [40], perhaps in an isoform dependant manner. In

addition, ApoE may mediate proteolytic degradation through

neurons, astrocytes or microglial cells [41] by acting as a bridging

protein between Ab and one or more of several candidate

receptors, particularly LRP1 [14] or ApoER2 [42].

The presence of isolated ApoE CT fragments may also

contribute to plaque deposition or stabilization. Our data do not

directly assess ApoE’s role in clearance; instead, however, the

current data demonstrate that ApoE3 and ApoE4 differentially

interact with fibrillar Ab deposits.

These data, taken together lend strong support to the hypothesis

that there is an isoform specific mechanistic effect on plaque

Figure 4. Summary of findings. a) The FLIM-FRET data can be translated into real distances by multiplying by the Forster radius of A488 and
Alexafluor 555 (7 nm). The structural differences between isoforms and interactions with Ab are compared (not to scale but distances marked in nm).
The Ab-ApoE4 distance is larger than Ab-ApoE3 despite the fact that the propensity for interaction is greater. ApoE4 shows a tighter inter-terminal
interaction although the difference is not large. This result suggests that under these conditions ApoE conformation is influenced but not dominated
the domain interaction. Nevertheless, this small conformational difference could lead to a differential vulnerability to cleavage at the hinge region
leading to a larger number of orphan ApoE4 C-terminal fragments bound to Ab. b) Our proposed model for the increased risk of senile plaque
associated with ApoE4. Under normal conditions, ApoE acts as a bridging protein between Ab and one of the lipoprotein receptor proteins, thereby
mediating clearance across the cell membrane. In the Case of ApoE4, the conformational difference leads to enhanced vulnerability to cleavage,
which in turn leads to a loss of clearance function and enhanced deposition.
doi:10.1371/journal.pone.0014586.g004

ApoE3 vs 4 in Senile Plaques
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deposition and clearance that is implicated in the positive

correlation between ApoE4 dose and plaque density [13,14] and

strengthens the case for therapeutic intervention targeted at

ApoE4’s unique tertiary structure [43].

Materials and Methods

Tissue and immunostaining
Massachusetts Alzheimer Disease Research Center (ADRC)

Brain Bank provided free floating human brain sections (50 mm)

from patients homozygous for APOEe3 or APOEe4 and with

postmortem confirmed AD.

All sections were pretreated with 10 mM citrate buffer pH6 for

10 minutes at 95uC before immunostaining. Sections were

incubated with either C-terminal specific ApoE antibody, 3H1

(aa 243-272, 1:100, Ottawa Heart Institute); or 3D6, which is

directed against Ab (1:500, Elan Pharmaceuticals) antibodies and

visualized with secondary antibody conjugated to Alexafluor 488

(A488) (Invitrogen). After sequential washing, the sections were

incubated with 6C5 antibody (ApoE NT, aa 1-15, 1:1000) (Ottawa

Heart Institute) directly conjugated to Cyanine 3 (Cy3) (GE

Healthcare). To probe the interaction between Ab and ApoE CT;

Ab was labeled as above and ApoE CT was labeled using 3H1,

directly conjugated to Cy3 [44].

Fluorescence Lifetime Microscopy
Sections were imaged using a Zeiss LSM-510 microscope,

which has excitation and emission channels for confocal, near

infrared and FLIM imaging. Cortical neuritic senile plaques were

initially located using visual inspection of both fluorophores under

epifluorescent wide field microscopy. Upon identification of a

plaque, multi-track confocal images of A488 (green) and Cy3 (red)

were obtained to confirm the co-localization of the two

fluorophores, followed by FLIM imaging. Excitation of A488 for

FLIM was achieved with a picosecond 2-photon laser (Tsunami,

Spectra-Physics). Images were taken with the laser tuned to

760 nm, which we have found to be the most efficient two photon

wavelength for selective excitation of A488 while minimizing

autofluorescent contribution.

Analysis was performed using a combination of SPCImage

v2.9.5 (Becker and Hickl, GmbH) and previously described in

house post analysis programs; x2 filter and MUGLE [27], written

in MATLAB (Mathworks, MA, USA). In brief, the analysis

method is a multi-stage process. In the first instance, all images

were fit with mono-exponential functions in SPCImage. Matrices

of brightness, lifetime, and goodness of fit parameter (xr
2), are

imported into the program chifilt, in which xr
2 is used as a pseudo-

contrast for autofluorescence. A cutoff for xr
2 is selected by

comparing all images; binary masks are created and saved. A

baseline fluorescent lifetime for the donor fluorophore is obtained

by analyzing the data from sections stained only with donor and

used as a fixed prior lifetime for bi-exponential fits of sections

stained with both donor and acceptor. During both of these later

two stages, pixels are discarded by both the use of a region of

interest around the plaque, and the masks created in the first stage

of analysis. The intensity weighted histogram of the lifetimes is fit

to one or more Gaussians using MUGLE.

Differences in interacting fraction; AF/(AF+ANF), where A is the

pre-exponential factor and the subscripts F and NF refer to the

FRET quenched and unquenched components were calculated

along with normalized inter-terminal distance based on FRET

efficiency

R

R0
~

tNF

tNF {tF

� �1=6

{1

where R0 is the Förster radius, at which 50% of energy is

transferred from donor to acceptor [26]. Results were analyzed for

significance by analysis of variance (ANOVA) and Bonferoni-

Dunn post hoc tests.

Preparation of Brain extracts
Cortical gray matter from the temporal lobe of AD and non-

demented control patients was homogenized in RIPA lysis buffer

(25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% NP-40, 1% sodium

deoxycholate, 0.1% SDS) containing protease inhibitor cocktail

(Roche, cat #11836153001), and then subjected to centrifugation

at 16,0006g for 20 min at 4uC. The supernatant was used for

SDS-PAGE and Western blot. For fractional brain extracts,

samples were sequentially homogenized in 5 volumes of; TBSI

(Tris-buffered saline containing a protease inhibitor cocktail

[Roche]), 2% Triton X-100, and 2% SDS, with 25 strokes on a

mechanical Dounce homogenizer, and subjected to centrifugation

at 260,0006g for 20 min at 4 degrees for each fractional extract.

In each case, the supernatant was drawn off and used for Western

blot analysis. For the final extraction, SDS insoluble pellets were

sonicated in 70% formic acid, centrifuged at 260,0006g for 30

minutes at 4 degrees. The supernatant was evaporated and

resolubilized in dimethyl dulfoxide (DMSO) for Western blot

analysis.

SDS-PAGE and Western Blot
Protein concentrations were determined by BCA assay. Equal

amounts of total protein were loaded per well and electrophoresed

through 10–20% Tricine or Tris-Glycine gradient gels (Invitrogen,

catalog #E66255BOX and #EE61355BOX) and then transferred

to PVDF membrane (PerkinElmer, catalog #NEF1002001). The

membranes were incubated in blocking buffer (5% nonfat dried

milk in TBS containing 0.01% Tween-20) for 1 h at room

temperature, and then incubated with primary antibody diluted in

blocking buffer for 1–2 h at room temperature. Primary antibodies

used were: goat anti-ApoE (Calbiochem, catalog #179478), 3H1

mouse anti-C-terminal ApoE (Ottawa Heart Institute), and 6C5

mouse anti-N-terminal ApoE (Ottawa Heart Institute). Mem-

branes were then incubated with HRP-conjugated horse anti-goat

(Vector, catalog #PI-9500) or goat anti-mouse (Bio-Rad, catalog

#170-6516) secondary antibody diluted in blocking buffer for 1 h

at room temperature and protein detected by enhanced

chemiluminescence (PerkinElmer, catalog #NEL102001).
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