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Abstract

Lipoprotein(a) (Lp(a)) is an important causal cardiovascular risk factor, with serum Lp(a) levels predicting atherosclerotic
heart disease and genetic determinants of Lp(a) levels showing association with myocardial infarction. Lp(a) levels vary
widely between populations, with African-derived populations having nearly 2-fold higher Lp(a) levels than European
Americans. We investigated the genetic basis of this difference in 4464 African Americans from the Jackson Heart Study
(JHS) using a panel of up to 1447 ancestry informative markers, allowing us to accurately estimate the African ancestry
proportion of each individual at each position in the genome. In an unbiased genome-wide admixture scan for frequency-
differentiated genetic determinants of Lp(a) level, we found a convincing peak (LOD = 13.6) at 6q25.3, which spans the LPA
locus. Dense fine-mapping of the LPA locus identified a number of strongly associated, common biallelic SNPs, a subset of
which can account for up to 7% of the variation in Lp(a) level, as well as .70% of the African-European population
differences in Lp(a) level. We replicated the association of the most strongly associated SNP, rs9457951 (p = 6610222, 27%
change in Lp(a) per allele, ,5% of Lp(a) variance explained in JHS), in 1,726 African Americans from the Dallas Heart Study
and found an even stronger association after adjustment for the kringle(IV) repeat copy number. Despite the strong
association with Lp(a) levels, we find no association of any LPA SNP with incident coronary heart disease in 3,225 African
Americans from the Atherosclerosis Risk in Communities Study.
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Introduction

Lipoprotein(a) (Lp(a)) is a subclass of lipoproteins, consisting of a

low-density lipoprotein (LDL)-like particle covalently bound to the

LPA gene product. Serum Lp(a) levels are a risk factor for

cardiovascular disease, albeit with more modest effect than LDL-

cholesterol [1–3]. Common variants within the LPA gene have

been associated with myocardial infarction, suggesting a causal

link between Lp(a) and atherosclerotic heart disease [4–7].

The genetic determinants of Lp(a) levels have been investigated

extensively both within and between ethnic groups. Lp(a) is highly

variable, with over 90% of the variance in Lp(a) levels in European

Americans attributable to variation within the LPA gene [4]; the

corresponding percentage in African Americans is ,80% [5]. LPA

includes a well-characterized 5.6 kilobase-pair copy-number

variant (CNV) that encodes a kringle(IV) domain [6,7]. Higher

copy numbers for this domain are associated with lower Lp(a)

levels [8], presumably due to impaired secretion of the larger
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protein product [9]. Biallelic SNPs and other CNVs also appear to

contribute independently to Lp(a) level [10].

Lp(a) levels vary widely between populations [11], with some

populations of African ancestry having nearly 4-fold higher Lp(a)

levels than European Americans [12]. The interethnic differences

in populations seem to be only weakly explained by the kringle(IV)

CNV, thus motivating searches for other responsible variants [10].

Given the association of LPA variants with coronary heart disease

(CHD), identifying these determinants may have clinical implica-

tions for differences in disease prevalence between populations.

Recent genetic association analyses in admixed populations

such as African Americans have highlighted the complexities due

to confounding by ancestry [13]. We have extended our earlier

work on admixture mapping and genetic association analysis in

the Jackson Heart Study (JHS) to the Lp(a) trait and find the

amount of African or European ancestry at the LPA locus is

strongly associated with Lp(a) level. Dense fine-mapping of LPA

identified multiple strongly associated variants, including

rs9457951 and rs10455872, a SNP strongly associated with

myocardial infarction in European populations [14]. A multi-

SNP model explains ,7% of the variation in Lp(a) level and 73%

of the association of local ancestry with this trait. We have

replicated the strongest association (rs9457951) in the Dallas Heart

Study (DHS), and find a stronger effect after adjustment for the

kringle(IV) CNV. Finally, we genotyped 10 SNPs in .3200

African Americans in the Atherosclerosis Risk in Communities

(ARIC) Study and, although we validated the strong association of

LPA local ancestry and genotypes at 7 of the 10 SNPs with Lp(a)

level, we find no significant association of these variables with

incident CHD.

Results

Admixture Mapping for Determinants of Lp(a) Levels
Identifies a Strong Peak at the LPA Locus

We studied a sample of 4605 individuals from the JHS (Table 1),

a community-based observational study of cardiovascular disease

(CVD) in African Americans [15]. We have previously used a

panel of .1400 genotypic markers selected for high differences in

frequency between European Americans and West Africans [16]

to estimate African ancestry across the genome of 4464

individuals. To investigate the genetic basis of African-European

differences in serum Lp(a) levels, we performed genomewide

admixture mapping of the Lp(a) trait (see Methods).

Admixture mapping of Lp(a) reveals a compelling association of

increased African ancestry with Lp(a) case status (upper quintile) at

chromosome 6q25.3 (LOD 13.6, Figure 1). This far exceeds our

threshold of significance of 5 for LOD scores [17] and suggests a

marked association of local ancestry at this locus with Lp(a) level.

In this region, individuals having Lp(a) levels in the upper quintile

had a mean African ancestry of 87.4%, compared to 72.7% for

those having Lp(a) values in the lower quintile (p,2610216). The

95% credible interval for this peak spans from 158 to 162

megabasepairs (Mb) and includes the LPA gene.

Local Ancestry at the LPA locus is strongly associated
with Lp(a) Levels

In addition to localizing genetic determinants of disease,

estimates of individual ancestry in admixed individuals can be

correlated with continuous phenotypes (see Methods). To further

characterize the admixture peak at the LPA locus, we obtained an

estimate for overall ancestry and for local ancestry at the LPA locus

for each individual in JHS. Looking first at overall ancestry, we

found a 9.961.3% increase in Lp(a) level for each 10% increase in

overall African ancestry (p = 6.861027). Interestingly, this result is

in keeping with the ,2 fold difference in Lp(a) levels seen in ARIC

between European and African Americans [18], suggesting that

genetic determinants of the association between global ancestry

and Lp(a) levels within an admixed population may prove useful in

explaining differences in Lp(a) levels between African and

European American populations. When we incorporated local

ancestry as a covariate in the linear regression model, we found an

increase of 7.760.5% in Lp(a) level for each 10% increase in local

African ancestry at the LPA locus (p = 1.8610225). Furthermore,

inclusion of the LPA local ancestry rendered the overall ancestry

Table 1. Demographic Characteristics for the Genotyped Jackson Heart Study Participants.

All Unrelated
Unrelated with only African
local ancestry at LPA

Unrelated with European
local ancestry at LPA

Number 4464 3300 1831 615

Male (%) 36.8 37.8 38.4 40.7

Age (mean - years, 6 std.) 55613 56611 57612 57612

BMI (mean - kg/m2 6 std.) 3267 3267 3267 3166

Type II DM (%) 18.9 20.4 20.6 17.6

Cholesterol or TG-Lowering Medication (%) 12.5 13.6 13.8 14.3

LDL-Cholesterol: unmedicated |
medicated participants (mg/dL)

127636 | 113633 128637 | 113633 128636 | 113635 130638 | 117630

HDL-Cholesterol: unmedicated |
medicated participants (mg/dL)

51614 | 51614 52615 | 52614 52615 | 51614 52614 | 52612

Serum Triglycerides: unmedicated |
medicated participants (mg/dL)

106681 | 1296151 107683 | 1306164 108697 | 1366212 108663 | 123673

Serum Lp(a): unmedicated |
medicated participants (mg/dL)

57644 | 72654 57643 | 73654 62643 | 83657 42637 | 55643

Overall African Ancestry (%) 8369 8269 8567 75612

Characteristics are shown for the 4464 genotyped participants, the 3300 unrelated individuals, the 1831 unrelated individuals with homozygous African local ancestry at
the LPA locus, and the 615 individuals with at least one ancestral European allele at LPA.
doi:10.1371/journal.pone.0014581.t001

Ancestry and Lp(a) Levels
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term non-significant, suggesting that local ancestry at LPA almost

fully explains the ancestry-related differences in Lp(a) levels.

Common LPA SNPs Explain A Modest Percentage of
Variance in Lp(a) Levels

We next performed a fine-mapping study to look for variant(s)

in the LPA gene that can account for the admixture signal at this

locus. Although several common variants as well as the kringle(IV)

repeat have previously been shown to contribute to African-

European differences [10], these earlier studies were performed

without estimates of LPA local ancestry. In such cases, effects

attributed to the repeat or to specific SNPs may reflect

confounding by admixture linkage disequilibrium.

Given that genetic variation at the LPA locus has been shown to

explain .80% of variation in Lp(a) levels [5], we selected a dense

panel of SNPs spanning the LPA locus and extending 10 kb

upstream and downstream (see Methods). This interval includes

LPA and nearly all of LPAL2 (Lp(a)-like 2 precursor). SNP-Lp(a)

associations were evaluated by linear regression, correcting for

global and local ancestry at the LPA locus. As another approach to

potential confounding by differing LD patterns, we tested

association of each SNP separately in a subpopulation of 1831

individuals who had .95% probability of two African ancestral

chromosomes in the region (JHS-AFR-2LPA), thus minimizing

heterogeneity in local ancestry background, and a subpopulation

of 615 individuals with .95% probability of at least one European

ancestral allele (JHS-EUR-1_2LPA; see Table 1 for demographic

characteristics of these subgroups).

Figure 2 and Table S1 present the p-values for association with

Lp(a) for the 59 successfully genotyped SNPs. 24 SNPs had a p-

value less than 0.00085 (corresponding to p = 0.05 with Bonferroni

correction for 59 SNPs tested), with the strongest SNPs being

rs9457951 (p = 9.2610226), rs6930542 (p = 9.2610227, r2 = 0.994

with rs9457951 in JHS-AFR-2 LPA), rs10455872, (p = 1.3610219)

and rs6922216 (p = 5.4610215, r2 = 0.746 with rs9457951 in JHS-

AFR-2LPA). Eighteen of the top 20 SNPs show significant

association in the JHS-AFR-2LPA subpopulation at p,0.00085.

The exceptions were rs10455872, which is nearly fixed in

Figure 1. Affected-Only Statistic at Equally Spaced Points
across the genome for the Lp(a) Admixture Scan. The 95%
credible interval for the peak at 6q25.3 includes the LPA and LPA2
genes.
doi:10.1371/journal.pone.0014581.g001

Figure 2. Graphical Depiction of SNP-Lp(a) Associations in the 6q25.3 region. For each SNP, -log(p-values) given in Table S1 are shown
against chromosomal position (kb). rs9457951 is highlighted in blue, and SNPs in strong (r2$0.8), moderate (0.8.r2$0.25) and weak(0.25.r2$0.10)
and very weak (0.1.r2) linkage disequilibrium with rs9457951 in the Yoruba HapMap population are depicted by red, yellow, green, and white
diamonds, respectively. The position of the LPA and LPAL2 genes are depicted by green arrows. The chromosomal recombination rate for the Yoruba
population is depicted at the bottom of the plot, in light blue.
doi:10.1371/journal.pone.0014581.g002

Ancestry and Lp(a) Levels
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frequency (MAF = 0.001) in JHS-AFR-2LPA, and rs6919346,

which has an MAF of 0.006 in this subgroup. Notably, for 21 of

the 24 significant SNPs, the allele associated with higher Lp(a)

levels is at higher frequency in the African ancestral subpopula-

tion, providing a strong explanation for the association of African

LPA local ancestry with increased Lp(a) levels. Furthermore, for 4

of the SNPs – rs9457951, rs6930542, rs6922216, rs7755463 – the

allele corresponding to higher Lp(a) levels is nearly absent in JHS-

EUR-2LPA. Pairwise LD values in the African and European local

ancestry subpopulations are shown in Figures 3 and Figure S1.

Effect sizes for individual SNPs are shown in Table 2. For

rs9457951, which is intronic, the effect size is an increase in Lp(a)

level by 2562% per allele. The minor allele frequency for

rs9457951 in JHS is 0.19, and this SNP alone appears to explain

,5% of the residual variance in Lp(a) after adjustment for gender.

The largest effect is seen for rs10455872, which demonstrates an

effect size of 9267% in Lp(a) level per inherited allele. This SNP is

intronic, and was recently shown to explain ,25% of the Lp(a)

variance in a European cohort with a positive association with

myocardial infarction [14]. The high Lp(a) rs10455872 genotype is

correlated with smaller LPA isoform number and thus the strong

contribution to Lp(a) variance likely arises from the effect of the

well known kringle(IV) repeat in the LPA gene.

Common LPA variants explain 7% of the variability in
Lp(a) levels

To determine if a multi-SNP model could better explain the

variability in Lp(a) levels, we performed stepwise linear regression

combined with ANOVA (see Methods). Such analyses are prone

to overestimation if SNP discovery, model building (SNP selection

and parameter estimation) and variance calculations are all

performed using the same individuals. We thus undertook five-

fold cross-validation to more accurately estimate the percentage of

Lp(a) variance explained by common LPA gene polymorphisms

(see Methods). Using this approach, we found that common LPA

variants explain 761% of the variance in gender-adjusted Lp(a)

level. The strongest contribution was seen for rs9457951, which

explains 561% of the variance.

Using all JHS individuals, we also built a 10 SNP model by

stepwise linear regression for validation in other cohorts (see below).

Common Variants at LPA Explain Most of the Association
of Local Ancestry with Lp(a) Level

Many of the most highly correlated SNPs we identified are quite

differentiated in frequency between JHS-AFR-2LPA and JHS-

EUR-2LPA, and thus may explain the observed association of LPA

local ancestry with Lp(a) levels (Table S1, Table S2). We tested this

systematically for each SNP by comparing:

1. R2: the adjusted R2 for the regression of LPA local ancestry on

gender-adjusted Lp(a) level

2. R2
geno: the adjusted R2 for the regression of LPA local ancestry

on gender- and genotype-adjusted Lp(a) level

In principle, a statistic p= 1-(R2/R2
geno) should give the

percentage of the ancestry-specific variation explained by the

SNP genotype. Table S2 shows p for the 10 SNPs that most

strongly account for the ancestry-specific variance. Each of these

10 SNPs has p.0.25, with 4 (rs7755463, rs9365166, rs9457951,

rs225830) having p.0.40. Thus a number of individual SNPs can

explain a large fraction of the observed association between LPA

local ancestry and Lp(a) level.

Since many of these SNPs are in linkage disequilibrium, we can

look for a multi-SNP model that explains a larger fraction of the

ancestry. We performed stepwise-model building, repeating five-

fold cross-validation, and testing the fitted model for explanation of

the local ancestry contribution to Lp(a) variance. We estimate that

common LPA variants explain 73613% of this ancestry association.

rs9457951 Is Strongly Associated with Isoform-adjusted
Lp(a) Levels in an Independent Population

To validate our results in an independent population, we

genotyped rs9457951 in 1,726 African Americans and 996

European Americans in DHS, and found a minor allele frequency

of 0.176 and 0.00253 respectively. The African Americans in DHS

had previously been genotyped using a panel of 2,270 genomewide

ancestry informative markers (Smith et al. 2004), allowing us to

generate global and local ancestry estimates. Furthermore, the

kringle(IV) CNV had also been genotyped in DHS [19], allowing

us to investigate the joint effects of isoform number, ancestry, and

rs9457951 on Lp(a) level.

DHS African Americans had a mean of 15.8% European ancestry,

with mean Lp(a) levels of 97.9 nmol/L, compared to 56.2 nmol/L in

the DHS European Americans. Isoform number was a strong

predictor of Lp(a) level in DHS African Americans, with a

13.960.4% decrease in Lp(a) per unit increase in isoform number

(p = 4.26102180), accounting for 40.7% of the Lp(a) variance. We

confirmed strong associations of Lp(a) with global ancestry (1363%

increase in Lp(a) per 10% increase in African ancestry proportion;

p = 1.461025) and local ancestry (961% increase in Lp(a) per 10%

increase in African ancestry, p = 3.9610213). These estimates were

reduced somewhat by adjustment for isoform number (1162% and

761%, respectively), indicating a modest correlation of isoform

number with global and local ancestry.

Genotype at rs9457951 was strongly associated with Lp(a) levels

in DHS after correction for global and local ancestry

(p = 3.461029) and after additional correction for isoform number

(p = 1.4610224), with a large effect on unadjusted and isoform-

adjusted Lp(a) levels (2964% and 4163% per allele, respectively).

Figure 3. Pairwise linkage disequilibrium measures (r2) for
significantly associated SNPs in the JHS African local ancestry
subpopulation.
doi:10.1371/journal.pone.0014581.g003

Ancestry and Lp(a) Levels
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The rs9457951 genotype was in fact able to account for 6.7% of

the variance in isoform-adjusted Lp(a) levels. Figure 4 demon-

strates Lp(a) levels in DHS African Americans represented

according to their rs9457951 genotype and stratified by isoform

number, showing a marked effect across multiple isoforms.

Although the absolute change in Lp(a) level per rs9457951 allele

decreases with isoform number, the percentage change is relatively

constant, as evidenced by a non-significant genotype x isoform

interaction on log-transformed Lp(a) levels (p = 0.14).

In addition to rs9457951, we investigated 3 SNPs that had

previously been reported to explain a large proportion of African-

European differences in Lp(a) level [10]. As the prior study had not

incorporated estimates of global and local ancestry, we wished to

analyze these SNPs with adjustment for ancestry and isoform

number. Of the 3 SNPs tested (rs1801693, G+1/inKIV-8A, and

T3888P (rs41272110)), rs1801693 explains 11% of the isoform-

and ancestry-adjusted variance, G+1inKIV-8A explains 3.7%, and

T3888P explains 32%. In a similar analysis, rs9457951 explains

36% of isoform- and ancestry-adjusted variance in Lp(a), while a

combination of T3888P and rs9457951 genotypes explains 56%.

rs9457951 is not Associated with Coronary Heart Disease
Outcomes in ARIC

We evaluated the 10 SNP model of common LPA variants that

we had discovered in JHS in 2200 African Americans from ARIC.

Table 2. Effect Size of LPA variants on Lp(a) levels.

SNP Allele fall fafr feur effectall ± seall effectafr ±seafr effecteur ±seeur p_int

rs2255830 T 0.776 0.847 0.422 14.562 16.563 6.364.3 0.126

rs2457550 T 0.872 0.918 0.727 13.862.5 16.563.8 1.464.9 0.0136

rs2136675 A 0.861 0.906 0.625 12.762.6 16.863.9 20.464.9 6.4E-03

rs9355803 C 0.927 0.949 0.814 11.363.3 11.164.9 11.466 0.860

rs2941382 G 0.95 0.976 0.856 14.964 967.4 18.166.7 0.656

rs9365166 C 0.782 0.853 0.422 15.162 18.363 6.664.4 0.090

rs7754014 T 0.444 0.495 0.233 6.861.6 8.162.1 26.864.1 1.9E-03

rs7754188 T 0.305 0.325 0.222 11.461.8 1462.3 20.164.4 6.6E-03

rs9457930 T 0.795 0.869 0.439 14.362.1 15.463.3 764.5 0.176

rs3124787 T 0.866 0.918 0.6 12.362.6 16.564.1 0.565 0.013

rs6919346 C 0.965 0.994 0.81 27.564.7 36.8615.5 22.867 0.347

rs11751605 C 0.024 0.001 0.107 21.565.3 106.5646.4 31.867.1 0.800

rs1801693 G 0.865 0.917 0.614 14.762.5 19.464 164.7 5.1E-03

rs7761293 A 0.763 0.838 0.381 7.762 4.263 9.764.4 0.541

rs6415084 T 0.427 0.429 0.5 13.861.7 11.962.1 14.964 0.755

rs6922216 G 0.225 0.283 0 16.562 13.962.3 12.966.7 0.652

rs10455872 G 0.011 0.001 0.024 91.767.5 85.5639.1 116.869.9 0.113

rs7755463 T 0.364 0.45 0 11.961.7 10.762.1 13.265.8 0.440

rs6926458 A 0.892 0.915 0.833 14.262.7 14.664 9.265.5 0.306

rs6930542 C 0.183 0.234 0 25.962.1 20.362.5 25.467.5 0.360

rs9457951 G 0.192 0.249 0 25.462.2 20.262.5 2967.8 0.180

rs1321196 C 0.447 0.482 0.321 9.761.7 11.162.1 2.264 0.188

rs1652507 T 0.924 0.953 0.855 24.263.5 39.465.5 9.466.5 0.017

rs9346833 C 0.607 0.652 0.429 7.861.8 10.662.3 22.664.2 2.8E-04

The percent change in Lp(a) level per LPA allele is shown with standard error for the total population (effectall), JHS-AFR-2LPA (effectafr) and JHS-EUR-1_2LPA (effecteur) for
SNPs with pall,0.00085. The SNP frequencies of the allele producing higher Lp(a) levels in the total population (fall) are shown, along with the corresponding frequency
in JHS-AFR-2LPA (fafr) and JHS-EUR-2LPA (feur). The p-value for significance of interaction of genotype with local ancestry (p_int) is also shown.
doi:10.1371/journal.pone.0014581.t002

Figure 4. Variation of Serum Lp(a) with rs9457951 genotype in
African Americans in DHS, stratified by kringle(IV) copy
number. For genotypes CC and CG, the locally weighted scatterplot
smoothing curve was drawn; for genotype GG, the raw data were
plotted.
doi:10.1371/journal.pone.0014581.g004

Ancestry and Lp(a) Levels
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Although there were 3225 African Americans in ARIC with Lp(a)

levels and DNA available, 1000 of these are also JHS participants

and had been included in the JHS analysis, so they were excluded

from validation of SNP and ancestry association with Lp(a) levels

in ARIC. We found strong association of local ancestry at the LPA

locus with Lp(a) level (p,2.2610216) and confirmed association of

7 of the 10 SNPs at p,0.005 (Table S3). Furthermore, in keeping

with the cross-validation results in JHS, we found that our 10 SNP

model explained 71% of the association of local ancestry with

Lp(a) level. However, despite these strong associations with Lp(a)

level, we found no association of any of the 10 SNPs, or the 10

SNP model with the 389 incident CHD outcomes in the 3225

ARIC participants with surveillance data (Table S3). Furthermore,

no significant association was seen for global (p = 0.14, b= 20.76,

95% CI 21.79–0.25) or local ancestry with CHD outcomes

(p = 0.31, b= 0.12, 95% CI 20.11–0.34).

We were interested in determining whether we were adequately

powered to detect an effect of genotype on myocardial infarction.

Within ARIC, Lp(a) levels have weak associations with CHD

outcomes, with a previously reported relative risk of 1.15 for

African American women and 1.01 for African American men per

unit standard deviation in Lp(a) level (,100 mg/dL) [20]. As

relative risk and hazard ratios (HR) are not readily comparable, we

used the previously reported HR of 1.22 per doubling of Lp(a)

level [1] observed in European populations and estimated that we

would have to be powered to detect an HR of 1.07 for the

corresponding ,25% change in Lp(a) seen per allele of rs9457951.

Simulation-based power estimates using the exponential distribu-

tion to model survival times demonstrated that we with the 389

outcomes in ARIC, we only had 12% power to detect an HR of

1.07 or less at p,0.05 for the rs9457951 allele (see Methods).

Lp(a)-associated SNP Regions Harbor Potential
Transcription Factor Binding Sites

In addition to identifying SNPs that may contribute to disease

risk, genetic association studies have the potential to illuminate

the regulatory transcriptional architecture of quantitative traits.

Recent studies have mapped transcription factor motifs to DNA

sequences harboring genetic variants and have subsequently used

chromatin immunoprecipitation to demonstrate genotype-de-

pendent occupancy of the binding site [21]. To identify potential

transcription factor binding sites that may be influenced by

genetic variation at the Lp(a) locus, we scanned the genomic

sequences surrounding the 24 Lp(a) associated SNPs using Jaspar

(http://www.jaspar.genereg.net) and Transfac (http://www.

gene-regulation.com) positional weight matrices (PWMs) with

quantitative thresholds for match quality (see Methods). We

focused on transcription factors with previously documented

expression in liver (the site of Lp(a) production) and identified 7

SNPs for which genetic variation is likely to influence binding of

such transcription factors (Figure 5). The transcription factors for

the various SNPs include members of the GATA (rs3124787,

rs6919346, rs6926458), and Forkhead families (rs2255830,

rs2457550). Interestingly, the strongly associated rs6930542

SNP is expected to influence the binding of YY1, a ubiquitously

expressed transcription factor with potential for either activating

or repressive effects on gene expression [22]. In this case the C

allele associated with higher Lp(a) levels and higher frequencies

in African ancestral populations would be expected to disrupt

YY1 binding, suggesting that the baseline transcriptional effect of

YY1 at this site would be repressive. Further experiments in liver

tissue and/or cell lines will be needed to validate these

predictions.

Discussion

We have used a combination of admixture mapping and fine-

mapping adjusted for local ancestry to characterize the genetic

basis of interethnic differences in Lp(a) levels. Given that there is a

pronounced influence of global ancestry on Lp(a) levels within

African Americans (,10% change in Lp(a) per 10% increase in

African ancestry), genetic determinants of this association might, in

fact, explain much of the difference in Lp(a) levels between African

and European American populations. Towards this end, dense

fine-mapping identified common biallelic SNPs that account for

.70% of the global and local ancestry signal. Furthermore, the

observed, prominent peak of admixture association indicated that

variants differing in frequency between the African and European

ancestral populations are important determinants of Lp(a) level in

African Americans. One of these variants, rs9457951, explains up

to 5% of Lp(a) variance, and, in combination with additional

common SNPs, accounts for a total of 7% of variance.

We replicated the association of rs9457951 in the DHS cohort

and demonstrated that the effect of rs9457951 is even more

marked on isoform-adjusted Lp(a) levels. Similarly, rs9457951

explains a large proportion of the LPA local ancestry signal in

DHS. In contrast to the recently described association of biallelic

variants rs3798220 and rs10455872 with Lp(a) levels in Caucasian

populations [2], no single common biallelic LPA variant explains a

large proportion of variation in Lp(a) levels in African Americans.

This is most likely a reflection of limited linkage disequilibrium

between extreme kringle(IV) repeat numbers and common SNPs

on the African ancestral background and is in keeping with

recently observed genetic architecture for the Lp(a) locus in

Chinese and South-Asian populations [23]. In contrast to common

biallelic SNPs, kringle(IV) copy numbers explained .40% of Lp(a)

variance in DHS. Additional copy number variants and less

common biallelic variants within LPA and other genes are

expected to contribute to the remainder of the variance.

We further replicated the strong association of LPA local ancestry

with Lp(a) levels in a third large cohort of African Americans and

confirmed association of the majority of the SNPs in our multi-SNP

model. However, we found no significant association of any LPA

variant with CHD outcomes. This negative result can be attributed

in part to the lower contribution of individual biallelic variants on

Lp(a) levels in African Americans as compared to that seen for

European Americans [14] as evidenced by our low power (12%) to

detect the expected HR. It remains to be seen whether, with a much

larger number of CHD cases, an association with biallelic variants in

the LPA genes will be seen in African Americans.

Methods

Ethics Statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. The study was approved by the

Institutional Review Board of the Jackson Heart Study, ARIC and

Dallas Heart Study. All patients provided written informed

consent for the collection of samples and subsequent analysis.

Selection of Case and Control samples
Participants in the discovery sample for this study (n = 4605)

were all self-identified African Americans in the Jackson Heart

Study [2]. Between Sept. 2000 and March 2004, 5,301 African

Americans were recruited from three counties, Hinds, Rankin, and

Madison, which comprise the Jackson, MS metropolitan area.

Unrelated JHS participants were drawn from three sources in

roughly equal numbers: (1) former ARIC participants; (2)
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participants selected randomly from a commercial residential

listing; and (3) a constrained volunteer sample for which

demographic cells for recruitment were designed to mirror the

overall target population. 4464 individuals were successfully

genotyped on the admixture panel [24,13,25]. DHS samples were

previously described in [26]. The ARIC study is a prospective

cohort study of 15,792 participants investigating the etiology of

atherosclerosis and described in detail elsewhere [27].

Lp(a) Assay
Serum Lp(a) was analyzed in JHS samples by a Diasorin

nephelometric assay on a Roche Cobas FARA analyzer [28].

Lp(a) was analyzed in DHS using a sandwich ELISA that is

insensitive to apo(a) isoform size [29]. Isoform number was

determined in DHS by immunoblot analysis with an LPA-specific

antibody [30]. Lp(a) was analyzed in ARIC using a double-

antibody ELISA [31].

Figure 5. Mapping of Lp(a) associated SNP regions to transcription factor binding motifs. Sequences surrounding each of the 24 Lp(a)
significantly associated SNPs were scanned for transcription factor binding motifs from the Transfac and Jaspar databases. Sequence logos for
binding motifs predicted to be disrupted by allelic variation are displayed along with the HGNC symbol of associated transcription factor and the
Jaspar or Transfac motif ID. Only transcription factors with literature evidence of liver expression are shown.
doi:10.1371/journal.pone.0014581.g005

Ancestry and Lp(a) Levels

PLoS ONE | www.plosone.org 7 January 2011 | Volume 6 | Issue 1 | e14581



Statistical Analysis
Linear regression analyses were used to evaluate association of

ancestry with Lp(a) levels. Association analyses were performed

using a combination of MERLIN [32] and R (www.Rproject.org).

MERLIN was used to obtain p-values and regression coefficients

over the entire cohort, accounting for the family structure among

related individuals in JHS. For cross-validation, which was needed

for accurate estimates of SNP contribution to Lp(a) variance (total

and ancestry-specific), we used R (2.9.1), which allowed greater

analytic flexibility. However, since we were unable to correct for

family structure in cross-validation analyses, we randomly selected

only one member of each family to be included in any given

analysis. To minimize bias, we generated 100 overlapping groups

of 3300 unrelated individuals and conducted all statistical analyses

on each set, averaging the results. The pairwise LD plot was

generated using the LDheatmap package in R.

Linear Regression Models
Lp(a) values in mg/dL were log transformed. Sex-adjusted Lp(a)

was used as the phenotype in association analyses with global

ancestry, local ancestry, and genotype – we did not see a

significant association of Lp(a) levels with age. For genotype-

phenotype association analyses, we assumed an additive mode of

inheritance and tested for the strength of association by ANOVA

[33] with nested linear regression models, which included global

ancestry, local ancestry, and local ancestry + genotype. The

genotype-local ancestry interaction term was computed as a

product of the local-ancestry term and SNP genotype, and is a

continuous variable ranging from of 0 to 2. We conducted separate

linear regression in a subset of 1831 individuals with a .95%

probability of two African ancestry alleles at the LPA locus and in a

subset of 615 individuals with a high (.95%) probability of 1 or

more European ancestral alleles (local ancestry .48% European

ancestry). We also identified a small subgroup of 46 individuals

with .95% probability of two European ancestral alleles JHS-

EUR-2LPA for calculation of allele frequencies and linkage

disequilibrium parameters (Table 1). Effect sizes were estimated

by evaluating what effect a unit change in genotype would have on

the predicted value of the trait.

Multi-SNP models were identified with stepwise linear regres-

sion and the anova function in R. For each of the 100 sets of 3300

unrelated individuals, the top SNP associated with the phenotype

residual of interest was identified and added to the regression

model. The remaining SNPs were then each tested sequentially by

ANOVA by comparing the model with and without the SNP and

adding the SNP to the model if the p-value for comparison was

,0.05. At each step this process was performed for each of the 100

sets of individuals and the average p-value for all sets was

determined. The process was continued until no additional SNP

improved the model at the p,0.05 threshold.

Cross-Validation for Assessment of Percentage of Lp(a)
Variance Explained

Cross validation was used for estimation of contribution of

individual SNPs and a multi-SNP model to Lp(a) variance. For

multi-SNP model assessment, each of the 100 groups of 3300

unrelated JHS individuals was randomly divided into 5 sets. For

each group, 3 sets were used for SNP discovery (p,0.05 for

association with sex and ancestry-adjusted Lp(a)), one used to build

a model by stepwise regression/ANOVA (including coefficient

estimation), and the fifth used as a test set to evaluate either the

percentage of residual variance or local-ancestry specific variance

explained. The roles of each set were rotated to obtain unbiased

estimates across the entire cohort. For single-SNP assessment, two-

fold cross-validation was performed, with one set used for

coefficient estimation and the second for determination of the

percentage of Lp(a) variance explained. The percentage of local

ancestry-specific variance in Lp(a) explained was calculated as

described in the Results section.

The local ancestry estimate at LPA was improved by forcing

rs9457951 into the set of markers used to estimate local ancestry.

This estimate was used for all analyses. Estimation of allele

frequencies and r2 for SNPs was performed using the R GeneticsBase

package.

CHD Outcomes
We focused on 3225 African Americans in ARIC for this

analysis, excluding individuals based on the following criteria;

participants from centers with small numbers (n = 55), prevalent

CHD (n = 139), missing data for prevalent CHD (n = 63), and

missing genotype data for the respective SNPs. The final analysis

sample included 389 incident CHD cases. Ascertainment and

standardized case definitions for CHD have been described

elsewhere [34]. Ten LPA SNPs were genotyped on stored DNA

using the TaqManH System. We tested for Hardy Weinberg

equilibrium using the x2 goodness of fit test. Cox proportional

hazard regression was used to estimate the associations of SNPs

and incident events and linear regression was used for associations

of SNP genotype and ancestry with log-transformed Lp(a) levels.

All data were analyzed with STATA, Version 10.1.

Power calculations for rs9457951 were conducted by simulation

of the Cox Proportional Hazards Model in R as described [35].

We estimated that if the hazard ratio (HR) matched that seen in

[1], which was 1.22 for a doubling of Lp(a) level, we should see an

HR of 1.067 for a change in 25% in serum Lp(a), which is that

seen for inheritance of each allele of rs9457951 (or rs6390542). We

estimated our power to detect such an HR as follows. For each of

1000 iterations, using the estimated allele frequency in ARIC,

genotypes (zi) were randomly sampled for 3225 individuals. We

then simulated survival times for the ith individual were generated

randomly using the exponential distribution, conditional on

genotype and HR, where the HR was drawn from a normal

distribution with mean = 1.067 and standard deviation (as a

percentage of mean) matching that seen for age in the Cox

Proportional Hazards model. A survival time threshold for each

simulation was selected so that the number of CHD outcomes

matched that seen in ARIC (389). The significance of the

association of genotype with CHD outcome was determined using

the coxph function in R. The process was repeated 1000 times and

the percentage of significant associations (p,0.05) – which was

found to be 11.7% - was used to estimate power.

To determine case and control samples for admixture mapping,

individuals were ranked in terms of increasing gender-adjusted

Lp(a) level (age was not seen as a significant covariate), and the top

and bottom quintiles were used as cases and controls, respectively.

Admixture Mapping and Markov Chain Monte Carlo data

analysis for inference of ancestry and testing of disease

association. The ANCESTRYMAP software [17] was used for

all analyses. The program generates local ancestry estimates by

integrating information from a panel of densely spaced markers

differentiated in frequency between African and European

populations. The use of admixture mapping in JHS has been

described previously [13,24,25]. Briefly, we focused on the use of a

‘‘Cases-Only’’ statistic, looking at regions in the genome where the

local ancestry in Cases deviates significantly from the average

ancestry across the genome. The control population was used to

ensure that no artifact contributed to the increase in ancestry at
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the peak (i.e. we expect that controls should have a change in

ancestry in the opposite direction). Admixture peaks were defined

by regions where posterior LOD scores exceed 0. Bayesian 95%

credible intervals were then computed by plotting the posterior

LOD scores across the chromosome of interest and defining the

region centered on the maximum LOD score that included 95%

of the peak area.

Fine-Mapping Genotyping
Genotyping was performed on the Sequenom platform, which

utilizes matrix-assisted laser-desorption ionization time-of-flight

mass spectroscopy. SNPs with a genotype call rate ,90% (n = 12)

and individuals with genotyping success rates ,f85% (n = 141)

were excluded from analysis. Using Tagger [36], SNPs were

selected to tag the LPA gene (including 10 kb upstream and

downstream) locus at an r2 of 1.0 with a minor allele frequency

(MAF) $2% in the Yoruba West African HapMap population

(YRI) using HapMap release #24. We then forced these SNPs into

Tagger to tag this region in CEU at an r2 of 1.0 with MAF $2%.

Prediction of Transcription Factor Binding Sites at SNP
regions

Positional weight matrices (PWMs) for mammalian transcrip-

tion factors (TFs) were obtained from the Jaspar [37] (http://

www.jaspar.genereg.net) and Transfac [38] (http://www.

gene-regulation.com) databases. To compute a probability of

protein occupancy for each transcription factor at each site, a

previously described method was adapted [39]. Briefly, binding of

protein X to site i was modeled using the simple binding isotherm:

P~
½X �

Kd,X ,iz½X �

where [X] is the free concentration of protein X and Kd,X,i is the

sequence-dependent dissociation constant for protein X at site i.

Although [X] is not known in most experimental situations, it can

be estimated as equal to the dissociation constant for the optimal

binding site in the genome, thus leading to a probability of

occupancy of 50% at optimal sites. The dissociation constant is

calculated from the free energy of binding, which in turn is

estimated from comparing the observed frequency fbj of base b at

each position j in the PWM with the background frequency of that

base pb in the genome:

Kd~e{DG=RT&e{

P
RT ln(fbj

.
pb)

RT ~e
{
P

ln(fbj
.

pb)

The genomic sequences 20 bases upstream and downstream of

each LPA SNP of interest were downloaded from the UCSC

Genome Browser (http://genome.ucsc.edu/). For each of the

1445 Transfac and Jaspar PWM’s a maximal probability of

occupancy was computed for sliding windows across the 41bp.

Motifs shown in Figure 5 correspond to transcription factors with

probabilities of occupancy .0.20 and a difference in probability

between the two alleles of .0.20. Results were robust to

probability ranges between 0.10 and 0.30. Identified transcription

factors were confirmed to have previously documented expression

in mammalian liver by consulting the Human Protein Reference

Database [40] (http://www.hprd.org) and PubMed (http://www.

pubmed.org).

Supporting Information

Figure S1 Pairwise linkage disequilibrium measures (r2) for

significantly associated SNPs in the JHS European local ancestry

subpopulation.

Found at: doi:10.1371/journal.pone.0014581.s001 (13.62 MB

TIF)

Table S1 Association of LPA variants with Lp(a) levels. p-values

for association of Lp(a) with genotype in the total population (pall),

JHS-AFR-2LPA (pafr), and JHS-EUR-1_2LPA (peur). SNPs with

p,0.00085 are denoted by an asterisk. The SNP frequencies of

the allele producing higher Lp(a) levels in the total population (fall)

is shown, along with the corresponding frequency in JHS-AFR-

2LPA (fafr) and JHS-EUR-2LPA (feur). The chromosomal position in

bases (NCBI Build 36) is also provided.

Found at: doi:10.1371/journal.pone.0014581.s002 (0.14 MB

DOC)

Table S2 Effect of LPA variants on Association of LPA local

ancestry with Lp(a) levels. p, which is the fraction of ancestry-

specific variation in Lp(a) levels explained by genotype, is shown

for the genotyped SNPs that account for the greatest amount of

ancestry specific variance. The SNP frequencies and effect sizes in

the overall population are shown as in Table 2; pall is shown as in

Table S1.

Found at: doi:10.1371/journal.pone.0014581.s003 (0.06 MB

DOC)

Table S3 Effect of LPA variants on Lp(a) levels and CHD

outcomes in ARIC. P-values for association of SNPs with Lp(a)

levels in a linear regression model with age and gender are shown,

along with coefficients, confidence interval (CI) and p-value for

association with CHD outcomes in a Cox regression model. A p-

value for the significance of including 10 SNP genotypes in a

model to predict CHD outcomes was computed using the log-

likelihood ratio test.

Found at: doi:10.1371/journal.pone.0014581.s004 (0.07 MB

DOC)

Acknowledgments

We thank the participants of the Jackson Heart Study (JHS), the Dallas

Heart Study (DHS), and the Atherosclerosis Risk in Communities (ARIC)

Study, as well as the staff of all three studies. We would like to thank Helen

Hobbs and Jonathan Cohen for helpful comments on an earlier draft of

this manuscript.

Author Contributions

Conceived and designed the experiments: RCD JGW CX DR NP HATJ.

Analyzed the data: RCD JGW CX KL WHLK AT ELA NP EB.

Contributed reagents/materials/analysis tools: JGW CX DR THMJ EB

HATJ. Wrote the paper: RCD JGW.

References

1. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG (2009)

Genetically elevated lipoprotein(a) and increased risk of myocardial infarction.

JAMA 301: 2331–2339. doi:10.1001/jama.2009.801.

2. Suk Danik J, Rifai N, Buring JE, Ridker PM (2006) Lipoprotein(a), measured

with an assay independent of apolipoprotein(a) isoform size, and risk of future

cardiovascular events among initially healthy women. JAMA 296: 1363–1370.

doi:10.1001/jama.296.11.1363.

3. Bennet A, Di Angelantonio E, Erqou S, Eiriksdottir G, Sigurdsson G, et al. (2008)

Lipoprotein(a) levels and risk of future coronary heart disease: large-scale prospective

data. Arch. Intern. Med 168: 598–608. doi:10.1001/archinte.168.6.598.

Ancestry and Lp(a) Levels

PLoS ONE | www.plosone.org 9 January 2011 | Volume 6 | Issue 1 | e14581



4. Boerwinkle E, Leffert CC, Lin J, Lackner C, Chiesa G, et al. (1992)

Apolipoprotein(a) gene accounts for greater than 90% of the variation in
plasma lipoprotein(a) concentrations. J. Clin. Invest 90: 52–60. doi:10.1172/

JCI115855.

5. Mooser V, Scheer D, Marcovina SM, Wang J, Guerra R, et al. (1997) The
Apo(a) gene is the major determinant of variation in plasma Lp(a) levels in

African Americans. Am. J. Hum. Genet 61: 402–417. doi:10.1086/514851.
6. Lackner C, Cohen JC, Hobbs HH (1993) Molecular definition of the extreme

size polymorphism in apolipoprotein(a). Hum. Mol. Genet 2: 933–940.

7. van der Hoek YY, Wittekoek ME, Beisiegel U, Kastelein JJ, Koschinsky ML
(1993) The apolipoprotein(a) kringle IV repeats which differ from the major

repeat kringle are present in variably-sized isoforms. Hum. Mol. Genet 2:
361–366.

8. Gavish D, Azrolan N, Breslow JL (1989) Plasma Ip(a) concentration is inversely
correlated with the ratio of Kringle IV/Kringle V encoding domains in the

apo(a) gene. J. Clin. Invest 84: 2021–2027. doi:10.1172/JCI114395.

9. White AL, Hixson JE, Rainwater DL, Lanford RE (1994) Molecular basis for
‘‘null’’ lipoprotein(a) phenotypes and the influence of apolipoprotein(a) size on

plasma lipoprotein(a) level in the baboon. J. Biol. Chem 269: 9060–9066.
10. Chretien J, Coresh J, Berthier-Schaad Y, Kao WHL, Fink NE, et al. (2006)

Three single-nucleotide polymorphisms in LPA account for most of the increase

in lipoprotein(a) level elevation in African Americans compared with European
Americans. J. Med. Genet 43: 917–923. doi:10.1136/jmg.2006.042119.

11. Sandholzer C, Hallman DM, Saha N, Sigurdsson G, Lackner C, et al. (1991)
Effects of the apolipoprotein(a) size polymorphism on the lipoprotein(a)

concentration in 7 ethnic groups. Hum. Genet 86: 607–614.
12. Marcovina SM, Albers JJ, Wijsman E, Zhang Z, Chapman NH, et al. (1996)

Differences in Lp[a] concentrations and apo[a] polymorphs between black and

white Americans. J Lipid Res 37: 2569–2585.
13. Deo RC, Reich D, Tandon A, Akylbekova E, Patterson N, et al. (2009) Genetic

differences between the determinants of lipid profile phenotypes in African and
European Americans: the Jackson Heart Study. PLoS Genet 5: e1000342.

doi:10.1371/journal.pgen.1000342.

14. Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, et al. (2009) Genetic
variants associated with Lp(a) lipoprotein level and coronary disease. N. Engl.

J Med 361: 2518–2528. doi:10.1056/NEJMoa0902604.
15. Taylor HA, Wilson JG, Jones DW, Sarpong DF, Srinivasan A, et al. (2005)

Toward resolution of cardiovascular health disparities in African Americans:
design and methods of the Jackson Heart Study. Ethn Dis 15: S6–4-17.

16. Reich D, Patterson N, Ramesh V, De Jager PL, McDonald GJ, et al. (2007)

Admixture mapping of an allele affecting interleukin 6 soluble receptor and
interleukin 6 levels. Am. J. Hum. Genet 80: 716–726. doi:10.1086/513206.

17. Patterson N, Hattangadi N, Lane B, Lohmueller KE, Hafler DA, et al. (2004)
Methods for high-density admixture mapping of disease genes. Am. J. Hum.

Genet 74: 979–1000. doi:10.1086/420871.

18. Schreiner PJ, Heiss G, Tyroler HA, Morrisett JD, Davis CE, et al. (1996) Race
and gender differences in the association of Lp(a) with carotid artery wall

thickness. The Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler.
Thromb. Vasc. Biol 16: 471–478.

19. Guerra R, Yu Z, Marcovina S, Peshock R, Cohen JC, et al. (2005)
Lipoprotein(a) and apolipoprotein(a) isoforms: no association with coronary

artery calcification in the Dallas Heart Study. Circulation 111: 1471–1479.

doi:10.1161/01.CIR.0000159263.50305.BD.
20. Sharrett AR, Ballantyne CM, Coady SA, Heiss G, Sorlie PD, et al. (2001)

Coronary heart disease prediction from lipoprotein cholesterol levels, triglycer-
ides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions:

The Atherosclerosis Risk in Communities (ARIC) Study. Circulation 104:

1108–1113.
21. Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, et al. (2010)

From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus.
Nature 466: 714–719. doi:10.1038/nature09266.

22. Thomas MJ, Seto E (1999) Unlocking the mechanisms of transcription factor

YY1: are chromatin modifying enzymes the key? Gene 236: 197–208.

23. Lanktree MB, Anand SS, Yusuf S, Hegele RA (2010) Comprehensive analysis of

genomic variation in the LPA locus and its relationship to plasma lipoprotein(a)

in South Asians, Chinese, and European Caucasians. Circ Cardiovasc Genet 3:

39–46. doi:10.1161/CIRCGENETICS.109.907642.

24. Nalls MA, Wilson JG, Patterson NJ, Tandon A, Zmuda JM, et al. (2008)

Admixture mapping of white cell count: genetic locus responsible for lower white

blood cell count in the Health ABC and Jackson Heart studies. Am. J. Hum.

Genet 82: 81–87. doi:10.1016/j.ajhg.2007.09.003.

25. Reich D, Nalls MA, Kao WHL, Akylbekova EL, Tandon A, et al. (2009)

Reduced neutrophil count in people of African descent is due to a regulatory

variant in the Duffy antigen receptor for chemokines gene. PLoS Genet 5:

e1000360. doi:10.1371/journal.pgen.1000360.

26. Victor RG, Haley RW, Willett DL, Peshock RM, Vaeth PC, et al. (2004) The

Dallas Heart Study: a population-based probability sample for the multidisci-

plinary study of ethnic differences in cardiovascular health. Am. J Cardiol 93:

1473–1480. doi:10.1016/j.amjcard.2004.02.058.

27. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives.

The ARIC investigators (1989) Am J Epidemiol 129: 687–702.

28. Carpenter MA, Crow R, Steffes M, Rock W, Heilbraun J, et al. (2004)

Laboratory, reading center, and coordinating center data management methods

in the Jackson Heart Study. Am. J. Med. Sci 328: 131–144.

29. Marcovina SM, Albers JJ, Gabel B, Koschinsky ML, Gaur VP (1995) Effect of

the number of apolipoprotein(a) kringle 4 domains on immunochemical

measurements of lipoprotein(a). Clin. Chem 41: 246–255.

30. Marcovina SM, Hobbs HH, Albers JJ (1996) Relation between number of

apolipoprotein(a) kringle 4 repeats and mobility of isoforms in agarose gel: basis

for a standardized isoform nomenclature. Clin. Chem 42: 436–439.

31. Schreiner PJ, Morrisett JD, Sharrett AR, Patsch W, Tyroler HA, et al. (1993)

Lipoprotein[a] as a risk factor for preclinical atherosclerosis. Arterioscler.

Thromb 13: 826–833.

32. Abecasis GR, Wigginton JE (2005) Handling marker-marker linkage disequi-

librium: pedigree analysis with clustered markers. Am. J. Hum. Genet 77:

754–767. doi:10.1086/497345.

33. Draper NR, Smith H, Pownell E (1998) Applied regression analysis. New York:

Wiley. pp 407.

34. White AD, Folsom AR, Chambless LE, Sharret AR, Yang K, et al. (1996)

Community surveillance of coronary heart disease in the Atherosclerosis Risk in

Communities (ARIC) Study: methods and initial two years’ experience. J Clin

Epidemiol 49: 223–233.

35. Zhou M (2001) Understanding the Cox Regression Models with Time-Change

Covariates. The American Statistician 55: 153–155.

36. de Bakker PIW, Yelensky R, Pe’er I, Gabriel SB, Daly MJ, et al. (2005)

Efficiency and power in genetic association studies. Nat. Genet 37: 1217–1223.

doi:10.1038/ng1669.

37. Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B (2004)

JASPAR: an open-access database for eukaryotic transcription factor binding

profiles. Nucleic Acids Res 32: D91–94. doi:10.1093/nar/gkh012.

38. Matys V, Fricke E, Geffers R, Gössling E, Haubrock M, et al. (2003)
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