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Abstract

The 2009 flu pandemic and the appearance of oseltamivir-resistant H1N1 influenza strains highlight the need for treatment
alternatives. One such option is the creation of a protective physical barrier in the nasal cavity. In vitro tests demonstrated
that iota-carrageenan is a potent inhibitor of influenza A virus infection, most importantly also of pandemic H1N1/2009 in
vitro. Consequently, we tested a commercially available nasal spray containing iota-carrageenan in an influenza A mouse
infection model. Treatment of mice infected with a lethal dose of influenza A PR8/34 H1N1 virus with iota-carrageenan
starting up to 48 hours post infection resulted in a strong protection of mice similar to mice treated with oseltamivir. Since
alternative treatment options for influenza are rare, we conclude that the nasal spray containing iota-carrageenan is an
alternative to neuraminidase inhibitors and should be tested for prevention and treatment of influenza A in clinical trials in
humans.
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Introduction

While the current H1N1 influenza (flu) pandemic was ongoing in

2010, efforts were made to develop new antiviral agents for

influenza treatment that possess an improved spectrum of activity or

better pharmacologic profiles, compared to current treatments. The

medical need for the development of new antiviral agents for the

treatment of influenza virus-infected patients is mainly based on

increasing resistance against currently approved drugs and on their

limited antiviral efficacy in severe cases of influenza [1]. Available

anti-influenza drugs target two different steps of the viral life cycle,

the uncoating and the release of virus particles from infected cells.

Uncoating of influenza A viruses is induced by the viral M2 ion

channel protein and can be blocked by the adamantane-based

compounds amantadine and rimantadine [2,3]. Although clinically

effective, these drugs caused considerable gastrointestinal and

neurological side-effects in patients [4]. Moreover, emerging

resistant influenza A viruses during seasonal influenza epidemics

have been observed [5]. Today, the resistance level to amantadine

has reached nearly 100% for H3N2-type influenza A virus strains,

but resistant mutants are also frequently found among seasonal

H1N1 isolates [1,6]. Therefore, adamantanes are not considered

anymore for routine use, but might be an option when all other

measures fail [7]. The more recently approved antiviral agents to

treat influenza infections are the neuraminidase inhibitors zanami-

vir and oseltamivir, both developed by rational drug design [8].

Influenza virus neuraminidase (NA) is anchored in the viral

membrane and cleaves sialic acid-containing receptors on the

surface of infected cells and on progeny virions. This enzymatic

activity facilitates the movement of virus particles through the upper

respiratory tract as well as the release (budding) of newly synthesized

virions from infected cells [9]. Although highly efficacious in vitro

[10] and in animal models [11,12], in clinical trials neuraminidase

inhibitors showed lower than expected efficacy against influenza

symptoms in otherwise healthy adults [13]. However, in children

with laboratory confirmed influenza, neuraminidase inhibitors were

effective in reducing illness duration if given within 48 hours post

exposure, but their efficacy in reducing severe complications in ‘at

risk’ children, e.g. with asthma, awaits further investigation [14,15].

Nonetheless, neuraminidase inhibitors have been used successfully

as antiviral chemoprophylaxis for preventing and reducing the

symptoms of seasonal influenza [16,17]. Accordingly, in many

countries neuraminidase inhibitors are stockpiled as means to

prevent a worldwide pandemic [18,19]. However, alternative

treatment options are urgently needed as the current choice of

drugs is limited and resistance is a constant threat [20].

One alternative approach to prevention and treatment of

influenza is the creation of a protective physical barrier in the nasal
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cavity with carrageenans, high molecular weight sulphated

polysaccharides derived from red seaweed (Rhodophyceae). Three

main forms of carrageenans have been identified: kappa (k), iota

(i), and lambda (l). They differ from each other in sulphation

degree, solubility and gelling properties [21]. Carrageenan is in

widespread commercial use as an additive contributing to the

texture and stability of various processed foods and cosmetic

products, including some brands of sexual lubricant. Since high-

quality carrageenan preparations (reviewed in [22]) appear to have

a good safety profile for long-term use [23] and can inhibit HIV

infections in model systems [24], clinical studies were conducted to

validate the usefulness of carrageenan (Carraguard) as a vaginal

microbicide for the prevention of HIV-1 transmission [24,25].

Reasons for the failure of these studies are manifold and

approaches to improve the efficacy of such topical formulations

are in the focus of current research [26]. The antiviral potential of

carrageenan and other sulphated polysaccharides in vitro against

infections by several enveloped viruses such as herpes simplex virus

(HSV-1 and HSV-2), human cytomegalovirus (HCMV), vesicular

stomatitis virus (VSV), Sindbis virus, and human immunodefi-

ciency virus has been described more than 20 years ago [27,28],

and has been reviewed recently [29–31]. Newer studies have

confirmed the efficacy of carrageenans from different marine algal

species in animal models of HSV and CMV infections in vivo [32–

34]. The inhibitory mechanism of carrageenans on virus

replication seems to comprise early events of the infection cycle,

i.e. attachment and entry of virus particles [35,36], and is

dependent on the type of polysaccharide [29] as well as the

serotype of the virus and the host cells [37].

Iota-carrageenan has been reported to inhibit the infection of

certain non-enveloped human viral pathogens, e.g. human

hepatitis A (HAV) and papilloma viruses (HPV) in vitro [37,38].

Moreover, iota-carrageenan interfered specifically with the

adsorption of HPV16 capsids to human sperm cells [39]. These

findings encouraged the authors to propose clinical trials in order

to determine whether carrageenan-based products are effective as

topical microbicides against genital HPVs [38]. We recently could

show that iota-carrageenan is a potent anti-rhinoviral substance in

vitro and thus an ideal candidate for the treatment of infections

that predominantly occur in the nasal cavity and upper respiratory

tract [40]. Therefore, we were interested whether carrageenans

and in particular iota-carrageenan have any antiviral activity

against human influenza A viruses.

Results

Iota-carrageenan inhibits influenza virus-induced plaque
formation on MDCK cells

We determined the sensitivity of the influenza virus strain H1N1

(A/PR8/34) and the formerly pandemic H3N2 (A/Aichi/2/68) to

carrageenans of subtypes iota and kappa by plaque reduction

assays in MDCK cells [41,41]. The results are summarized in

Table 1. The two carrageenan types inhibited plaque formation of

both viruses tested although to a varying degree. Iota-carrageenan

was the most active substance in all experiments followed by

kappa-carrageenan. The purity of iota- as well as kappa-

carrageenan preparations analyzed by nuclear magnetic resonance

spectroscopy (NMR) was greater than 95% and the molecular

weight of both polymers well over 1009000 (data not shown).

Nevertheless, the inhibitory potential of iota-carrageenan with

IC50 values of around 0.2 mg/ml in H1N1 and 0.04 mg/ml in

H3N2 infections was up to 10 times higher compared to kappa-

carrageenan (Table 1). Generally, plaque formation by H3N2

viruses was inhibited at lower carrageenan concentrations when

compared to H1N1. CMC, the control polymer, did not show any

inhibitory effect up to the highest concentrations tested (400 mg/

ml). No cytotoxicity of any of the polymers at the highest dosages

was observed.

Iota-carrageenan promotes survival of influenza
virus-infected MDCK cells and inhibits viral replication

MDCK cells were infected at low multiplicity (MOI = 0.01)

with H1N1 A/PR/8/34 or H3N2 A/Aichi/2/68 virus in the

presence of various concentrations of iota-carrageenan or CMC.

After 48 hours, cell viability was determined with a standard cell

proliferation test. A typical result obtained by this assay is shown

in Figure 1. For instance, iota-carrageenan at a concentration of

4 mg/ml reduced the cytopathic effect of the A/PR/8/34 virus

by more than 50% compared to control polymer CMC

(Figure 1A). For cells infected with the A/Aichi/2/68 H3N2

virus, a concentration of 0.4 mg/ml of iota-carrageenan was

sufficient to protect 50% of the cells from virus-induced cell

death (Figure 1B).

In line with these findings, we have also determined the effect

over time of different iota-carrageenan concentrations on viral

replication of infected MDCK cells (Figure 1C–F). In marked

contrast to the control polymer CMC, iota-carrageenan at

concentrations of 40 and 4 mg/ml very efficiently reduced viral

replication by 2–4 logs up to 96 hours post infection. Thus, iota-

carrageenan efficiently promotes survival of influenza A-infected

MDCK cells and does so by directly reducing the amount of virus

released from infected cells.

Iota-carrageenan promotes survival of influenza
A/PR/8/34 virus-infected primary human nasal epithelial
cells (HNep)

HNep cells were infected with influenza virus (5 PFU/cell) in

the presence of iota-carrageenan or CMC as a control polymer

and subsequently maintained in medium containing different

amounts of polymers (0.5 mg/ml to 400 mg/ml). After 48 hours,

cell proliferation was determined with a Resazurin-based in vitro

toxicology assay. As shown in Figure 2, iota-carrageenan-treated

cells showed significantly better protection from virus-induced cell

death than cells treated with CMC at all concentrations tested.

This result shows that iota-carrageenan promotes survival of

influenza A virus-infected HNep cells.

Iota-carrageenan is active against pandemic H1N1/2009
influenza virus in vitro

Since the A/PR/8/34 and A/Aichi/2/68 viruses were isolated

several decades ago, we were interested whether iota-carrageenan

bears antiviral activity also against the novel pandemic H1N1/

2009 strain [18]. Similar to experiments with seasonal influenza

virus strains, iota-carrageenan was found to strongly inhibit plaque

formation of the pandemic H1N1/2009 strain in MDCK cells

Table 1. Inhibitory effects of polysaccharide compounds.

Virus IC50
* iota IC50 kappa IC50 CMC

A/Aichi/2/68 H3N2 0.04 0.30 .400

A/PR8/34 H1N1 0.20 2.70 .400

*Inhibitory concentration 50%: concentration in mg/ml required to inhibit
influenza virus plaque formation on MDCK cells. Each value represents the
mean of a quadruplicate assay.
doi:10.1371/journal.pone.0014320.t001

H1N1 Inhibition by Carrageenan
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with an IC50 concentration of about 0.04 mg/ml (Figure 3). The

IC50 values indicate that iota-carrageenan had the same antiviral

potency against the pandemic H1N1/2009 strain as compared to

the A/Aichi/2/68 H3N2 virus while inhibition of the A/PR8/34

H1N1 virus required five times higher concentrations of iota-

carrageenan, at least in MDCK cells.

Influenza A virus binding to iota-carrageenan beads is
inhibited by dissolved iota-carrageenan but not by a
control polymer

Several published reports indicate that the principal mecha-

nism by which carrageenans block virus infectivity is by direct

binding to the viral surface [35,36,38,40]. In order to investigate

whether a similar mechanism holds true for influenza viruses, we

incubated iota-carrageenan-coated agarose beads with influenza

A/PR/8/34 viral particles that were previously labelled with the

fluorescent dye Alexa Fluor 488 (H1N1-A488). We found that

the fluorescent virus directly binds to iota-carrageenan beads but

not to agarose carrier material (Figure 4C, D). Importantly,

binding of virus to iota-carrageenan was specific, as it was

abolished in the presence of excess iota-carrageenan (Figure 4E),

but not CMC (Figure 4F). Likewise, we independently confirmed

this observation by using the same fluorescently-labelled H1N1

viral particles in FACS experiments with MDCK cells in the

presence of iota-carrageenan or control polymer CMC. As

shown in Figures 4G–I, only iota-carrageenan specifically

competed with virus binding to MDCK cells but not CMC.

Figure 1. Iota-carrageenan promotes cell viability and reduces viral titer of influenza A-infected MDCK cells. MDCK cells grown in 96-
well plates were infected with H1N1 A/PR/8/34 virus (A) and H3N2 A/Aichi/2/68 virus (B) (0.01 PFU/cell) in the presence of carrageenans (iota-
carrageenan black diamonds, kappa-carrageenan black squares) at concentrations as indicated on the x-axis in mg/ml. Plates were incubated at 37uC
until cells in the control (no polymer added) showed .90% damage. Cell proliferation was determined with a Resazurin-based in vitro toxicology
assay. Samples were measured fluorometrically by monitoring the increase in fluorescence at a wavelength of 590 nm using an excitation
wavelength of 544 nm. Values obtained from mock-infected cells were set to 100%, and the values of cells infected in the absence of polymer were
set to 0% (y-axis). (C)-(F) MDCK cells were infected with H1N1 A/PR/8/34 as before and further kept in the presence of iota-carrageenan (circles) or the
control polymer CMC (squares) at indicated concentrations and 24 (C), 48 (D), 72 (E), and 96 hours (F) post infection, respectively. Supernatants were
harvested, pooled, and subsequently used to determine the TCID50/ml according to the method of Reed and Muench [59]. The points represent the
mean of a quadruplicate experiment, the standard deviation is indicated.
doi:10.1371/journal.pone.0014320.g001

H1N1 Inhibition by Carrageenan
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These findings demonstrate that the antiviral mechanism of iota-

carrageenan is conferred through direct binding of polymer to

viral particles.

Iota-carrageenan inhibits attachment of A/PR/8/34
influenza virus to cells

To explore further the antiviral mode of action of iota-

carrageenan, we performed time of addition studies in vitro.

Therefore, iota-carrageenan was added to MDCK cells either

before, after, or simultaneously with virus inoculum. The state of

infection was analysed by plaque reduction assays (Figure 5, A and

B) or alternatively, microscopically by staining the viral nucleo-

protein (NP) with a monoclonal antibody (Figure 5, C and D). If

iota-carrageenan was added to cells prior to infection, no positive

effect on plaque reduction could be observed. Importantly, pre-

incubation of cells with iota-carrageenan up to 48 hours was not

toxic or altered proliferation of the cells in any way (data not

shown). However, virus attachment to cells and hence, infection

was dose-dependently blocked if iota-carrageenan was mixed with

virus particles before addition to cells as evidenced in a reduction

of formed plaques formed in MDCK cells and compared to

control polymer (Figure 5A). Similar results were obtained with

Vero cells (data not shown). In sharp contrast, if virus was allowed

to adsorb to cells before addition of iota-carrageenan no protective

effect on plaque formation similar to the control polymer CMC

was observed (Figure 5B). When internalization of virus was

assessed by immunofluorescence staining using an anti-NP

antibody, infection of cells was only efficiently prohibited if virus

was adsorbed in the presence of iota-carrageenan but not control

polymer (Figure 5C) or if iota-carrageenan or control polymers

were added post-adsorption (Figure 5D). In summary, iota-

carrageenan inhibits influenza virus infection by directly interact-

ing with virus particles thereby preventing adsorption to cellular

receptors and subsequent internalization.

Intranasal iota-carrageenan application significantly
supports survival of mice infected with H1N1 A/PR/8/34
influenza virus

The pathogenicity of influenza viruses in mice varies and is

dependent on the strain and its adaptation to its host. Depending

on virus dose and strain, influenza virus can induce lethal

infections in certain mouse strains usually within two weeks [42].

To investigate whether iota-carrageenan is efficacious in such a

model, we challenged C57Bl/6 mice intranasally with a lethal dose

of influenza H1N1 A/PR/8/34 virus and tested different

treatment regimens in comparison to a vehicle control (placebo).

Figure 6 illustrates one typical result of several independent

experiments. If treatment with 60 mg iota-carrageenan per animal

was started on day 0 immediately after infection and repeated

twice daily during the course of the experiment (typically 15 days),

we noticed significantly increased survival rates in the iota-

carrageenan-treated group as compared to the placebo-treated

control group. In the particular experiment shown in Figure 6, by

day 15 after infection, 90% of the individuals in the placebo group

had succumbed to the infection whereas 70% of the iota-

carrageenan group had survived. In line with this result, survival

rates were also significantly increased if treatment was started one

day before infection (data not shown). Surprisingly, however,

treatment could be started also one or two days after infection and

still significantly increased survival rates. However, in contrast to

other experiments performed during the course of this study, the

difference between the 24 hours post-infection treatment schedule

and the control group did not quite reach significance.

Intrigued by this finding, we conducted a separate experiment

in which we determined the effect of intranasal iota-carrageenan

treatment on viral titer of infected mice. We infected 5 mice per

group as before and either started intranasal therapy with iota-

carrageenan or oral therapy with oseltamivir 24 and 48 hours

Figure 2. Effect of iota-carrageenan on influenza A-infected
primary human nasal epithelial cells. Primary human nasal
epithelial cells (HNep) cells grown in 96-well plates were infected with
A/PR/8/34 virus (5 PFU/cell) in the presence of iota-carrageenan at
concentrations indicated on the x-axis in mg/ml. 30 minutes after
infection, the inoculum was removed and medium containing iota-
carrageenan (black bars) or CMC (white bars) in indicated concentra-
tions added. Cell proliferation was determined with a Resazurin-based
in vitro toxicology assay. Samples were measured fluorometrically by
monitoring the increase in fluorescence at a wavelength of 590 nm
using an excitation wavelength of 544 nm. Values obtained from mock-
infected cells were set to 100%, and the values of cells infected in the
absence of polymer were set to 0% (y-axis). The bars represent the
mean of a quadruplicate experiment, the standard deviation is
indicated.
doi:10.1371/journal.pone.0014320.g002

Figure 3. Effect of iota-carrageenan on pandemic H1N1/2009
virus. Confluent monolayers of MDCK cells in 6-well plates were
washed free of protein-containing growth medium before use. An
equal volume of virus suspension mixed with iota-carrageenan,
containing 50 to 150 plaque-forming units, was added 5 to 10 min
later, and plates were incubated at room temperature for 60 min with
frequent shaking. The inoculum was removed and covered with an
overlay medium consisting of 0.6% agarose (3 ml) in Eagle minimal
essential medium and trypsin (2 mg/ml). Plates were incubated at 37uC
in a humidified atmosphere with 5% CO2. After 36 to 48 h, plaques
were stained with crystal violet and counted. The percentage of plaque
inhibition relative to infected control plates (y-axis) was determined for
each drug concentration (x-axis). The standard deviation of three
independent experiments is indicated.
doi:10.1371/journal.pone.0014320.g003

H1N1 Inhibition by Carrageenan
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post infection as before, respectively. Subsequently, groups of

mice were sacrificed 48 or 120 hours post infection and after

semi-daily therapy and viral titers were determined from pooled

specimens derived from the nasal cavity and lung by plaque

assays. As shown in Figure 6B, intranasal treatment of mice with

iota-carrageenan results in an immediate reduction of viral

particles in the nasal cavity 2 days and even more pronounced 5

days post infection, in the same order of magnitude as the

neuraminidase inhibitor oseltamivir. Conversely, while we could

not determine a titer reduction in the lung 48 hours post infection

(i.e. 1 day treatment) in the iota-carrageenan-treated group, we

could clearly show a strong reduction of viral particles in the

lungs of iota-carrageenan-treated mice 5 days post infection as

compared to the control group (Figure 6B). Importantly, iota-

carrageenan treatment seemed to be as efficient as an oseltamivir

therapy and as before, we could see a benefit with respect of viral

particle reduction in the nose and lung even if therapy was started

as late as 2 days post infection. Intranasal therapy of infected

mice with iota-carrageenan results in a survival benefit for mice

and seems to be a direct consequence of a reduction in viral

particles present in the nose and consequently in the lung at later

time points of the infection, respectively.

Oseltamivir and iota-carrageenan synergistically promote
survival of mice in a therapeutic setting starting as late as
48 hours post infection

To further explore the therapeutic potential of iota-carrageen-

an, we tested a combination with oseltamivir in the lethal infection

model of C57Bl/6 mice but with a ten times higher virus dose as

compared to the experiment shown in Figure 6. The treatment

consisted of an intranasal application of iota-carrageenan (60 mg/

animal/day in 0.5% NaCl) and an oral administration of

oseltamivir (10 mg/kg/day in 5% sucrose). Treatment was started

48 hours post infection and repeated twice daily until the end of

the experiment. Groups receiving oral doses of oseltamivir were

treated for five days with this drug according to protocol, and

thereafter received only iota-carrageenan and placebo intranasally

as before, respectively. While iota-carrageenan alone in the

particular experiment shown in Figure 7 supported the survival

of infected animals at significantly increased rates, treatment with

oseltamivir alone did not quite result in significantly higher

numbers of survivors as compared to the placebo group. However,

in other but similar experiments, oseltamivir monotherapy for five

days at the same dose was efficacious, significantly and comparable

to iota-carrageenan, if given 24 or 48 hours post infection (data

Figure 4. Binding of H1N1 influenza virus to iota-carrageenan. (A)-(F). Alexa Fluor 488-conjugated H1N1 influenza virus (H1N1-A488) was
incubated with iota-carrageenan-coated agarose beads (iota-beads) or control beads for 30 min at room temperature and visualized microscopically. (A)
Bright field picture of iota-beads, showing no green auto-fluorescence (B). (C) Control agarose beads incubated with H1N1-A488 do not facilitate unspecific
virus binding. (D) Iota-beads incubated with H1N1-A488 demonstrates binding of virus to iota-carrageenan as evidenced by bright green staining of iota-
beads. (E) Binding of H1N1-A488 to iota-beads is inhibited in the presence of iota-carrageenan (400 mg/ml), but is not abolished in the presence of CMC
(400 mg/ml) (F). Scale bar = 100 mm. (G) FACS analysis of MDCK cells incubated with H1N1-A488 in the presence of iota-carrageenan (400 mg/ml) (H) or
control polymer CMC (400 mg/ml) (I) showing that binding of H1N1-A488 to cognate receptors is inhibited by iota-carrageenan but not CMC.
doi:10.1371/journal.pone.0014320.g004

H1N1 Inhibition by Carrageenan
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not shown). Otherwise, all experiments with combination

treatments showed the same effects, namely, significantly increased

survival rates as compared to a monotherapy with either iota-

carrageenan or oseltamivir.

Discussion

In this report we demonstrate that iota-carrageenan, a

biopolymer derived from red seaweed, is a potent inhibitor of

influenza virus infectivity in vitro and in vivo. The report describes

cell culture studies, demonstrates the antiviral activity of iota-

carrageenan in mouse influenza infection models and proposes a

mode of action.

The antiviral activity of iota-carrageenan against several virus

types other than influenza has been studied more than 20 years

ago. Antiviral activity was found against herpes simplex virus type

(HSV) 1 and 2 at an IC50 of 2 and 10 mg/ml, respectively [28]. In

the same report, iota-carrageenan was found ineffective against

measles virus, adenovirus type 5, poliovirus and vesicular

stomatitis virus. Our results indicate that iota-carrageenan is

active against influenza A viruses at ten times lower concentrations

when compared with HSV-1 in a standard plaque reduction assay

(Table 1). This is comparable to our in vitro data of human

rhinoviruses [40], but does not reach the low effectivity dosage

range that has been described for papillomaviruses [38]. Both iota-

and kappa-carrageenan protected MDCK cells from virus-

induced cell death at an MOI of 0.01 (Figure 1A–B) in a dose-

dependent manner. Moreover, maintenance of MDCK cells in the

presence of iota-carrageenan up to 96 hours post infection with

H1N1 also resulted in a dramatic reduction of viral titers by 2-4

logs, indicative of a protective effect of iota-carrageenan with

regard to the spread and release of viral particles from previously

infected MDCK cells (Figure 1C–F). However, an increased

amount of input virus gradually reduces the protective effect.

Therefore, we conclude that the antiviral effect of carrageenan is

dependent on the relative amount of input virus in both cases. The

data support the hypothesis that iota-carrageenan possesses

antiviral activity due to direct interaction with the viruses.

To rule out tissue culture artefacts, we tested the antiviral

activity of iota-carrageenan against influenza in primary HNep

cells. The virus-induced CPE indirectly assessed by measuring cell

proliferation showed that iota-carrageenan promoted cell survival

at a concentration as low as 0.5 mg/ml (Figure 2). When compared

to MDCK cells (compare Figure 1 with Figure 2), we found that

iota-carrageenan showed a stronger antiviral effect on HNep cells.

Since HNep cells are sensitive to trypsin, the assay was carried out

Figure 5. Effect of iota-carrageenan on H1N1 virus adsorption and internalization. (A) Adsorption. H1N1 virus was added to MDCK cells in
the presence of different concentrations of iota-carrageenan or control polymer carboxymethylcellulose (CMC). After viral adsorption for 1 h at 4uC,
cells were washed and the number of cell-bound infectious viral particles determined by plaque assay; red bar 400 mg/ml, orange bar 4 mg/ml iota-
carrageenan, black bar 400 mg/ml, grey bar 4 mg/ml CMC. (B) Adsorption/Internalization. H1N1 virus was added to MDCK cells and adsorbed for 1 h at
4uC. Cells were washed and allowed to internalize virus in the presence or absence of different concentrations of iota-carrageenan or CMC for 1 h at
37uC. Subsequently, internalized infectious viral particles were determined by plaque assay. (C) Immunofluorescent visualisation of virus adsorption in
the presence of iota-carrageenan or CMC. 1 h post adsorption at 4uC, cells were stained after 1 h at 37uC with a mouse anti-NP antibody. (D)
Adsorption/Internalization. H1N1 was added to MDCK cells and adsorbed for 1 h at 4uC. Cells were washed and allowed to internalize virus in the
presence of iota-carrageenan or CMC for 1 h at 37uC. Compare the bright green stainings in Figure 5D indicative of productive infection to 5C, where
no green fluorescence is detected at high iota-carrageenan concentration.
doi:10.1371/journal.pone.0014320.g005
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at an MOI of 5 in the absence of trypsin. The CPE of HNep cells

is therefore caused by a single replication cycle. Consequently,

iota-carrageenan strongly inhibits the infection of HNep cells and

the subsequent first round of infection, but would be less effective

on cells already infected.

Importantly, iota-carrageenan had a similar antiviral effect on

H1N1 and H3N2 virus infection of MDCK cells and Vero cells,

respectively (data not shown). Since Vero cells have been

previously described to be deficient in INF gene expression [43],

the antiviral effect of iota-carrageenan is clearly not dependent on

interferon. Collectively, the data obtained on MDCK, Vero and

HNep cells suggest that iota-carrageenan interferes with viral

replication at a very early stage of viral infection, i.e. viral

adsorption and entry. Although iota-carrageenan binds to the

cellular surface only weakly, its antiviral effect might be due to

coating of cellular structures usually required for viral binding to

its cognate receptors. In order to visualize this, we fluorescently

labelled H1N1 virus and demonstrated that H1N1 directly binds

to iota-carrageenan-coated agarose beads. Binding to iota-

carrageenan was specific as it could be abolished in the presence

of excess iota-carrageenan but not control polymer (Figure 4).

When we studied the binding of fluorescently-labelled virus to

MDCK cells by FACS, only iota-carrageenan specifically inhibited

binding of labelled virus to cells (Figure 4). These results support

the hypothesis that iota-carrageenan interferes with virus adsorp-

tion to the cells. When MDCK cells were treated with iota-

carrageenan after adsorption of influenza virus to cells, we did not

observe plaque reduction as well as reduction of the signal when

stained with a NP-specific antibody, respectively. Therefore, iota-

carrageenan does not prevent the virus from being internalized

once it successfully binds to its receptor. In contrast, when iota-

carrageenan was already present during viral adsorption, a strong

reduction in plaque counts was observed and no signal could be

detected in immunofluorescence stainings for influenza-specific

NP protein (Figure 5). These findings lead us to the conclusion that

the antiviral effect of iota-carrageenan differs in dependence of the

virus. Recent data obtained with Dengue virus showed that

carrageenan may interfere not only with adsorption of virus to cells

but also block the fusion event leading to uncoating of the

nucleocapsid [36]. In contrast, our data obtained with influenza

virus demonstrate that iota-carrageenan exerts its antiviral effect

by effectively inhibiting virus adsorption to host cells and hardly

seems to interfere with later stages of the viral life cycle.

The recent outbreak of the pandemic (H1N1) 2009 virus

continues to expand in humans particularly in people at risk, such

as elderly or immuno-compromised individuals [44]. Thus, it was

important to determine whether iota-carrageenan has a similar

effect against the current pandemic (H1N1) 2009 virus strain. As

shown in figure 3, iota-carrageenan is highly active against the

Figure 6. Therapeutic efficacy of iota-carrageenan against
H1N1 influenza virus in a lethal mouse infection model. (A) Ten
mice per group were intranasally infected with 8.76102 PFU H1N1 A/
PR/8/34 viral particles at day 0. Intranasal therapy twice daily with 60 mg
iota-carrageenan in 0.5% NaCl or placebo (blue) started on the same
day as infection (black), 24 h post infection (poi) (orange), or 48 h poi
(green), and was performed twice daily for the entire experiment. P
values were calculated by a Log-rank (Mantel-Cox) test. Asterisk,
p,0.05, double asterisk p,0.01. (B)-(C). Determination of viral titers
from nose (B) and lung (C) specimens. Five mice per group were
intranasally infected at day 0 as before. The group receiving placebo
(blue) was compared to groups receiving intranasal therapy with iota-
carrageenan or oral therapy with oseltamivir (10 mg/kg/day in 5%
sucrose) starting 24 (orange or light grey) and 48 hours (green or dark
grey) post infection until groups of mice were sacrificed at day 2 and 5
days, respectively. Subsequently, nose and lung specimens of animals
from each experimental group and time point were pooled and viral
titers determined by plaque assays on MDCK cells at two different
dilutions. Bars represent the mean6SEM.
doi:10.1371/journal.pone.0014320.g006

Figure 7. Efficacy of iota-carrageenan in mice in comparison to
oseltamivir. Ten mice per group were intranasally infected with
8.76103 PFU H1N1/PR/8/34 viral particles at day 0 and therapy started
48 h poi (blue indicates the placebo treatment). In addition to the
group with intranasal treatment twice daily with 60 mg iota-carrageen-
an (green), a group of mice also received an oral dose of oseltamivir
(10 mg/kg/day in 5% sucrose) (grey) twice daily for 5 days, and
accordingly in combination with iota-carrageenan (red). P values were
calculated by a Log-rank (Mantel-Cox) test. Survival was monitored daily
for 15 days. Asterisk, p,0.05; triple asterisk p,0.001.
doi:10.1371/journal.pone.0014320.g007
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current pandemic strain at similar concentrations as compared to

A/Aichi/2/68 H3N2 virus while inhibition of the A/PR8/34

H1N1 virus required five times higher concentrations of iota-

carrageenan (see Table 1). Given that pandemic H1N1/2009 virus

might persist in the population for several decades, it is of great

importance to have an effective treatment alternative with iota-

carrageenan, which might become very useful in case resistencies

of pandemic H1N1/2009 against the neuraminidase inhibitors

oseltamivir or zanamivir develop.

Mice are a well accepted animal model for the development of

antiviral compounds against influenza [42]. The susceptibility of

mice to pandemic (H1N1) 2009 virus has been shown to be limited

[45]. Consequently, we referred to established mouse models

based on known influenza virus strains. Data obtained with A/

Aichi/2/68 virus in a non-lethal animal model indicated that

therapy with iota-carrageenan indeed had a positive effect on

animal weight during infection (data not shown). Encouraged by

these results we switched to a lethal mouse model based on the A/

PR/8/34 virus. In this model, mice were infected intranasally with

a lethal dose of virus without the utilization of narcosis. This

procedure ensured that virus and the therapeutic solution were

applied to the nose and not directly to the lung. As shown in

Figure 6A, semi-daily intranasal treatment with a 1.2 mg/ml iota-

carrageenan solution resulted in significant improvements of

survival rates. While mice showed the best survival rate when

treatment was started immediately after infection, we observed

that iota-carrageenan treatment significantly promoted survival of

infected animals even when treatment was started as late as

48 hours after infection. There was no statistical difference

between mice whose treatment was started 24 hours or 48 hours

after infection. Statistical power calculations of the experiments

revealed that an unethically large population size would be

necessary to determine a statistical difference between these two

treatment groups.

Guided by our in vitro data which clearly suggest a reduction of

viral particles released from infected cells in the presence of iota-

carrageenan, we predicted that the same would hold true in the in

vivo infection model thereby arguing that the significantly

increased survival rate in the iota-carrageenan-treated group

could be attributed to a reduction of viral particles present in the

animals. To specifically address this issue, we performed another

animal experiment in which we sacrificed animals at certain time

points post infection (48 and 120 hours) and semi-daily treatment

with intranasal iota-carrageenan or oral oseltamivir. Importantly,

we started the therapy 24 or 48 hours post infection as to account

for a realistic treatment regimen for future patients thereby

assuming that patients would most likely start therapy shortly after

realizing first signs of a flu infection (i.e. 24–48 hours post

infection). As iota-carrageenan was applied intranasally, we were

obviously interested to determine the viral titer within the nose and

reasoned that a reduction in the upper respiratory tract by iota-

carrageenan treatment should consequently translate into less virus

spreading from the upper respiratory tract to the lungs (from

which the animals ultimately die due to severe lung inflammation).

As summarized in Figure 6B, we were able to convincingly

demonstrate that application of iota-carrageenan to the nose seems

to almost instantaneously translate into a reduction of viral

particles in the nose, i.e. 48 hours post infection and one semi-

daily therapy starting 24 hours after the initial infection. This

effect got more pronounced 5 days after the initial infection, even

when we started therapy 48 hours thereafter (i.e. semi-daily

therapy for 3 days). As for viral spread to the lungs (Figure 6C), we

were not able to see a titer reduction in the iota-carrageenan-

treated group at the 48 hour sampling point, in sharp contrast to

the orally treated oseltamivir group. However, at the second

sampling point 5 days post infection, iota-carrageenan-treated

animals had dramatically reduced lung titers as compared to the

placebo group and in the same order as the oseltamivir group.

Taken together, we propose that intranasal iota-carrageenan

treatment within a short time frame very efficiently counteracts

viral replication in the upper and spread to the lower respiratory

tract thereby providing a rationale as to why intranasal iota-

carrageenan treatment translates into a survival benefit as opposed

to placebo-treated animals. Those experiments do not sufficiently

address the question if the survival benefit of iota-carrageenan-

treated animals is due solely to a reduction of viral particles

spreading from the nose to the lung, or if other effects also

contribute that have not been addressed so far. Iota-carrageenan

has a molecular weight above 500 KDa, does not to cross mucosal

membranes and did not show any inhibitory or stimulatory effects

on a panel of immune cells (data not shown). We conclude that

due to a direct interaction of virus with polymer, binding of virus

to cells is hindered. Consequently, we speculate that the

subsequent viral replication-induced innate response of the host

is reduced and the survival of the animals is promoted. This is

further substantiated by our own findings in an exploratory study

in volunteers with early symptoms of the common cold [61], in

which intranasal administration of iota-carrageenan reduced the

symptoms of common cold (p = 0.046), viral load in nasal lavages

(p = 0.009), and amongst other cytokines also IL-8. However, it is

difficult to assess if that finding is a direct or indirect effect in

patients and clearly awaits further experimental analysis in future

clinical trials.

In order to further substantiate the above finding, we increased

the viral dose 10-fold and compared the antiviral efficacy of iota-

carrageenan to oseltamivir and a combination of both drugs,

respectively (Figure 7). The results of the experiment suggest that

iota-carrageenan promotes survival of influenza A-infected mice

even when treatment is started after 48 hours and the viral dose

increased 10-fold when compared to Figure 6A. There was no

statistically significant difference between the treatments with iota-

carrageenan and oseltamivir alone. However, when we combined

iota-carrageenan and oseltamivir and started the treatment

48 hours post infection, 60% of the mice survived the lethal

influenza dose. This result suggests that iota-carrageenan and

oseltamivir show additive therapeutic effects when given in

combination up to 48 hours post infection in mice.

The therapeutic use of neuraminidase inhibitors is broadly

described in the literature. As reviewed by Burch et al. [46], the

overall benefit of neuraminidase inhibitors in influenza virus-

infected adults is primarily seen in a reduction of the average time

period between the occurrence of the first disease symptoms of

infection and the beginning of symptom alleviation in influenza

virus-infected adults. For example, the administration of the

antiviral drug zanamivir to infected patients of the non-risk adults

group may reduce the median value for the time interval to

detectable symptom alleviation by 0.57 days, while the adminis-

tration of oseltamivir achieves a reduction by 0.55 days. These

data suggest that there may be a need for improved therapeutic

strategies based on compounds such as iota-carrageenan. Of

concern, however, is that widely-used monotherapy with oselta-

mivir for the treatment of seasonal influenza has already selected a

considerable proportion of resistant variants among circulating

influenza A (H1N1) strains [46–48]. Rapid global dissemination of

a H1N1 strain carrying a resistance-conferring neuraminidase

(NA) gene with an H274Y amino acid substitution occurred

during the 2007/2008 flu season [46,49] similar to the previously

observed emergence and fast spread of amantadine-resistant

H1N1 Inhibition by Carrageenan

PLoS ONE | www.plosone.org 8 December 2010 | Volume 5 | Issue 12 | e14320



H3N2 strains [5,6]. In contrast to expectations from earlier studies

pointing to a reduced viability of H274Y-mutant strains [50,51],

recent clinical isolates showed an unimpaired replication potential

in vitro and full virulence in vivo [52–55]. However, the seasonal

H1N1 strain circulating since 2008 differs at several positions in

the NA gene other than H274Y and is therefore considered as a

natural variant of previous strains [56,57]. As the influenza virus

life cycle critically depends on a balance between available

receptor sites (neuraminidase) and receptor binding (hemaggluti-

nin), the new variant may have emerged by selection of a

compensatory co-mutation in the hemagglutinin gene to acquire

full virulence [9,56].

Polysaccharides and in particular carrageenans were found to

be potent antiviral agents against certain viruses. The antiviral

effects of carrageenans were of limited practical importance so far,

most likely because carrageenans are high-molecular weight

components making it unlikely that they pass the different barriers

of the body or even the cell membrane. However, these

characteristics do not rule out local applications. A recent study

with Carraguard, a carrageenan-based compound developed by

the Population Council, did not show efficacy in prevention of

vaginal transmission of HIV [26]. The authors conclude that low

acceptance of gel use could have compromised the potential to

detect a significant protective effect of Carraguard. In contrast to

influenza viruses, HIV causes a persistent systemic infection that is

usually not cleared by the immune system of the organism.

Therefore, an incomplete protective effect at the entry site of the

virus might lead to full blown HIV infection that is inaccessible to

treatment with an antiviral polymer.

The results of our animal experiments allow the speculation that

treatment with iota-carrageenan reduced the spreading of

influenza virus in surface epithelia of infected animals and thereby

provided sufficient benefit for animals to promote survival. In

conclusion, our results suggest that iota-carrageenan is safe and

effective in treating influenza infection in an animal model.

Moreover, given that a iota-carrageenan-containing nasal spray is

already marketed in Europe and has successfully been tested in an

exploratory trial for treating common cold in humans [61], iota-

carrageenan is also a promising antiviral candidate for the

prophylaxis and treatment of influenza virus infections and should

be tested for prevention and treatment of influenza A in clinical

trials in humans.

Materials and Methods

Compounds
Kappa-carrageenan and iota-carrageenan were purchased from

FMC Biopolymers (Philadelphia, PA). The dry polymer powders

were dissolved in cell culture water (PAA, Austria) to a final

concentration of 0.4%. This stock solution was sterile filtered

through a 0.22 mm filter (Sarstedt, Germany) and stored at 4uC
until use. The identity and purity (.95%) of carrageenan subtypes

was confirmed by NMR analysis as described elsewhere [58]. It

should be noted that commercially available batches of lambda-

carrageenan contained up to 30% of iota- and/or kappa-

carrageenan and others. Therefore, we excluded lambda-carra-

geenan preparations in this study. Oseltamivir was extracted from

Tamiflu capsules (Roche, Switzerland).

Cells and viruses
Madin-Darby canine kidney (MDCK) cells were obtained from

the American Type Culture Collection (Manassas, VA) and grown

in DMEM supplemented with 10% fetal calf serum (FCS; PAA,

Austria). Human nasal epithelial cells (HNep) were obtained from

PromoCell GesmbH (Heidelberg, Germany) and cultivated in

airway epithelial cell growth media (PromoCell). Vero (embryonic

African green monkey kidney) cells were purchased from the

American Type Culture Collection (ATCC; Manassas, Va.) and

grown in serum-free medium (Invitrogen, Darmstadt Germany).

Viruses A/PR/8 (H1N1) and A/Aichi/2/68 (H3N2) were

purchased from ATCC. Pandemic H1N1/2009 Virus A/Regens-

burg/D6/09/H1N1 was kindly provided by Stephan Becker,

University of Marburg, Germany. All influenza viruses were

propagated in MDCK cells.

Anti-influenza activity
Anti-influenza virus activity was evaluated by plaque reduction

assays. Confluent monolayers of MDCK cells in six-well tissue

culture plates were inoculated with 70-120 PFU of virus per well.

After 60 min, the inoculum was removed and the test medium was

added. MDCK cells inoculated with influenza A viruses were

incubated under 100% humidity and 5% CO2 in a 0.5% agarose

medium containing 0.001% of 2 mg of trypsin per ml for 2 days at

35uC. The cells were stained with 0.005% crystalviolet solution

and the plaque numbers were counted. The 50% inhibitory

concentrations (IC50s) were determined as the concentrations

required to reduce the number of plaques to 50% of the number in

wells containing no compounds.

The 50% tissue culture infectious dose (TCID50) was deter-

mined in MDCK cells with 10-fold serially diluted viruses

incubated at 37uC for 72 hours. Virus titers in 50% tissue culture

infectious doses (TCID50)/ml were determined according to Reed

and Muench [59].

CPE inhibition assays
For determination of antiviral activity, a CPE inhibition assay

was performed. MDCK cells were seeded in tissue culture plates

24 hours prior to the experiments. At 80% confluence cells were

infected with inoculums at defined amounts of input virus

(TCID50/cell). In order to test whether the polymers can inhibit

viral infection the cells were infected with virus in the presence or

absence of polymer. For determination of virus-induced reduction

in cell viability the cell metabolism was measured with an

alamarBlue assay (AbD Serotec, Duesseldorf, Germany). The

relative fluorescence at 544 nm (emission wavelength 590 nm) was

determined in an Omega reader (BMG Labtech, Offenburg,

Germany).

Relative cell survival in the presence of inhibitors was calculated

by setting mock-infected cells to 100% survival and cells infected

without inhibitor to 0% survival.

Alexa Fluor 488 labelling of virus
Labelling of virus was adapted from a protocol described

elsewhere [60]. Briefly, A/PR8/34 virus was grown in MDCK

cells and concentrated to 105 HAU via sucrose gradient

purification. 16104 HA units of virus in a given volume were

incubated with 1:10 of 1.0 M sodium bicarbonate pH 9. Alexa

488 was dissolved in 200 ml CMS to a final concentration of 5 mg/

ml and was added in a ratio of 0.005 mg/HAU. The virus-Alexa

mixture is wrapped into tinfoil and placed on a rotation mixer for

1 hour. Afterwards, the sample is dialyzed against PBS at 4uC. HA

titre was controlled via HA test and infectious particles were

determined by plaque assay to be 4*108 pfu/ml.

Immunocytochemistry
Iota-carrageenan beads (#02893) were provided by BioScience

Beads Division (West Warwick, RI). Beads were washed with PBS
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mounted on glass slides and then treated with an Alexa488-

conjugated Influenza H1N1 PR8/34 virus. Alternatively, beads

were pre-incubated with 400 mg/ml iota-carrageenan, washed and

incubated with the conjugated virus. The beads were examined in

a Nikon Diaphot Fluorescence Microscope with a 61001 filter (D/

F/PI; C 121798). Images were taken by a CCD-camera and

analysed by Nikon NIS elements. The virus attached to the beads

showed bright green staining. As negative control beads were

analysed without virus incubation.

MDCK cells were grown in chamber slides in DMEM medium

with 10% FCS, washed in medium and incubated for the

adsorption experiment with a mixture of either iota-carrageenan

(400 or 4 mg/ml) and H1N1 (MOI = 1) or CMC (400 or 4 mg/ml)

and H1N1 virus (MOI = 1) for 1 h at 4uC in medium. For the

adsorption/internalization experiment, MDCK cells were incu-

bated with virus for 1 h at 4uC prior to incubation with iota-

carrageenan or CMC (1 h, 37uC). For both experiments cells were

washed afterwards with medium and fixed with 1% formaldehyde.

Cells were permeabilized with 0.3% TritonX-100, 10% FCS in

PBS for 15 min at RT, incubated with anti-NP in PBS with 10%

FCS, 0.1% Tween20 (dilution: 1:200; mouse anti-influenza A

(anti-NP), AbD Serotec, 0300-0234) for 1 h at RT, washed with

PBS with 10% FCS, 0.1% Tween20 and then incubated with an

anti-mouse Alexa 488-conjugated secondary antibody (Invitrogen,

Germany) diluted 1:200 in PBS with 10% FCS, 0.1% Tween20 for

1 h at RT. Cells were examined microscopically by the same

equipment as described above. As negative controls cells without

any treatment, cells with primary or secondary antibody only, and

cells without virus-incubation but antibody treatment were used.

All negative controls showed no staining (not shown).

FACS analysis
For FACS analysis, 16106 MDCK cells per sample were used.

Cells were detached with 0.5 mM EDTA, incubated with H1N1-

A488 (MOI = 1) in the presence (or absence) of iota-carrageenan

and CMC as control polymer (each 400 mg/ml), washed with PBS,

fixed with 1% formaldehyde and examined directly afterwards

with a BD-FACSCalibur and analysed with WinMDI2.9.

Negative controls included cells only and cells with free Alexa488

(not shown).

Ethics Statement
All animals were handled in strict accordance with the

guidelines of the ‘‘European Convention for the Protection of

Vertebrate Animals used for Experimental and other Scientific

Purposes’’ and the Austrian law for animal experiments (BGBl. Nr.

501/1989 idF BGBl. I Nr.162/2005). All experimental procedures

were discussed and approved by the Veterinary University of

Vienna institutional ethics committee and performed under the

Austrian Federal Ministry of Science and Research experimental

animal license numbers BMWF-68.205/0130-II/10b/2008 and

BMWF-68.205/0135-II/10b/2009.

Pathogenicity and lethality in C57BL/6 mice
All mice were maintained under standard laboratory conditions

in the animal facility of the Veterinary University of Vienna. To

determine the 50% mouse lethal dose (MLD50) groups of 10

female 6-week-old C57BL/6 mice (Charles River Laboratories,

Sulzfeld, Germany) were intranasally inoculated with 50 ml of 10-

fold serial dilutions of A/PR8/34 (H1N1) virus in tissue culture

medium without narcosis. The MLD50 values were calculated

after a 14-days observation period by the Reed-Muench method

[59]. The determined values for 1 MLD50 of the viruses were

expressed as PFU. To determine the viral titer of lung and nose

samples, tissue samples were snap-frozen upon dissection and

subsequently homogenized in serum-free DMEM medium for

plaque reduction assays as described above.
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