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Abstract

Background: In the Plio-Pleistocene, the hominin foot evolved from a grasping appendage to a stiff, propulsive lever.
Central to this transition was the development of the longitudinal arch, a structure that helps store elastic energy and stiffen
the foot during bipedal locomotion. Direct evidence for arch evolution, however, has been somewhat elusive given the
failure of soft-tissue to fossilize. Paleoanthropologists have relied on footprints and bony correlates of arch development,
though little consensus has emerged as to when the arch evolved.

Methodology/Principal Findings: Here, we present evidence from radiographs of modern humans (n = 261) that the set of
the distal tibia in the sagittal plane, henceforth referred to as the tibial arch angle, is related to rearfoot arching. Non-human
primates have a posteriorly directed tibial arch angle, while most humans have an anteriorly directed tibial arch angle. Those
humans with a posteriorly directed tibial arch angle (8%) have significantly lower talocalcaneal and talar declination angles,
both measures of an asymptomatic flatfoot. Application of these results to the hominin fossil record reveals that a well
developed rearfoot arch had evolved in Australopithecus afarensis. However, as in humans today, Australopithecus
populations exhibited individual variation in foot morphology and arch development, and ‘‘Lucy’’ (A.L. 288-1), a 3.18 Myr-
old female Australopithecus, likely possessed asymptomatic flat feet. Additional distal tibiae from the Plio-Pleistocene show
variation in tibial arch angles, including two early Homo tibiae that also have slightly posteriorly directed tibial arch angles.

Conclusions/Significance: This study finds that the rearfoot arch was present in the genus Australopithecus. However, the
female Australopithecus afarensis ‘‘Lucy’’ has an ankle morphology consistent with non-pathological flat-footedness. This
study suggests that, as in humans today, there was variation in arch development in Plio-Pleistocene hominins.
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Introduction

The longitudinal arch is a unique human structure that helps

store elastic energy [1] and maintains the structural rigor of the

foot during the push-off stage of bipedal locomotion [2].

Furthermore, the longitudinal arch acts as a shock absorber,

mitigating ground reaction forces generated during the foot flat

stage of the gait cycle. Though framed by the geometry of the

pedal skeleton, the arch itself is ligamentous [3], with contributions

from the short and long plantar ligaments, the calcaneonavicular

(spring) ligament, bifurcate ligament, and perhaps most impor-

tantly, the plantar aponeurosis [4]. The arch is also supported by

the intrinsic muscles of the foot and activity of the m. tibialis

posterior, m. fibularis longus, m. tibialis anterior, and the deep digital

flexors. All primates possess a transverse arch, but only humans

have a longitudinal arch making non-human primates anatomi-

cally and functionally flat-footed. Despite the importance of the

arch to foot biomechanics in modern humans, some people can

walk normally and pain free on asymptomatic, physiologic flat feet

[5].

Little consensus has emerged regarding the timing, tempo, and

pattern of arch evolution in the hominin lineage. This contentious

topic has suffered in part from the lack of associated pedal fossils of

early hominins. However, researchers have also not agreed on

which skeletal anatomies can be reliably correlated with the

presence or absence of an arched foot, and even fossil footprints

have been interpreted in various ways.

Some have suggested that the 3.0–3.7 Myr-old hominin

Australopithecus afarensis did not have a longitudinal arch. This

assertion is based on the inclination of the facets of the pedal joints

[6], and the presence of a robust navicular tuberosity that may

reflect weight bearing on the medial side of the foot [7]. However,

there is evidence for the calcaneonavicular (spring) ligament in Au.

afarensis [8], a structure that supports the talar head in an arched

foot. The lateral tarsometatarsal joint appears to be rigid [9],

suggesting the presence of the long plantar ligament, another

important soft-tissue component of the longitudinal arch. Fur-

thermore, 3.6 Myr-old footprints from Laetoli, Tanzania may

provide evidence of an arch in Au. afarensis [10–12]. Others concur

that the makers of the Laetoli prints had an arched foot, but
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hypothesize that they were made by a hominin other than Au.

afarensis [13]. Still others do not see the makers of the Laetoli

trackway as possessing particularly well developed arches [14].

In the 2.0–2.8 Myr-old South African species Australopithecus

africanus, tarsometatarsal immobility laterally [9], and a weakly

developed navicular tuberosity medially [7] both suggest the

presence of a stiff, arched foot, as does a slight plantar inclination

to the cuboid facet on the StW 352 calcaneus (pers. obs.). The

complete set of tarsal and metatarsal bones comprising the OH 8

foot (1.85 Myr-old) has been difficult to interpret with some finding

evidence for an arch [6,9,15,16] and others suggesting that the arch

was not well developed [17]. Fossil footprints from Ileret, Kenya

provide strong evidence for a human-like arched foot by 1.53 Myr-

ago [14]. These footprints are consistent with analysis of the pedal

remains of Homo from Dmanisi suggesting, based on metatarsal

torsion, the presence of a well-developed longitudinal arch [18].

It is in this context that we suggest another potential skeletal

correlate of rearfoot arching in the hominin lineage: the tibial arch

angle (Figure 1). Viewed laterally, a line connecting the anterior

and posterior margins of the distal tibia is rarely perpendicular to

the bone’s long axis [19]. In most non-human primates, the

anterior rim is more inferiorly projecting, producing a posteriorly

directed set to the ankle joint. In most humans, it is the posterior

rim of the tibia that projects more inferiorly, creating an anteriorly

directed set. Though most agree on these characterizations of the

distal tibia in the sagittal plane, the functional importance of these

morphologies has been difficult to assess. Some have argued that a

posteriorly directed set is functionally linked to a bent-hip bent-

knee bipedal gait, significant arboreality, and even hindlimb

suspension [20]. Others have argued that the tibial arch angle is a

variable feature of limited functional significance [21]. Here, we

hypothesize that the tibial arch angle is a developmental by-

product of unequal forces imposed on the distal tibial physis as a

result of rearfoot arching. We first test the hypothesis that the tibial

arch angle is correlated with arboreality by measuring this angle in

non-human apes representing varied locomotor strategies. We

next test the relationship between the tibial arch angle and

rearfoot arching by measuring these variables in radiographs of

modern human feet (n = 261). These results are then applied to the

fossil record to reevaluate hypotheses regarding arch evolution in

the hominin lineage.

Materials and Methods

The tibial arch angle was taken on lateral view photographs

(Nikon D100 digital camera) of tibiae from adult, wild-shot

primates listed in Table 1. This angle was also taken on human

skeletal material from the Libben population (Kent State

University), Hamann-Todd (Cleveland Museum of Natural

History), and an unprovenienced population from the Department

of Anthropology at the University of Michigan. The images were

imported into Image J, and the tibial arch angle was measured by

taking the angle formed between a line drawn from the inferomost

projection of the posterior tibial rim to the inferomost projection of

the anterior tibial rim, and a line perpendicular to the long axis of

the tibial shaft. This angle was measured to the nearest whole

degree. This same measurement was taken on photographs taken

in lateral view of casts and original fossil material listed in Table 2.

Over 300 lateral weight-bearing radiographs (taken as part of

routine medical care) of a modern, habitually shod population

were surveyed for relevance to the study. These x-rays were

completely deidentified prior to analysis, in full compliance with

HIPAA laws. Radiographs of skeletally immature individuals, as

well as those suffering from advanced diabetic neuropathy,

Charcot-Marie-Tooth neuropathy, and other conditions that

compromise normal foot biomechanics were excluded. Further,

radiographs exhibiting insufficient resolution for the rapid and

unambiguous identification of relevant osteological landmarks (e.g.

medial malleolus obscuring the outline of the distal tibia set) were

also excluded. All measurements were taken of the right foot using

standard equipment (i.e. viewing box, straightedge, compass).

The three measurements collected were the calcaneal inclina-

tion (CI), talar declination (TD), and distal tibial arch angle (TAA).

CI was determined by drawing a line connecting the plantarmost

point of the anterior face of the calcaneus (the calcaneo-cuboid

articular facet) to the plantarmost point of the calcaneal body

relative to the substrate (Figure 2). TD was determined by drawing

a line bisecting the most dorsal and plantar points of the talar head

and the bisection of the narrowest point of the talar neck, also

relative to the substrate. The talocalcaneal angle was calculated as

the sum of CI+TD. TAA was determined by drawing a line from

the inferomost projection of the posterior tibia to the inferomost

projection of the anterior tibia relative to the line drawn

perpendicular to the axis of the tibial shaft. The relationship

between the tibial arch angle and the talar declination, calcaneal

Figure 1. Tibial arch angle in chimpanzee and human. Humans
and non-human primates have distinct tilts to the distal tibia in the
sagittal plane. In non-human primates (left, chimpanzee), the anterior
rim of the tibia (to the left in the figures) is more inferiorly projecting
than the posterior rim, creating a posteriorly directed set to the ankle. In
humans (right), the posterior rim is more inferiorly projecting, creating
an anteriorly directed set to the ankle. In this image, the thin white line
has been drawn through the inferomost projection of the posterior rim
of both tibiae and is perpendicular to the long axis of the tibia. The
tibial arch angle is formed between this white line and the dotted white
line intersecting the anterior rim (negative in chimpanzee; positive in
humans).
doi:10.1371/journal.pone.0014432.g001

Table 1. Extant tibiae measured in this study.

Species Male Female Sex unknown Total

Homo sapiens (radiographs) - - - 261

Pan troglodytes 18 20 10 48

Gorilla gorilla gorilla 23 19 3 45

Gorilla gorilla beringei 15 6 1 22

Pongo pygmaeus 12 19 8 39

doi:10.1371/journal.pone.0014432.t001

Human Foot Arch Evolution
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inclination and talocalcaneal angles was elucidated using a non-

parametric Mann-Whitney U-test in SPSS 16.0. We also tested

whether the TAA and the TD and CI covaried using a Pearson

correlation test (SPSS 16.0). Comparisons of the tibial set in extant

primates were evaluated with a Student’s t-test in Microsoft Excel.

Resampling statistics were employed to test the likelihood of

sampling the tibial arch angles present in the fossil tibial sample

(n = 12) from a modern human population. In the fossil tibial

sample, five specimens (KNM-KP 29285, AL 288-1, KNM-ER

2596, KNM-ER 1481, and StW 567) have a posteriorly directed

or neutral tibial arch angle. Twelve measured tibial arch angles

were randomly selected with replacement from the modern

human radiographic sample. Out of these twelve, the number of

individuals with a posteriorly directed, or neutral tibial arch angle

were identified and summed. A neutral tibial arch angle was

defined as an angular measurement between 21u and 1u. This

process was repeated 5000 times to test the likelihood of having

five neutral or posteriorly directed tibial arch angles if only 12

tibiae are randomly sampled.

Results

The tibial arch angle is statistically identical between the highly

terrestrial mountain gorilla (Gorilla gorilla beringei) and the more

arboreal lowland gorilla (Gorilla gorilla gorilla) (t = 0.65; p = 0.52)

(Figure 3). Furthermore, both gorilla species have a statistically

identical tibial arch angle with the more arboreal chimpanzee (Pan

troglodytes) (t = 1.24; p = 0.22). The most arboreal of the great apes,

the orangutan (Pongo pygmaeus) has a statistically distinct tibial arch

angle from the African apes (t = 4.80; p,0.001). However, it is in

the opposite direction as expected, producing a less posteriorly

directed set than that found in African apes (Figure 3). These

results are consistent with others [19], and suggest that the tibial

arch angle has little to do with arboreality or hindlimb suspension.

Humans have the most anteriorly directed tibial arch angle,

statistically distinct from all ape taxa measured in this study

(p,0.001 for all comparisons).

To test the hypothesis that the tibial arch angle is instead related

to rearfoot arching, 261 weight-bearing radiographs of human

ankles taken in lateral view were examined. A posteriorly directed

set to the ankle is present in 8% of the radiographic sample,

including one individual with a set as great as that found in Lucy

(5u). An ‘‘even’’ tibial set (0u) is present in 5% of the population,

while most (86%) have an anteriorly directed set to the ankle.

Those with a posteriorly directed tibial arch angle have

significantly lower talocalcaneal (z = 4.3; p,0.001) and talar

declination angles (z = 5.19; p,0.001) (Figure 4) than those with

an anteriorly directed set. There was no statistically significant

difference in the calcaneal inclination angle between those with a

posteriorly directed set and those with an anteriorly directed set.

Using parametric statistics, it was found that the tibial arch angle

Table 2. Fossil tibiae measured in this study.

*Specimen Age Species designation #Tibial arch angle (6) References

KNM-KP 29285 4.12 Australopithecus anamensis 21.8 [22]

A.L. 333-6 3.2 A. afarensis 2.9 [23,24]

A.L. 333-7 3.2 A. afarensis 5.5 [23,24]

A.L. 288-1 3.18 A. afarensis 25.0 [23,25]

StW 358 2.0–2.6 A. africanus 4.2 [26,27]

StW 389 2.0–2.6 A. africanus 3.7 [26,27]

KNM-ER 1481 1.9 H. habilis? H. erectus? 22.1 [28–30]

KNM-ER 1500 1.9 A. boisei? 3.7 [28,31]

KNM-ER 2596 1.9 Hominin 0.8 [28,32]

{OH 35 1.85 H. habilis? 4.8 [33]

StW 567 1.4–1.7 Homo 23.0 [34,35]

KNM-WT 15000 1.5 H. erectus 1.8 [36]

*All original fossils except for A.L. 333-6, A.L. 333-7, and A.L. 288-1.
#Positive tibial arch angles indicate an anteriorly directed set; negative tibial arch angle indicate a posteriorly directed set.
{There is damage to the anterior rim of OH 35, and this value should thus be regarded as an estimate. The tibial arch angle reported here assumes that the anterolateral
edge of the tibial rim accurately reflects the most inferior projection of this surface.

doi:10.1371/journal.pone.0014432.t002

Figure 2. Measurements taken in this study. 1. A flat foot
exhibiting a posteriorly directed tibial set. 2. An arched foot exhibiting
an anteriorly directed tibial set. Both 1 and 2: A. Tibial arch angle. B.
Calcaneal inclination angle. C. Talar declination angle.
doi:10.1371/journal.pone.0014432.g002

Human Foot Arch Evolution
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and the talar declination angle are correlated (r = 0.21, p = 0.001),

as are the tibial arch angle and the talocalcaneal angle (r = 0.16,

p = 0.009) (Figure 5). The tibial arch angle was not correlated with

the calcaneal inclination angle (r = 0.03, p = 0.61).

There is great variation in the tibial arch angle in fossil hominins

(Table 2). Some have a near ‘‘even’’ tibial set, while most possess a

human-like anteriorly directed set, including two fossils from

Au.afarensis. Four distal tibiae possess a posteriorly directed tibial

arch angle. Most prominent among these is the female Au. afarensis

A.L. 288-1, or, ‘‘Lucy’’. The other tibiae with a slightly posteriorly

directed tibial arch angle are the 4.12 Myr-old tibia from Au.

anamensis, KNM-KP 29285, and Pleistocene fossils attributed to

the genus Homo: KNM-ER 1481 and StW 567 (Figure 6). KNM-

ER 2596 has a neutral tibial arch angle.

Using resampling statistics, the likelihood of having five

posteriorly directed or neutral tibial arch angles represented in a

randomly selected group of twelve tibiae is 13.8%, well above the

5% required for statistical significance.

Discussion

The results of this study suggest that a critical adaptation for

bipedality in modern humans, the longitudinal arch, may have

been variably present in Australopithecus by 3.2 Myr-ago, and

perhaps earlier. However, as in humans today, Lucy’s posteriorly

directed set to the ankle may indicate a low rearfoot arch. The

relationship between the tibial arch angle and the talar declination

and the talocalcaneal angles are statistically significant using both

parametric and non-parametric statistics, though the calcaneal

inclination angle alone is not correlated with the tibial arch angle.

Hypotheses suggesting that the posteriorly directed tibial arch

angle is related to arboreality and hindlimb suspension are not

supported by comparative data (Figure 3) given that there is no

statistical difference between the mountain gorilla and the lowland

gorilla despite differences in arboreality. Furthermore, the most

arboreal of the apes, the orangutan, has a more human-like tibial

arch angle than the more terrestrial African apes. This result is

surprising, and the reason for a less posteriorly directed tibial arch

angle in orangutans is unclear, though perhaps related to

differences in foot and ankle loading patterns during a more

diverse repertoire of clambering, climbing, bridging and suspen-

Figure 3. Variation in tibial arch angle in extant apes and fossil
hominins. The tibial arch angle differentiates humans and non-human
primates. Mountain gorillas, lowland gorillas, and chimpanzees have
statistically indistinguishable tibial arch angles, and orangutans have
the least posteriorly directed angle of the great apes. These
comparative data do not support the hypothesis that this angle is
related to arboreality or hindlimb suspensory abilities. Instead, it is
argued in this study that the tibial arch angle is related to rearfoot
arching. Humans are quite variable for this measure, and fossil hominins
occupy the lower end of the modern human spectrum, though this
distribution can be sampled from a modern human population. The
median (black bar), interquartile range (box) and overall ranges
(whiskers) are illustrated. Outliers defined as 1.5 times the interquartile
range are shown as circles.
doi:10.1371/journal.pone.0014432.g003

Figure 4. Relationship between tibial arch angle and rearfoot arching in humans. Modern humans with a Lucy-like posteriorly directed set
to the distal tibia (white bars mean 6 sd) have significantly lower talar declination (A) and talocalcaneal angles (B) than modern humans with an
anteriorly directed set to the ankle joint (black bars mean 6 sd).
doi:10.1371/journal.pone.0014432.g004
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Figure 5. Correlation between tibial arch angle and measures of flat foot in humans. There is a statistically significant positive correlation
between the tibial arch angle and two measures of asymptomatic flat-footedness, the talar declination angle (A), and the talocalcaneal angle (B). A
regression line generated using reduced major axis regression is drawn in each graph.
doi:10.1371/journal.pone.0014432.g005

Figure 6. Fossil hominin distal tibiae. Fossil hominin tibiae examined in this study with genus Australopithecus in the top row, and Homo and
Paranthropus in the bottom row. All are scans of original fossils with the exception of the three fossils from Hadar, Ethiopia (A.L. fossils), and OH 35.
Fossils were 3D laser scanned, scaled to roughly the same size, and presented here to visualize the tibial arch angle. Anterior is to the left, posterior to
the right. KNM-KP 29285, A.L. 288-1, and StW 567 have been reversed to reflect the left side. Individual arch angles are presented in Table 2. Notice
here the posteriorly directed set to A.L. 288-1, and the slight posteriorly directed set to KNM-KP 29285, StW 567, and KNM-ER 1481. All other fossils
show an anteriorly directed set.
doi:10.1371/journal.pone.0014432.g006
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sory arboreal activities in orangutans [37], relative to African apes.

What does not explain these data is allometry. In both humans

and non-human primates, there is no relationship between the

tibial arch angle and the width of the tibial plafond, a proxy for

size (Figure S1). Thus, the posteriorly directed tibial arch angle in

‘‘Lucy’’ is not simply a by-product of her small size, but more likely

to be a result of her asymptomatic flat footedness.

Though we find with these data that ‘‘Lucy’’ may have had a flat

foot, this does not imply she suffered from pathological flat foot (pes

planus), in which the arch collapses. Pes planus is often typified by a

high, rather than a low, talar declination angle, in part because the

spring ligament no longer supports the talar head [38], and thus

these findings are in concert with other reports that pathological and

asymptomatic pes planus are radiologically distinguishable [39]. It is

important to note as well that Lucy may have suffered from a spinal

pathology, best characterized as Scheuermann disease [40]. How

this may have impacted her arch development, tibial arch angle,

and gait is currently unstudied. An important finding in this study is

that asymptomatic flat-footedness did not characterize the species

Au. afarensis, and instead may just describe the foot of one specific

female, Lucy. Two other distal tibiae from Hadar, Ethiopia, A.L.

333-6 and A.L. 333-7 (Figure 6), have distinctly human-like

anteriorly directed sets to the distal tibia, implying the presence of

rearfoot arching. These two individuals are more like the makers of

the 3.6 Myr-old Laetoli footprints, argued to have been made by

hominins possessing a well-developed longitudinal arch [11] but see

[14]. An anteriorly directed set to the ankle is also present in the two

Au.africanus fossils measured in this study (Table 2; Figure 6),

suggesting a rearfoot arch in this South African hominin as well.

However, variation likely exists in the S. African hominins given

what appears to be a posteriorly directed set in a published

photograph of the tibia from ‘‘Little Foot’’ StW 573 [41].

Interestingly, a slight but measureable posteriorly directed set to

the ankle is present in a higher percentage of fossil hominin tibiae

(33%; n = 4/12) than in modern humans. This posteriorly directed

set includes two tibiae thought to be from the genus Homo: StW

567 [34,35,42], and KNM-ER 1481 [29,30]. These results appear

to suggest that asymptomatic flatfootedness may have been more

frequent in Plio-Pleistocene hominins than in modern humans.

However, the use of resampling statistics demonstrates that this is

more likely a sampling issue, as this frequency of posteriorly

directed and neutral tibial arch angles can be sampled from a

modern human population 13.8% of the time.

In our sample of modern human radiographs, we find that 8%

possess a posteriorly directed set to the ankle. This is a

considerably higher percentage than previous studies which found

a posteriorly directed set in only 1.5% of a large skeletal sample

[20]. Examination of additional skeletal collections suggests that

the development of the tibial arch angle may vary by population

(Table 3). There was only one individual (2.2%; n = 1/45) with a

posteriorly directed angle of only 21.0u in the Libben population.

However, a higher percentage was found in an unprovenienced

population from the University of Michigan Department of

Anthropology (7.6%; n = 5/66), and the Hamann-Todd collection

(12.5%; n = 3/24), including some with posteriorly directed angles

as great as 24.0u. These findings of population-level differences

are consistent with evidence of variation in foot arch development

from one population to another [43]. If the 8% found in this study

does prove to be higher than the typical human population, the

hypothesis that flatfootedness was more common in early

hominins should be revisited. It remains possible that an increase

in the frequency of arched feet may have evolved with later genus

Homo (e.g. H. erectus) [44], perhaps owing to the benefits of

returning elastic energy to the foot while running [45]. For now,

however, the data presented in this study suggest that Plio-

Pleistocene hominins had the same variation in tibial arch angle as

that found in modern humans.

We hypothesize that the mechanism linking the tibial arch angle

with rearfoot arching follows Hueter–Volkmann’s ‘‘law’’ in which

compressive forces can inhibit chondral growth [46]. At birth,

humans do not have a structural arch. The arch becomes

noticeable in most children by the ages of 3–6, though it does not

develop in all children [47]. As the arch develops, the anterior

tibial physis may receive more force than the posterior region.

This arrangement may promote an uneven amount of chondral

proliferation posteriorly given the reduction or cessation of

chondral growth in regions of elevated pressure anteriorly. This

differential growth is critical for maintaining the plane of the ankle

joint perpendicular to ground reaction forces [48]. We therefore

hypothesize that this morphology is not strictly determined by

developmental growth fields and instead is reflective of forces

imposed on the foot during the juvenile period. The tibial arch

angle may therefore be one of a suite of characteristics suggested to

be skeletal correlates of arch formation in hominins.

How the presence or absence of an arch impacts the locomotor

performance of the individual in question is important to consider.

Many humans today have asymptomatic physiologic flat feet, and

suffer no ill effects [5]. Despite the prevailing view that flatfeet are

a cause for concern [5], many recent studies have shown that

individuals with low arches are no more likely to suffer injury or

pain than individuals with high arches [49–51]. Locomotor

performace also appears to be indistinguishable between teenagers

with flat feet and those with normal arches [52]. However, arch

development and the form of an individual’s foot do affect lower

limb kinematics [53], and these changes can increase the risk of

injury during rigorous physical activity, such as distance running

[54]. Additionally, arch structure has been shown to impact

patterns of plantar pressure [55,56]. For example, the arch helps

to shift forces laterally in the human foot [48], and thus the

relatively enlarged lateral metatarsal heads, present in Au. afarensis

Table 3. Population level differences in tibial arch angle (TAA).

Population Sample size
Tibial arch angle
(mean ± sd)

% of sample with
posteriorly directed TAA

Minimum tibial arch
angle

Maximum tibial arch
angle

Radiographs 261 4.0u63.6u 8.4% 25.0u 18.0u

Hamann-Todd 24 3.0u62.7u 12.5% 23.0u 8.0u

Unprovenienced- University of
Michigan

66 2.8u62.3u 7.6% 24.0u 8.0u

Libben 45 5.9u63.1u 2.2% 21.0u 13.0u

doi:10.1371/journal.pone.0014432.t003

Human Foot Arch Evolution

PLoS ONE | www.plosone.org 6 December 2010 | Volume 5 | Issue 12 | e14432



[57], may provide additional skeletal evidence for an arch.

Nevertheless, additional fossil material from the pedal skeleton,

and continued study of recovered pedal remains, will both be

necessary to reconstruct foot morphology, arch development, and

locomotor biomechanics in early hominins.

Conclusion
As in humans today, Australopithecus exhibited variation in foot

morphology and arch development. Despite having only preserved

the talus and two phalanges, we suggest that it is the distal tibia

that provides evidence for foot structure in the ‘‘Lucy’’ skeleton.

Our findings suggest that this female Au. afarensis possessed an

asymptomatic physiologic flatfoot, though two other tibiae from

Hadar, Ethiopia suggest the presence of a rearfoot arch in this

species. Whether flat-footedness was more common in early

hominins will require additional fossil material, and identification

of additional skeletal correlates of the longitudinal arch.

Supporting Information

Figure S1 Relationship between tibial arch angle and tibial

plafond width in humans and apes. The tibial arch angle shows no

allometric relationship with the width of the tibial plafond (taken at

the midpoint of the talar articular surface). This finding

demonstrates that the tibial arch angle in ‘‘Lucy’’ is not a function

of her small size, but rather is a product of some other aspect of

her foot functional anatomy. We suggest in this paper that it is a

skeletal correlate of an asymptomatic flat-foot.

Found at: doi:10.1371/journal.pone.0014432.s001 (3.86 MB TIF)
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locomotion. Biom Hum Anthropol 21: 189–230.

42. Curnoe D, Tobias PV (2006) Description, new reconstruction, comparative

anatomy, and classification of the Sterkfontein Stw 53 cranium, with discussions
about the taxonomy of other southern African early Homo remains. J Hum Evol

70: 36–77.
43. Dunn JE, Link CL, Felson DT, Crincoli MG, Keysor JJ, et al. (2004) Prevalance

of foot and ankle conditions in a multiethnic community sample of older adults.

Am J Epidemiol 159: 491–498.
44. Bramble DM, Lieberman DE (2004) Endurance running and the evolution of

Homo. Nature 432: 345–352.
45. Lieberman DE, Venkadesan M, Werbel WA, Daoud AI, D’Andrea S, et al.

(2010) Foot strike patterns and collision forces in habitually barefoot versus shod
runners. Nature 463: 531–535.

46. Villemure I, Stokes IA (2009) Growth plate mechanics and mechanobiology. A

survey of present understanding. J Biomech 42: 1793–1803.
47. Pfeiffer M, Kotz R, Ledl T, Hauser G, Sluga M (2006) Prevalence of flat foot in

preschool-aged children. Pediatrics 118: 634–639.
48. Preuschoft H (1970) Functional anatomy of the lower extremity. In: Bourne GH,

ed. The Chimpanzee. Vol. 3. Basel: Karger. pp 221–294.

49. Cowan DN, Jones BH, Robinson JR (1993) Foot morphologic characteristics

and risk of exercise-related injury. Arch Fam Med 2: 773–777.
50. Hogan MT, Staheli LT (2002) Arch height and lower limb pain: an adult civilian

study. Foot Ankle Int 23: 43–47.

51. Abdel-Fattah MM, Hassanin MM, Felembane FA, Nassaane MT (2006) Flat
foot among Saudi Arabian army recruits: prevalence and risk factors. Eastern

Med Health J 12: 211–217.
52. Tudor A, Ruzic L, Sestan B, Sirola L, Prpić T (2009) Flat-footedness is not a
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