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Abstract

Background: Early inner ear development requires the strict regulation of cell proliferation, survival, migration and
differentiation, coordinated by the concerted action of extrinsic and intrinsic factors. Deregulation of these processes is
associated with embryonic malformations and deafness. We have shown that insulin-like growth factor I (IGF-I) plays a key
role in embryonic and postnatal otic development by triggering the activation of intracellular lipid and protein kinases. RAF
kinases are serine/threonine kinases that regulate the highly conserved RAS-RAF-MEK-ERK signaling cascade involved in
transducing the signals from extracellular growth factors to the nucleus. However, the regulation of RAF kinase activity by
growth factors during development is complex and still not fully understood.

Methodology/Principal Findings: By using a combination of qRT-PCR, Western blotting, immunohistochemistry and in situ
hybridization, we show that C-RAF and B-RAF are expressed during the early development of the chicken inner ear in
specific spatiotemporal patterns. Moreover, later in development B-RAF expression is associated to hair cells in the sensory
patches. Experiments in ex vivo cultures of otic vesicle explants demonstrate that the influence of IGF-I on proliferation but
not survival depends on RAF kinase activating the MEK-ERK phosphorylation cascade. With the specific RAF inhibitor
Sorafenib, we show that blocking RAF activity in organotypic cultures increases apoptosis and diminishes the rate of cell
proliferation in the otic epithelia, as well as severely impairing neurogenesis of the acoustic-vestibular ganglion (AVG) and
neuron maturation.

Conclusions/Significance: We conclude that RAF kinase activity is essential to establish the balance between cell
proliferation and death in neuroepithelial otic precursors, and for otic neuron differentiation and axonal growth at the AVG.
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Introduction

The vertebrate inner ear is responsible for the detection of

sound and balance, and it contains two main functional parts, the

auditory system dedicated to hearing and the vestibular system

that controls balance. This complex sensory organ derives from an

ectodermic region adjacent to the hindbrain, the otic placode. As

development proceeds, the otic placode thickens, invaginates and

forms the otic cup, which will then close to form an ectoderm-

detached, pear-shaped structure: the otic vesicle or otocyst [1].

The otic vesicle is an autonomous structure that contains the

genetic information required to generate most of the cell types and

structures of the adult inner ear, including the neurons of the

acoustic-vestibular ganglion (AVG) [2,3]. The AVG contains the

neural precursors of the auditory and vestibular ganglia, which

form a single ganglion at this stage of development. The neurons

involved are specified in the otic epithelium and these neuroblasts

migrate from the neurogenic zone to a nearby area where, after an

intense period of proliferation, they differentiate into post-mitotic

neurons that extend their processes to the sensory epithelium in

the brainstem nuclei through the VIIIth cranial nerve [1,2,4,5].

Otocysts can be explanted from the embryo and their ex vivo

development can be followed in a defined culture medium to study

the molecular cues that instruct the cellular diversity found in vivo

[4]. Through the combination of in vivo and organotypic culture

studies, it has been shown that Wnt, fibroblast growth factors,

neurotrophins and factors of the insulin family can reinitiate cell

proliferation of quiescent otic vesicles, to drive morphogenesis,

determine cell fate specification, and promote migration or final

differentiation [6–9].

Insulin-like growth factor I (IGF-I) has been shown to modulate

otic development in evolutionary distant species [4] and indeed,
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IGF-I deficit is associated to profound sensorineural deafness and

cochlear malformation in man and mice (MIM 147440) [10,11].

IGF-I deficit in the mouse is associated with caspase-3-mediated

apoptosis of immature cochlear neurons [12] and with altered

signaling pathways, including poor activation of Akt and ERK1/2,

and the up-regulation of p38 kinase pathways [13]. Cochlear

ganglion neurons have many immature traits including the

aberrant expression of the MEF2A, MEF2D, SIX 6 and MASH1

transcription factors [13]. In the chicken inner ear, IGF-I drives

cellular programs that are important for specific events during otic

development, including proliferation, survival, metabolism and

differentiation [7]. Both IGF-I and its high affinity IGF1R

receptor are expressed during inner ear development [6].

Moreover, endogenous otic IGF-I activity is essential for the

survival and neurogenesis of otic precursors due to its activation of

the PI3K/Akt kinase pathway [6,14]. On the other hand,

exogenous IGF-I mimics morphogenetic traits in vivo, promoting

neurogenesis and axon sprouting, accelerating the rate of cell

proliferation and improving cell survival by inhibiting apoptosis of

both epithelial and neural progenitors [6]. IGF-I can activate the

RAF-MEK-ERK cascade in the otic epithelium, and C-RAF is

essential for otic vesicle proliferation and morphogenesis [15].

However, it is not still fully clear how the strict balance between

signaling pathways is regulated by IGF-I during development.

RAF kinases are serine/threonine kinases whose activity is

modulated by growth factors and that play a central role in normal

and pathologic cellular processes, including development, cell

regeneration, cell senescence and cancer [16]. The first RAF

kinase identified was the oncogenic product of mouse sarcoma

virus 3611 [17] and since, the mammalian RAF kinases have been

shown to belong to a family that is formed by A-, B- and C-RAF.

In invertebrates only a single RAF kinase exists whereas the two

isoforms in birds are homologues of B- and C-RAF [18]. In

mammals, A-RAF is the less abundant kinase and it is expressed in

the urogenital and gastrointestinal systems. By contrast, B-RAF is

more abundant and it is found in the nervous system and gonads,

whereas C-RAF is ubiquitously expressed [19]. The study of

knock-out mice lacking each of these kinases has revealed that they

fulfill common and distinct functions [18,20], as well as shedding

light on how they are regulated, their distinct intracellular

localization [21] and association with scaffold proteins [22].

Indeed, B-RAF knock-out mice have defects in neural cell

lineages, including reduced cell proliferation in the neocortex,

and impaired migration and dendrite formation associated with

cortical neurons [20].

RAF kinases transmit growth factor signals from the receptor/

RAS complex via the phosphorylation of MEK in the cytosol. This

leads to the phosphorylation and activation of ERK that in turn,

can phosphorylate cytoplasmic and nuclear transcription factors

that regulate gene expression and cellular responses. Bcl-2 family

members are targets of the RAF-MEK-ERK pathway [23], and

therefore, RAF kinases are considered to be anti-apoptotic factors.

The activation of the RAS-RAF-MEK-ERK cascade is essential

for cellular proliferation during malignant transformation [16],

which has led to the synthesis of bi-aryl urea Sorafenib that inhibits

the catalytic activity of B-RAF and C-RAF and that also blocks

proangiogenic-receptor-tyrosine kinases [24]. B-RAF is the most

potent of the kinases that phosphorylates ERK [25] and it is

strongly expressed in the nervous system [26,27]. However, its

expression during inner ear development and the participation of

RAF kinases in AVG neurogenesis has not yet been explored.

Here we show that both B-RAF and C-RAF are present in the

inner ear during its early development in vivo, and that B-RAF

expression becomes restricted as development proceeds. IGF-I can

activate the RAF-MEK-ERK cascade in explanted otic vesicles

and by blocking RAF kinases with Sorafenib, we show that RAF

activity is essential for cell proliferation. By contrast, survival may

be recovered by IGF-I induction of the PI3K/Akt kinase pathway.

Finally, our data show that the RAF-MEK-ERK cascade is an

important mediator of otic neuronal survival, migration and the

outgrowth of neuronal processes.

Materials and Methods

Ethics Statement
All animals were handled in strict accordance with good animal

practice as defined in the European Council Directive (86/609/

EEC), and all animal work was approved by the Ethics Committee

of the UAM and the Bioethics Committee of the Consejo Superior de

Investigaciones Cientificas.

Chicken embryos
Chicken embryos were obtained from fertilized eggs from a

local farm (Granja Santa Isabel, Cordoba, Spain) and they were

incubated in a humidified atmosphere at 37.8uC. Embryos were

staged as HH18, HH20, HH22, HH24, HH27 and HH34

according to Hamburger and Hamilton’s criteria [28].

Isolation, organotypic culture and treatment of otic
vesicles and AVG

Embryos at stage HH18 (65 h of incubation) were obtained and

the otic vesicles were dissected from the surrounding mesenchymal

tissue with sharpened tungsten needles, they were transferred into

four-well culture-plates (Nunc, Roskilde, Denmark) and then

incubated at 37uC in a water-saturated atmosphere containing 5%

CO2, as described previously [7]. The standard culture medium

consisted of M199 medium with Earle’s salts (Sigma-Aldrich, Saint

Louis, MO) supplemented with 2 mM glutamine (Gibco, Paisley,

UK) and antibiotics [50 IU/ml penicillin (Ern, Barcelona, Spain)

and 50 mg/ml streptomycin (CEPA, Madrid, Spain)]. AVG were

obtained from stage HH19+ chicken embryos dissected out

aseptically and plated onto glass coverslips that had been

previously coated with poly-D-lysine and fibronectin [5]. The

AVG was cultured in 0.25 ml F12/Dulbecco’s modified Eagle

medium (Gibco) containing 100 mg/ml transferrin, 16 mg/ml

putrescine, 6ng/ml progesterone, 5.2 ng/ml sodium selenite (all

from Sigma), and antibiotics as above.

Explanted otic vesicles were treated with IGF-I (10 nM,

Recombinant IGF-I Roche Molecular Biochemicals, Basel,

Switzerland), various concentrations of Sorabenib (BAY 43-9006

1, 5 and 10 mM; Bayer HealthCare Pharmaceuticals, West Haven,

CT, USA), the MEK inhibitor U0126 (50 mM; Promega,

Madison, WI), the C-RAF inhibitor GW5074 (1 mM; Sigma-

Aldrich, Saint Louis, MO) the PI3K inhibitor LY294002 (25 mM;

Cell Signaling Boston, MA) or a pan-caspase inhibitor Boc-D-

FMK (100 mM; Calbiochem La Jolla, CA) for the times indicated

in the text. The solvent used (DMSO) had no detectable effect on

cultured otic vesicles when used at a final concentration of 0.01%

for LY294002, Boc-D-FMK and Sorafenib cultures, and 0.2% for

U0126 cultures. Otic vesicles cultured in medium without

additives were used as controls (0S). For immunostaining and

TUNEL labeling otic vesicles were fixed for 2 h in 4% (w/v)

paraformaldehyde (Merck, Darmstadt, Germany) at 4uC. When

indicated, the otic vesicle and AVG areas were measured using

Image Analysis Software (Olympus, Tokyo, Japan). At least five

explants per condition were assayed from 2–6 independent

experiments and the statistical significance was estimated using

the Student’s t-test.

RAF in Inner Ear Neurogenesis

PLoS ONE | www.plosone.org 2 December 2010 | Volume 5 | Issue 12 | e14435



Quantitative RT-PCR
Inner ears from chicken embryos were pooled to obtain RNA at

different stages: HH18 (n = 40), HH22 (n = 25), HH24 (n = 20) and

HH27 (n = 10). Three independent RNA pools from each stage

were isolated with Trizol (Invitrogen) following the manufacturer’s

instructions, and the integrity and concentration of the RNA was

assessed with an Agilent Bioanalyzer 2100 (Agilent Technologies).

From this RNA, cDNA was generated by reverse transcription

(High Capacity cDNA Reverse Transcription Kit: Applied

Biosystems). Real-Time PCR of each pool was performed in

triplicate using specific oligonucletides from ‘‘Quantitec Primer

Assays’’ for chicken B-Raf and C-Raf (Gg_BRAF_1_SG

(QT01141413), Gg_RAF1_1_SG (QT00599123); Geneglobe, Qia-

gen) and using SYBR Green as the detection system. PCR was

performed on an Applied Biosystems 7900HT Real-Time PCR

System using eukaryotic 18S rRNA as the endogenous housekeep-

ing gene (Hs99999901_s1, TaqMan, Applied Biosystems). The

estimated gene expression was calculated as 22DDCt and statistical

significance was estimated using the Student’s t-test.

Western blotting
Otic vesicles (HH18) were isolated and cultured, 30 otic vesicles

from each condition were homogenized in ice cold Laemmli buffer

with 50 mM dithiotreitol (DTT), Phosphatase Inhibitor Cocktail 2

and Protease Inhibitor Cocktail (both 1:100, from Sigma-Aldrich).

The homogenized samples were heated at 95uC for 5 min and

frozen immediately. Gels were loaded with solutions containing

equal amounts of proteins and the otic vesicle protein extracts were

resolved by SDS-PAGE on 8% or 12% polyacrylamide gels. The

proteins were transferred to nitrocellulose membranes and after

incubation with blocking solution (5% non-fat dry milk in TRIS-

buffered saline with 0.1% Tween-20: TBS-T), the membranes were

probed overnight at 4uC with the appropriate specific primary

antibodies to analyze the RAF kinases, pERK/ERK or pAkt/Akt

[14] (See Supplementary material Table S1). All antibodies were

diluted in blocking solution except anti-phospho-Akt antibody,

which was diluted in TBS-T and 5% bovine serum albumin (BSA:

Sigma-Aldrich, Saint Louis, MO). The membranes were subse-

quently washed and then incubated with the appropriate peroxi-

dase-conjugated secondary antibody (1:3000) for 1 h at RT.

Antibody binding was visualized by chemiluminiscence (GE

Healthcare, Buckinghamshire, UK) and exposed to X-ray film

(Konica Minolta, Wayne, NJ). The films were scanned and the

bands quantified by densitometry with Image J software (Wayne

Rasband, National Institutes of Health, USA). At least three

independent experiments were performed per condition and the

statistical significance was estimated using the Student’s t-test.

Inmunohistochemistry
The sources, dilution, and cell specificities of the antibodies used

for immunofluorescent staining are shown in Supplementary

material Table 1. Samples were washed and permeabilized in 1%

PBS/Triton-X-100 (PBS-T), and they were exposed to the

primary antibodies overnight at 4uC. Non-specific binding sites

were blocked for 1 h in PBS-T, 3% (wt/vol) BSA (Sigma-Aldrich)

and 5% (vol/vol) normal goat serum.

For single immunostaining, sections were incubated for 2 h in a

biotinylated anti-rabbit secondary antibody (1:100, biotin-conju-

gated anti-rabbit, Chemicon), processed with ExtrAvidin-peroxi-

dase conjugate solution (1:200, Sigma). Finally, antibody binding

was visualized using DAB as the chromogen and the sections

mounted in Mowiol for observation under a Nikon 90i microscope.

For immunofluorescent staining of frozen sections, the primary

antibodies were used as described above and the secondary

antibodies were incubated for 2 h at room temperature. For dual-

fluorescence immunolabeling, otic vesicles were incubated with

Alexa Fluor 488 goat anti-mouse (1:200), Alexa Fluor 647 goat

anti-rabbit and/or Alexa Fluor 546 goat anti-rabbit secondary

antibodies (1:200; all from Molecular Probes, Eugene, OR).

TxRed-conjugated phalloidin was used to identify the apical actin-

containing structures of hair cells. Control experiments omitting

the primary antibody were carried out to confirm that the staining

patterns were specific for antigen recognition and additionally

frozen sections from wild type or B-Raf2/2 null embryos were

included as negative controls (data not shown). The sections were

mounted in Prolong Gold with DAPI (Invitrogen, Carlsbad, CA)

and visualized by fluorescence (Nikon 90i, Tokyo, Japan) or

confocal microscopy (Leica TCS SP2, Wetzlar, Germany). For

whole-mount immunofluorescence, otic vesicles were incubated

with the secondary antibodies for 3 h at room temperature, the

otic vesicles were mounted in Vectashield with DAPI (Vector,

Peterborough, UK) and the fluorescence was visualized by

confocal microscopy (Leica TCS SP2, Wetzlar, Germany). At

least five to six otic vesicles/frozen sections were analyzed for each

condition from at least two independent experiments.

BrdU incorporation and immunodetection
To study cell proliferation, otic vesicles were incubated with 5-

Bromo-29-deoxyuridine (Sigma-Aldrich, Saint Louis, MO), a

thymidine analogue that is incorporated into DNA during the S

phase of the cell cycle. BrdU (10 mg/ml) was added to the culture

medium 1 h before the end of the incubation and its incorporation

was detected with a specific antibody as above, but including a

DNA denaturation step as recommended by the manufacturer

(incubation in 50% (v/v) formamide-SSC, 40 minutes at 65uC and

in HCl 2N, 30 minutes at 37uC, with a wash for 10 minutes in

Tris 0.1M [pH 8]). At least five to six otic vesicles were assayed per

condition in three independent experiments.

In situ hybridization
In situ hybridization was performed on cryostat sections (20 mM)

of specimens from HH24 embryos essentially as described

previously with only minor modifications [13]. Digoxigenin-

labeled sense and antisense RNA probes (1 mg/ml) were

hybridized overnight at 72uC and their binding was detected by

overnight incubation with an alkaline phosphatase-conjugated

anti-digoxigenin antibody (1:3500, Roche Applied Science), which

was visualised with 5-Bromo-4-chloro-3-indolyl phosphate, nitro

blue tetrazolium substrate (NTBT/BCIP, Roche Applied Science).

The chicken C-Raf gene was amplified by PCR (C-Raf forward 59-

ACCTGCACGTTCAAGAGACC-39; C-Raf reverse 59-GCTAC-

GAGCCTCTTCATTGC-39) and subsequently ligated into a

pGEM-T plasmid (Promega) to prepare the probe. Single-

stranded sense (ApaI/T7) and antisense (PstI/Sp6) RNA probes

were prepared by in vitro transcription and no specific signal was

obtained when control sense probes were used (data not shown).

Analysis of programmed cell death
The pattern of cell death in the otic vesicle was studied by Tdt-

mediated dUTP nick-end labeling (TUNEL) of fragmented DNA

using the kit Dead-EndTM Fluorometric TUNEL System (Promega,

Madison, WI) essentially as described by the manufacturer and

adapted to whole organ labeling [14,29]. The otic vesicles were

mounted with Vectashield with DAPI (Vector) and visualized on a

confocal microscope (Leica, TCS SP2). TUNEL-positive cells

were counted using Image Analysis Software (Olympus, Tokyo,

Japan) attributing a value of 1 to the control condition (no

addition, 0S). At least five otic vesicles were assayed per condition

RAF in Inner Ear Neurogenesis
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in three independents experiments. The data are presented as the

mean 6 SEM and the statistical significance was estimated with

the Student’s t-test.

Results

RAF kinases are expressed during early inner ear
development

The expression of chicken B-Raf and C-Raf at selected stages of

otic development was studied by quantitative RT-PCR (Figure 1 A

and B). The expression of transcripts encoding these RAF isoforms

was comparable from HH18 to HH24, although the RNA

transcripts for both these RAF kinases were strongly downregulated

at stage HH27. Moreover, B-RAF and C-RAF proteins were both

present in inner ear extracts from stage HH18 embryos, the stage at

which otic vesicles can be explanted and cultured ex vivo (Figure 1

C). Indeed, there was a significant amount of phosphorylated ERK,

a read out of RAF activity [30]. The presence of RAF kinases was

further confirmed by immunohistochemistry for B-RAF and in situ

hybridization for C-Raf (Figure 1 D) and the AVG was strongly

stained for both RAF kinases. In addition, B-RAF expression was

also evident in the otic epithelium (arrowheads in Figure 1 D).

Spatiotemporal expression of B-RAF during inner ear
development

In inner ear sections from HH24, HH27 and HH34 embryos,

the distribution of B-RAF was determined by immunohistochem-

istry (Figure 2). The different cell types labeled were identified by

Figure 1. Expression of the B-RAF and C-RAF kinases during otic development. (A) Schematic drawings showing the development of the
chicken inner ear at Hamburger and Hamilton stages HH18, HH24 and HH27. (B) Expression of inner ear B-Raf and C-Raf mRNA analyzed by qRT-PCR
at different stages using Eukaryotic 18S rRNA as the endogenous housekeeping control gene. Gene expression was calculated as 22DDCt and
normalized to the levels at HH18. The results are expressed as the mean 6 SEM of at least three independent experiments performed in triplicate.
Statistical significance was estimated with the Student’s t-test: ***P,0.005 versus HH18, ##P,0.01 versus HH24 and ###P,0.005 versus HH24. (C)
HH18 otic vesicle lysates analyzed in western blots to determine the levels of B-RAF, C-RAF and phosphorylated ERK (pERK). ß-Tubulin (ß-Tub) was
used as a loading control. A representative blot of three independent experiments is shown and the average densitometric measurements of the B-
RAF and C-RAF bands are plotted as bars. The results are given as the mean 6 SEM of three independent experiments. (D) Immunofluorescence of B-
RAF and in situ hybridization of C-Raf at HH22 and HH24, respectively showing their location in the otic epithelium and acoustic-vestibular ganglion
(arrowheads). Abbreviations: bp, basilar papilla; ed, endolymphatic duct; es, endolymphatic sac; lc, lateral crista; ml, macula lagena; ms, macula
sacculi; mu, macula utriculi; pc, posterior crista; sc, superior crista; ssc, superior semicircular canal. Orientation: C, caudal; D, dorsal; M, medial; R,
rostral.
doi:10.1371/journal.pone.0014435.g001
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Figure 2. Spatiotemporal expression of B-RAF in the developing inner ear. a–h) At stage HH24, B-RAF (green throughout the figure) is
abundantly expressed in the macula sacculi (ms) and in the acoustic-vestibular ganglion (avg), which is labelled red due to the expression of the
axonal marker 3A10 (a–d). B-RAF is expressed strongly in the basilar papilla (bp, e, arrow). B-RAF and SOX2 (red), a transcription factor essential for
the self-renewal of undifferentiated otic progenitors, are expressed in non-overlapping regions of the avg (e–h). i–p) At HH27, B-RAF is expressed

RAF in Inner Ear Neurogenesis
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staining for the neurofilament-related 3A10 protein [6] and

SOX2, a transcription factor associated to immature pluripotent

precursors. In mammals, SOX2 participates in the specification of

the otic prosensory domain [31,32] and the generation of cochlear

neurons [33], while it is required for hair cell survival and

regeneration in the inner ear of the zebrafish [34]. B-RAF was

expressed homogenously in the otic epithelia and in the AVG at

HH18 and HH22 (Figure 1 and data not shown), while its

expression became more restricted as development proceeded. At

HH24, B-RAF was abundantly expressed in the macula sacculi

(Figure 2 a–d) and it was also expressed in the AVG, where a

subset of neuroblasts was more strongly stained for B-RAF

(Figure 2 e–h). B-RAF and SOX2 were expressed in adjacent

regions and B-RAF expression did not appear to overlap with that

of SOX2. A similar situation was also observed in the basilar

papilla where even though both proteins appeared to overlap in

some cells, the internal cells most strongly expressed B-RAF,

whereas SOX2 expression was observed more laterally (Figure 2,

arrow in e). At HH27, B-RAF expression was restricted to the

internal layer of the otic epithelia and the cells of the AVG

(Figure 2, i–p). At HH34, SOX2 was strongly expressed by

supporting cells, whereas B-RAF was expressed strongly in the

macula sacculi, limiting the region of SOX2 expression and

suggesting that B-RAF is expressed by hair cells (Figure 2, q–t). To

further explore the expression of B-RAF in hair cells, we used

TxRed-phalloidin to label the actin in the stereocilia of hair cells

(u, w). B-RAF expression was observed in the cytoplasm of both

auditory and vestibular hair cells, and in AVG neurons (Figure 2,

u–w, and data not shown). Specific hair cell expression of B-RAF

was confirmed in E18.5 wild type mice, as was the specificity B-

RAF by labeling null B-Raf mouse embryos (Figure 2, x–x9:

Magariños, Rapp and Varela-Nieto, manuscript in preparation).

The activity of RAF kinases is required for the
proliferation and survival of otic neuroepithelial cells

The RAF-MEK-ERK phosphorylation cascade can be specifically

inhibited by Sorafenib, an inhibitor of RAF kinase activity developed

to treat B-RAF-associated cancer [16]. Otic vesicles were explanted

and cultured ex vivo in the presence of Sorafenib to further

understand the role of RAF activation in early inner ear development.

This compound totally abolished ERK phosphorylation, both the

basal phosphorylation and that induced by IGF-I (Figure 3 A, left

panels). The specificity of Sorafenib to the RAF-MEK-ERK cascade

was witnessed by its failure to effect Akt phosphorylation, both basal

and IGF-I induced (right panels). Further insight into the actions of

Sorafenib was obtained by studying its effects on cell proliferation and

apoptosis in organotypic cultures of explanted HH18 otic vesicles.

When cultured otic vesicles were exposed to Sorafenib, cell

proliferation was reduced and apoptosis was induced in a dose-

dependent manner (Figure 3 B). The number of apoptotic TUNEL

positive cells found in the control otic vesicles (0S) was 2.5-fold higher

than that found when IGF-I was added to the medium (Figure 3 C:

[14]). However, the addition of increasing concentrations of

Sorafenib (1, 5 and 10 mM) significantly increased the number of

apoptotic cells by 1.8-, 4- and 4.6-fold, respectively (Figure 3 C and B,

compare a with j and m). At the highest concentration of Sorafenib

tested (10 mM), most cells in the otocyst were TUNEL positive

(Figure 3 B, m). It is worth noting, that Sorafenib induced less

programmed cell death in the AVG than in the otic vesicle

epithelium, even though the size of the AVG decreased dramatically

(Figure 3 B, arrow in j). The cell death was caspase-dependent as it

was blocked by the pan-caspase inhibitor BOC (Figure 3 D, upper

panels, a-c, and compare b with c). Apoptosis was further studied by

combining TUNEL staining with the immunodetection of active

caspase-3 (Figure 3 D, lower panels, a–h). The Sorafenib-treated otic

vesicles showed areas of apoptotic cell death where TUNEL-labeled

apoptotic nuclei were surrounded by cytoplasm containing active

caspase-3 (Figure 3 D, lower panels, e–h).

As RAF activation leads to cell proliferation, we assessed

bromodeoxyuridine (BrdU) uptake in cultured otic vesicles to

measure the rate of proliferation. IGF-I promoted otic prolifer-

ation when compared with control cultures (Figure 3 B, compare b

and e), while Sorafenib impaired BrdU incorporation in a dose

dependent manner. As a consequence, the size of Sorafenib-

treated otic vesicles was severely reduced (Figure 3 B, b, h, k, n).

AVG size was also reduced, even though cell proliferation at the

AVG was not strongly affected by Sorafenib (Figure 3 B, arrow in

k), suggesting that neuronal cells that escaped from the RAF

blockage are resistant to Sorafenib, possibly because RAF kinase

activity is no longer required.

To confirm that the effects observed were a consequence of the

inhibition of the RAF-MEK-ERK cascade a MEK inhibitor [35],

U0126, was used (Figure 3 E). The effects of blocking RAF catalytic

activity with Sorafenib were emulated by U0126, which abolished

ERK phosphorylation (Figure 3 E), reduced cell proliferation (data

not shown) and increased apoptosis (Figure 3 E, upper panels,

compare a with b). In contrasts, treatment with the C-RAF highly

specific inhibitor GW5074 [36] showed reduced AVG size,

undifferentiated-rounded shape OV with reduced size and

increased TUNEL positive cells (Figure 3 E, upper panels, compare

c with a), but not evident changes in cell proliferation (Figure 3 E,

lower panels, compare c with a). GW5074-treatment slightly

reduced BrdU incorporation when compared to the 0S condition,

whereas Sorafenib showed a more dramatic reduction on BrdU

levels (lower panels in Figure 3 E, compare c with b). Furthermore,

treatment with GW5074 increased ERK phosphorylation (Figure 3

E), suggesting that actions of C-RAF on apoptosis are, at least in

part, independent of the activation of MEK and ERK.

These results show that inhibition of the RAF-MEK-ERK

cascade caused a reduction in the rate of cell proliferation and an

increase in the number of caspase-dependent apoptotic cells,

without affecting Akt activity, thereby leading to a decrease in the

number of neural progenitor cells.

The activity of RAF kinases is required for otic
neurogenesis

To further explore the regulation by IGF-I and the role of the

RAF-MEK-ERK cascade in otic neurogenesis, the expression of

the neuroblast markers Islet-1 and TuJ1 was analyzed in cultured

otic vesicles treated with Sorafenib in the presence or absence of

strongly in the internal cell layers of the basilar papilla (bp, i–l), whereas SOX2 is present in more external cell layers (m–p). q–w) At HH34, SOX2 is
expressed in supporting cells of the ms whereas B-RAF labels the hair cells (hc: q–t). TxRed-phalloidin staining (red) labels actin in the hc stereocilia of
the macula utriculi (mu), and B-RAF is evident in the cytoplasm (u–w). B-RAF is also expressed in the outer (OHC) and inner hair cells (IHC) of E18.5
mouse embryos (x). x9 shows a higher magnification of the sensory region in x. Schematic drawings of HH24 and HH27 inner ears are shown. The
boxed areas show higher magnifications of the selected regions. Abbreviations: avg, acoustic-vestibular ganglion; bp, basilar papilla; ed,
endolymphatic duct; es, endolymphatic sac; hc, hair cells; IHC, inner hair cells; OHC, outer hair cells; lc, lateral crista; ml, macula lagena; ms, macula
sacculi; mu, macula utriculi; sc, superior crista; ssc, superior semicircular canal; vp, vertical canal pouch. Orientation: D, dorsal; M, medial; R, rostral.
Scale bars: 100 mm.
doi:10.1371/journal.pone.0014435.g002
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Figure 3. Selective inhibition of the RAF-MEK-ERK cascade blocks proliferation and promotes apoptosis. (A) Sorafenib inhibits the
RAF-MEK-ERK pathway. Otic vesicles were explanted from stage HH18 chicken embryos and incubated for 24 h in serum-free medium (0S). The
explants were then incubated for 1 h in serum-free medium without additives (0S), with IGF-I (10 nM), Sorafenib (Sor; 5 mM) or a combination of both
IGF-I and Sorafenib. Otic vesicles were lysed and the levels of phosphorylated and unphosphorylated ERK and Akt kinases were quantified in Western
blots by densitometry, as described in Materials and Methods. Representative blots are shown in the upper row. The results are expressed relative to
the control value (0S), which was given an arbitrary value of 100, as the mean 6 SEM of three independent experiments. Statistical significance was
estimated with the Student’s t-test: ***P,0.005 versus 0S and ##P,0.01 versus IGF-I. (B) Apoptosis and proliferation in Sorafenib-treated
cultures of otic vesicles. Apoptotic cell death was visualized by TUNEL (green) in cultured otic vesicles. Proliferation was measured by the
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IGF-I [Figure 4, A; [6]]. The expression of Islet-1 and TuJ1 was

reduced in a dose-dependent manner in the presence of Sorafenib,

indicating that inactivation of the RAF kinase caused a loss of

neuroblasts (Figure 4 A, compare a with d, e, f). Indeed, in otocysts

exposed to Sorafenib, and hence with impaired RAF catalytic

activity, there was a dose-dependent 20 and 40% reduction in the

otic vesicle epithelia and AVG size, respectively (Figure 4 A) when

compared to otocysts cultured under control conditions (Figure 4

B). The impact of RAF inactivation on the proliferation of otic

precursors was further confirmed by studying the number of cells

in mitosis and the incorporation of BrdU (Figure 5 A, C).

IGF-I promoted cell proliferation in the AVG neuroblast

population, as witnessed by the increased number of Islet-1 positive

cells and the 160% increase of the AVG area (Figure 4 A, compare a

with b; Figure 4 B, bars on the right). TuJ1 labels neuroblasts at a

more mature stage [4] and hence, TuJ1 positive cells are diminished

or unaffected by the addition of IGF-I (Figure 4 A, compare a with b

and c). IGF-I also promoted cell proliferation in the otic epithelium

(Figure 5 A, compare b with e). In the presence of IGF-I, the number

of Islet-1 positive cells and mitosis increased in Sorafenib-treated otic

vesicles (Figure 4 A, compare c with f), while apoptosis was reduced

(Figure 5 A–C), leading to a small but significant recovery of the OV

and AVG (Figure 4 B). Because Sorafenib completely blocks IGF-I

activation of the RAF-MEK-ERK pathway (Figure 3), these results

suggest that the rescue of the neuroblast population by IGF-I is

mediated by an alternative pathway.

IGF-I-induction of the PI3K/Akt kinase pathway rescues
otic progenitors from apoptosis

IGF-I activates the Akt pathway even in the presence of

Sorafenib and the total inactivation of the RAF-MEK-ERK

cascade (Figure 3). To further define the roles of the RAF-MEK-

ERK and PI3K/Akt kinase pathways in otic neurogenesis, we

studied the proliferation and apoptosis of explanted otic vesicles

treated with combinations of RAF and Akt inhibitors in culture.

Cell death was studied by detecting the TUNEL positive cells

(TUNEL) and cell proliferation was detected by following the

nuclei labeled with phospho-histone-3 (PH3), which identifies cells

in the M phase of the cell cycle (Figure 5 A), or by BrdU

incorporation (Figure 5 C).

LY294002 is a well-characterized inhibitor of the PI3K/Akt

kinase pathway that specifically impairs Akt phosphorylation [37].

Inhibition of the PI3K/Akt kinase pathway increased the number

of apoptotic cells (5.5-fold) and reduced the amount of cells

expressing the mitotic marker PH3 (0.7-fold: Figure 5 A, m–o, and

bars in B and C). The presence of IGF-I partially impaired the

effects of LY294002 as the number of proliferating cells in treated

otic vesicles was similar to that of the controls (Figure 5 A, p–r, and

bars in B and C). In combination, Sorafenib and LY294002

completely abolished the effects of IGF-I on proliferation and

apoptosis (Figure 5 A, s–u). TUNEL staining was stronger in

vesicles exposed to Sorafenib and LY294002 than in those treated

with Sorafenib alone (1.3-fold) or those exposed to Sorafenib and

IGF-I (2.0-fold: Figure 5 B). The rate of proliferation was also

reduced 3-fold in the presence of Sorafenib plus LY294002 when

compared to Sorafenib alone, and 12-fold when compared to

Sorafenib plus IGF-I (Figure 5 C). These results indicate that the

protective effects of IGF-I on survival when the RAF-MEK-ERK

cascade is inhibited are mediated by the induction of the PI3K/

Akt kinase pathway. In the presence of IGF-I, Sorafenib did not

completely abolish mitosis (Figure 5 C, quantification of PH3

positive cells) but it did abolish the incorporation of BrdU (Figure 5

C, lower panels), suggesting that IGF-I can partially overcome the

effects of RAF inhibition. These data possibly reflect the capacity

of IGF-I to sustain progenitors that are already in the M-phase of

the cell cycle but not to promote cell cycle entry.

RAF activity is required for neuronal progenitor cell
differentiation and the outgrowth of processes from
sensory otic neurons

B-RAF has previously been reported to play a role in sensory

axon and dendrite growth. Figure 6 shows B-RAF and C-RAF

expression in explanted AVG cultured in serum-free medium. B-

RAF was highly expressed in the cytoplasm and in the neural

processes (Figure 6, a–d), whereas C-RAF showed a more

restricted cytoplasmic expression (Figure 6, e–h, arrowheads). To

study the role of RAF kinases in neural process outgrowth we

examined the differentiation state of AVG cultured explants.

Postmitotic otic neurons were identified by labeling with the

nuclear cyclin-dependent kinase inhibitor p27kip1 [13] and with

TuJ1, a neural tubulin that is found in processes (Figure 7 A).

AVG neurons that have exited the cell cycle and that are located

more distally with respect to the neurogenic zone of the otic vesicle

epithelium expressed p27kip1 (Figure 7 A, a), and their TuJ1

staining indicated that they had begun to extend axons towards

the otic vesicle (Figure 7 A, c, e, g). Sorafenib treatment of cultured

otic vesicles reduced the number of neuroblasts and mature

neurons (Figure 7 A, compare a and b) and more interestingly,

these mature neurons did not develop axons since their TuJ1

expression remained surrounding the cytoplasm (Figure 7 A, d, f,

h). These results suggested that RAF-MEK-ERK signaling is

necessary to initiate axonal growth.

To determine whether RAF activity is required for axonal

growth once differentiation has been initiated, axonal growth was

incorporation of BrdU (red) over 1 h. Otic vesicles were isolated from HH18 chicken embryos, made quiescent and cultured for 24 h in serum-free
culture medium without additives (0S), with IGF-I (10 nM), Sorafenib (Sor; 1, 5 or 10 mM) or a combination of both IGF-I and Sorafenib. Scale bars,
150 mm. (C) Cell death quantification of B. The TUNEL positive nuclei were quantified relative to the 0S condition, which was given an arbitrary
value of 1. The bars show the mean 6 SEM of at least five otic vesicles from any of the conditions shown in B. Statistical significance was estimated
with the Student’s t-test: *P,0.05 versus control, ***P,0.005 versus control, ###P,0.005 versus Sorafenib 10 mM. (D) Sorafenib increases cell
death through a caspase-dependent mechanism. Otic vesicles were isolated from HH18 chicken embryos and cultured for 24 h in serum-free
culture medium without stimuli (0S; a upper panel), or cultured in the presence of Sorafenib 5 mM (Sor; b upper panel) or in combination with the
pan-caspase inhibitor Boc-D-FMK 50 mM (Sor+BOC; c upper panel) and cell death was visualized using the TUNEL technique. Lower panel shows
apoptotic cell death visualized by TUNEL staining (green) and immunostaining for activated-caspase-3 (red) of otic vesicles cultured in free serum (0S,
a–d) or in the presence of Sorafenib 5 mM (e–h). Boxed areas in a and e are shown at a higher magnification to show the TUNEL-positive nuclei (b,f
and merge) surrounded by activated caspase-3 (c,g and merge). Scale bar, 150 mm (a,e); 20 mm (b–d and f–h). (E) Treatment of cultured otic
vesicles with the MEK inhibitor U0126 and with the C-RAF inhibitor GW5074. A representative blot of the effects of U0126 (50 mM) and
GW5074 (1 mM) on ERK phosphorylation is shown. Apoptosis in cultured otic vesicles was visualized with TUNEL (upper panels, a–c). Proliferation was
measured by the incorporation of BrdU (red) over 1 h in otocysts cultured with no additives (0S), with Sorafenib (5 mM) or with GW5074 (1 mM) (lower
panels, a–c). Scale bar: 150 mm. Compiled projections of confocal microscopy images from otic vesicles are shown. A, anterior; D, dorsal.
Abbreviations: AVG, acoustic-vestibular ganglion; OV, otic vesicle. The images shown are representative of at least three independent experiments,
using five to six otic vesicles per condition.
doi:10.1371/journal.pone.0014435.g003
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followed with the immature neuroblast marker Islet-1 and the

axonal glycoprotein G4 [6]. Otic vesicles were cultured for 24 h to

allow AVG formation, and the elongation of the processes was

allowed to continue for 7 h in the presence (0S- Sorafenib) or

absence of Sorafenib (0S-0S: Figure 7, B). After 24 h, mature otic

neurons have already started to extend axons to innervate the

dorsal (vestibular) and ventral (auditory) sensory epithelia (Figure 7

B, c and e). However, subsequent exposure to Sorafenib impaired

this process and the axons remained shorter than those of controls

(Figure 7 B, compare white bar in c with that in d), both in the otic

vesicle and AVG areas (Figure 7 B, compare a and e with b and f).

Similar experiments were then performed on isolated explanted

AVG to further study the role of RAF-MEK-ERK signaling in otic

neuronal differentiation. Again, exposure to Sorafenib (2.5 mM)

caused a dramatic reduction in the number and length of processes

(Figure 7 C), despite affecting the size of the AVG. When the areas

of the AVG with neuronal soma alone or plus processes were

quantified it was confirmed that RAF activity is required for otic

neuron maturation and the outgrowth of processes.

Discussion

Inner ear organogenesis requires strict spatial and temporal

regulation of cellular proliferation, death and differentiation to

generate the appropriate number of different cell types and their

interconnections [2]. IGF-I drives cell proliferation and the

Figure 4. Inhibition of the RAF-MEK-ERK cascade impairs AVG formation. (A) Otic vesicles were isolated from HH18 chicken embryos and
incubated for 24 h in serum-free culture medium without additives (0S), with IGF-I (10 nM), Sorafenib, (Sor;1, 5 or 10 mM) or a combination of Sor
(10 mM) and IGF-I. Whole otic vesicles were then immunostained for the ganglion neuroblast nuclei marker Islet-1 (green) and for the marker of neural
processes, TuJ1 (red). Fluorescence images were obtained from the compiled projections of confocal images of otic vesicles. Representative images
of at least five to six otic vesicles per condition and from at least three independent experiments are shown. Orientation: A, anterior; D, dorsal. Scale
bar: 150 mm. (B) The otic vesicles (OV) and the acoustic-vestibular ganglia (AVG) areas were measured with Image Analysis Software (Olympus, Tokyo,
Japan). The data are expressed as the mean 6 SEM relative to the control value (0S) and they were compiled from the analysis of at least five to six
otic vesicles per condition. Statistical significance was estimated with the Student’s t-test: *P,0.05, ***P,0.005 versus 0S; #P,0.05, ##P,0.01 and
###P,0.005 versus IGF-I.
doi:10.1371/journal.pone.0014435.g004
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Figure 5. IGF-I partially rescues the effects of inhibiting RAF activity through the PI3K/Akt kinase pathway. (A) Apoptotic cell death
was visualized by TUNEL (green) in cultured otic vesicles and proliferation was detected with the mitosis marker Phospho-Histone 3 (PH3, red). Otic
vesicles were isolated from HH18 chicken embryos and cultured for 24 h in serum-free medium without additives (0S, a–c), with IGF-I (10 nM, d–f),
Sorafenib, Sor, (5 mM, g–i), LY294002 (50 mM, m–o), a combination of IGF-I and Sor (j–l), IGF-I and LY294002 (p–r) or IGF-I, Sor and LY294002 (s–u).
(B) TUNEL positive or (C) proliferative PH3-labeled cells were quantified as described in at least 5 otic vesicles per condition. The results are shown as
the mean 6 SEM relative to the 0S condition. Statistical significance was estimated with the Student’s t-test: *P,0.05, ***P,0.005 versus 0S; #P,0.05
and ###P,0.005 versus the indicated inhibitors; ‘P,0.05, ‘‘‘P,0.005 versus Sorafenib +IGF-I. Lower panels in C show BrdU (green) incorporation
into cultured otic vesicles incubated for 24 h in the following conditions: 0S, with Sor (5 mM), or a combination of Sor and IGF-I (10 nM). Compiled
projections of confocal images from otic vesicles are shown, and are representative of at least five to six otic vesicles per condition from three
different experiments. Scale bar, 150 mm.
doi:10.1371/journal.pone.0014435.g005
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survival of otic progenitors, and it is essential for neuronal

differentiation in the time window between neuronal cell fate

specification and neurotrophin dependence [4]. RAF proteins are

serine/threonine kinases that regulate the RAF-MEK-ERK

signaling pathway involved in the transduction of extracellular

stimuli into cellular responses [16]. Three RAF kinase isoforms

exist in mammals, A-, B- and C-RAF, whose activity is exquisitely

regulated at the post-transcriptional level by a number of different

mechanisms [38]. C-RAF activation is regulated by IGF-I and it is

essential for cell proliferation in the otic vesicle [15]. However, no

studies have been conducted on B-RAF even though this isoform is

more active as a protein kinase and more abundantly expressed in

the nervous system, where it is fundamental for axonal and

dendrite growth [25,27,39,40].

Here we show that B-RAF and C-RAF transcripts are expressed

during inner ear development in a specific spatiotemporal pattern

and that B-RAF is expressed specifically in neurosensorial

components of the inner ear at later stages of development.

RAF transcripts are translated into proteins that phosphorylate

ERK, and RAF activity is regulated in the inner ear by IGF-I.

Such RAF-MEK-ERK signaling is required for neuroepithelial

cell proliferation and survival in this structure, although IGF-I can

restore cell survival by activating the PI3K/Akt kinase pathway

when RAF-MEK-ERK is inhibited by Sorafenib. However, IGF-I

it is not able to restore cell proliferation in these conditions.

Finally, we demonstrate that RAF kinase activity is required for

neuronal progenitor cell differentiation and for the outgrowth of

sensory otic neuron processes.

B-RAF and C-RAF are expressed in a similar temporal pattern

from HH18 to HH27, when the striking reduction in both

transcripts suggests that the transcription of both RAF isoforms is

developmentally regulated. Up to stage HH24 these kinases are

expressed homogeneously in the otic epithelia and AVG, and

during these stages RAF kinases support the basic cellular

programmes of otic progenitors. As development proceeds, the

activity of RAF kinases may be more directly related to

differentiation and post-differentiation events, and accordingly

they become more spatially restricted. At HH27 when auditory

and vestibular hair cells have just differentiated, both RAF kinases

are down-regulated and the strongest B-RAF expression is

associated to sensory hair and neuronal cells. Indeed, RAF kinases

participate in late differentiation processes of other cell types such

as T-cells [41] and sensory cells [42], as well as in post-

differentiation events, such as cortical neuron migration [20] or

the modulation of synaptic plasticity [43].

Due to the established role of RAF kinases in cancer, the search

for inhibitors of RAF-MEK-ERK signaling has been intense [16].

Sorafenib 43-9006 is a potent small-molecule that inhibits RAF

kinases, and its use has been approved for renal carcinoma

therapy, as well as in clinical trials for melanoma and thyroid

cancer [44]. Sorafenib was primarily identified as a C-RAF

inhibitor but upon further characterization, it was shown to inhibit

B-RAF and other kinases involved in angiogenesis [24]. We have

used Sorafenib to study the influence of RAF kinases on otic

progenitors and their regulation by IGF-I. Our results show that

Sorafenib effectively inhibits basal and IGF-I induced ERK

phosphorylation, without affecting Akt phosphorylation. Inhibition

of RAF catalytic activity by Sorafenib also caused an increase in

caspase-dependent apoptosis. Interestingly, in some melanoma cell

lines this is not the case and Sorafenib-dependent apoptosis is

caspase independent [45]. RAF activation of mitochondrial targets

such as BAD [21,46], ASK-1 [47], and MST-2 [48] has an anti-

apoptotic effect and therefore, RAF inactivation can provoke cell

death. RAF inactivation also annuls the activity of the MEK-ERK

module, which along with the lack of activation of cell cycle

proteins and transcription factors, such as retinoblastoma [49],

Cdc25 [50] or AP1 [51,52], may also cause apoptosis of

proliferating cells. MEK inhibition by U0126 [35] and C-RAF

inhibition by GW5074 [36] also caused apoptosis but presented

different traits. The MEK inhibitor completely abolished ERK

phosporylation and, in contrast, GW5074 induced it. Paradoxical

actions of C-RAF inhibitors have been reported in other neuronal

contexts [53,54] and elimination of C-RAF activity by either

knocking it out or siRNA targeting did not altered ERK

phosphorylation [55,56]. Therefore, RAF quinases inactivation

could promote apoptosis of otic progenitor cells by both ERK

dependent and independent mechanisms, as reported in other cell

types [57].

Figure 6. RAF proteins show different subcellular distribution in the acoustic- vestibular ganglion. AVG explants were obtained from
stage HH19 chicken embryos and cultured in serum-free medium for 20 h with no additives (0S). (a–d) Whole AVG explants were immunostained for
B-RAF (green) and Islet-1 (red) or (e–h) for C-RAF (red) and G4 (green), The cytoplasmatic distribution of C-RAF is shown (arrowheads). Fluorescence
images were obtained from compiled projections of confocal images of AVG. Scale bar, 350 mm (a, e); 75 mm (b–d, f–h).
doi:10.1371/journal.pone.0014435.g006
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Figure 7. RAF kinase activity is required for the correct outgrowth of sensory otic neuron processes. (A) Otic vesicles were isolated from
HH18 chicken embryos and incubated for 24 h either in serum-free medium without additives (0S, a,c,e,g) or in the presence of Sorafenib (2.5 mM)
(b,d,f,h). Immunohistochemistry of whole otic vesicles was carried out by double-staining for the nuclear cyclin-dependent kinase inhibitor p27kip1

(green) and for the marker of neural processes, TuJ1 (red). The boxed areas in panels e and f, correspond to the enlarged images in panels g and h
respectively. Scale bar: 75 mm. (B) Otic vesicles were isolated from HH18 chicken embryos and incubated for 24 h in serum-free medium as in the 0S
condition in A, and they were then incubated for a further 7 h without additives (0S-0S, a,c,e) or with Sorafenib (2.5 mM: 0S-Sorafenib, b,d,f). Whole
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The inactivation of the RAF pathway with Sorafenib also

produced a dramatic decrease in cell proliferation since the RAF-

MEK-ERK cascade plays a fundamental role in the G1/S

transition, where its signaling induces cyclin D1 and down-regulates

many other antiproliferative genes [52]. Accordingly, exposing

cultured otic vesicles to Sorafenib caused a dose-dependent decrease

of BrdU incorporation at S phase. U0126 treatment also reduced

proliferation in the otic vesicle; however, the specific inhibition of C-

RAF with GW5074 did not show the striking reduction on

proliferation observed with the other inhibitors. In mice, of the

three RAF isoforms, C-RAF appears to be preferentially involved in

promoting survival, rather than controlling proliferation [55,58]. In

contrast, B-RAF is essential for ERK activation [25] that in turn

triggers cell proliferation [59]. These data suggest that RAF kinases

also have distinct roles during chicken inner ear development. C-

RAF would preferentially promote anti-apoptotic signaling whilst B-

RAF, through the MEK-ERK module, would modulate prolifer-

ation of neuroepithelial progenitors.

Experiments with IGF-I showed that RAF activity is essential for

the progression of cell proliferation but not for cell survival. Indeed,

IGF-I was even able to rescue otic progenitors by activating the

PI3K/Akt pathway in the presence of Sorafenib. Blockage of the

PI3K/Akt kinase pathway with LY294002 indicated that IGF-I is

dependent on Akt activation for cell survival. Therefore, IGF-I

orchestrates cell proliferation and survival in the otic vesicle through

distinct pathways, although cross-talk between signaling pathways

also occurs, as reported in other cell contexts [60].

The AVG is generated from a pool of neuroepithelial progenitors

that when specified in the otic vesicle epithelia, migrate from the

neurogenic zone and form the ganglia [4]. C-RAF and B-RAF are

expressed in otic neurons but they exhibit distinct subcellular

distribution, as reported in the rat brain [43]. B-RAF is abundantly

expressed in cell bodies and neuronal processes, while C-RAF

expression is more restricted to the cytoplasmic compartment.

Exposure to Sorafenib caused a dramatic decrease in the area of the

AVG, although inhibiting RAF kinase activity did not appear to

affect the population of neuronal cells in the AVG, which continued

to proliferate and exhibited little apoptosis. These data suggest that

mature neurons do not require RAF kinases for survival but that

RAF activity is essential for early neurogenesis. Accordingly,

Sorafenib caused a clear reduction of mature neurons as indicated

by the reduced levels of axonal outgrowth markers. This

observation suggested that the RAF-MEK-ERK cascade may be

involved in differentiation of neural cells in the AVG, as seen in the

differentiation of cortical and dorsal neurons [42,40]. Otic neuronal

identity and axonal growth are determined by various factors once

the cell has exited the cell cycle [4]. Axonal growth in post-mitotic

p27kip1 positive AVG neurons was almost completely inhibited in

the presence of Sorafenib, indicating that RAF kinase activation

plays a fundamental role in the late differentiation of otic neurons.

In summary, we show here that B-RAF and C-RAF are

expressed during chicken inner ear development in specific

spatiotemporal patterns, and that RAF-MEK-ERK signaling is

required for neuroepithelial cell proliferation and otic neuronal

differentiation.
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processes (*P,0.05, Sorafenib versus 0S). Representative images of three independent experiments using five to six otic vesicles or AVG per condition
are shown. Orientation: A, anterior; D, dorsal.
doi:10.1371/journal.pone.0014435.g007
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