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Abstract

Background: Human sexual behavior is highly variable both within and between populations. While sex-related
characteristics and sexual behavior are central to evolutionary theory (sexual selection), little is known about the genetic
bases of individual variation in sexual behavior. The variable number tandem repeats (VNTR) polymorphism in exon III of the
human dopamine D4 receptor gene (DRD4) has been correlated with an array of behavioral phenotypes and may be
predicatively responsible for variation in motivating some sexual behaviors, particularly promiscuity and infidelity.

Methodology/Principal Findings: We administered an anonymous survey on personal history of sexual behavior and
intimate relationships to 181 young adults. We also collected buccal wash samples and genotyped the DRD4 VNTR. Here we
show that individuals with at least one 7-repeat allele (7R+) report a greater categorical rate of promiscuous sexual behavior
(i.e., having ever had a ‘‘one-night stand’’) and report a more than 50% increase in instances of sexual infidelity.

Conclusions/Significance: DRD4 VNTR genotype varies considerably within and among populations and has been subject
to relatively recent, local selective pressures. Individual differences in sexual behavior are likely partially mediated by
individual genetic variation in genes coding for motivation and reward in the brain. Conceptualizing these findings in terms
of r/K selection theory suggests a mechanism for selective pressure for and against the 7R+ genotype that may explain the
considerable global allelic variation for this polymorphism.
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Introduction

Human sexual behavior varies dramatically across human

populations, including patterns of promiscuity and sexual infidelity

[1–3]. While mating and pair-bonding are human universals [1,4],

individuals also engage in uncommitted short-term sexual activities

at varying rates [1,5]. Yet, the proximate mechanisms governing

the individual differences in proclivities for uncommitted sexual

behavior are unclear. In the current study we explore the role of

individual genetic variation in influencing motivations for

uncommitted sexual activity. We conceptualize sexual promiscuity

as uncommitted sexual intercourse with non-monogamous part-

ners (i.e., ‘‘one-night stands’’) while sexual infidelity includes any

physical sexual activity with an individual other than one’s current

self-identified committed relationship partner (i.e., ‘‘cheating’’).

We conceptually differentiate sexual (genetic) monogamy from

social (pair-bonded) monogamy, and as such recognize that

infidelity is a particular instantiation of uncommitted sex where

an individual is actually traditionally committed, however, not to a

partner they are engaging in sexual activity with.

Ultimate Mechanisms
Beyond humans, other socially ‘‘monogamous’’ animals also

engage in sexual activity with conspecifics they are not pair-

bonded to. A vast majority of birds form pair-bonds for the

production and rearing of offspring, yet in more than 70% of

species reviewed, at least some of the genetic offspring result from

extra-pair copulations [6–7]. One extensive field study of the

purportedly socially monogamous swift fox (Vulpes velox) reports

that over 50% of females’ offspring were genetically sired by males

other than the partner to which she was pair-bonded [8]. And

among primates, both males and females of the gibbon family

(Hylobatidae) engage in extra-pair copulations despite strong pair-

bonds [9]. Evolutionarily, such behaviors are presumably for the

purposes of increased offspring diversity, increased offspring

genetic quality, and/or extra fertilizations.
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In humans, measures for global and national rates of

promiscuity and infidelity are more varied. Worldwide median

rates of non-paternity, or the rate of men raising children under

the pretense of biological parentage, have been suggested to near

9% [10], or 10% more popularly [11]. However, this rate is

mitigated by a male’s degree of paternity certainty, with men who

display high paternity confidence having a lower actual median

non-paternity rate of 1.7% [11]. Further, an implicit condition of

mate poaching, the active seduction of an individual away from a

partner with whom they are romantically involved [3], generally

includes infidelity on the part of the one being poached from their

partner. Although mate poaching occurs as a ‘‘cultural universal’’

across no less than fifty-three previously studied nations [3], the

frequency of mate poaching and all forms of uncommitted sexual

behaviors vary widely among populations, reflecting differences in

both local social constraints and individual behaviors [1–3,5].

Individuals engaging in promiscuous sexual behaviors also face

substantial risks, including diseases, unwanted pregnancies, and

adverse social consequences. In addition, individuals engaging in

infidelity also risk potentially losing or angering their pair-bonded

partner. Historically and cross-culturally legal codes have

responded to this evolutionary threat with biases accommodating

entitlement to crimes of passion following evidence of adultery

[12]. Despite these risks, sexual behavior in general and infidelity

in particular offers enormous proximate and ultimate benefits in

terms of immediate psychophysical reward and contributions to

increased total number of offspring and subsequent increased

diversity amongst those offspring. Given the potential disadvan-

tages and advantages for social status and biological fitness, sex-

related characteristics and sexual behavior itself are subject to

substantial conflicting selective pressures [1–2,5].

The substantial heritabilities between female monozygotic twins

of 41% for number of lifetime sexual partners and 38% for

infidelity demonstrates the contribution of genetics to these sexual

behaviors [13]. Among monozygotic and dyzygotic twins of both

gender, risky sexual behavior was correlated with personality traits

and suggested heritability of 33% [14]. Further, high male

reproductive variance enabled by promiscuity and infidelity of

both sexes, irrespective of social monogamy, may be essential for

the rapid fixation of beneficial genes within a population.

Proximate Mechanisms
Functionally, the brain’s dopamine reward system supports

motivation and libido to influence sexual and pair-bonding

behaviors [15–17]. Dopaminergic function is enhanced by

oxytocin and arginine vasopressin acting on the hypothalamus to

regulate attachment [15,17–20]. More specifically, it is oxytocin

and vasopressin which most influence monogamy and pair-

bonding [16,18–20]. This is supported by recent genetic evidence

of the vasopressin receptor 1a gene (AVPR1A) being associated

with pair-bonding and marital satisfaction [21]. However, in a

sample of female twins this same gene (AVPR1A) was not

associated with infidelity or number of sexual partners [13]. Pair-

bonded relationship satisfaction is not necessarily linked to

promiscuity and infidelity, as the underlying motivations may be

quiet different both psychosocially and neurobiologically. In fact,

over two-thirds of adulterous men report that they would never

have predicted their own infidelity [22]. Rather than envisioning

relationship stability and infidelity as opposite ends of the same

continuum, the underlying biological motivations for such

behaviors may well be associated with distinct neurobiological

pathways and thus more accurately thought of as orthogonal.

Additional studies from behavioral neurogenetics suggest that

genes modulating dopamine neurotransmission mediate a variety

of behavioral phenotypes associated with sensation-seeking [23–

27]. One specific candidate is the dopamine D4 receptor (DRD4)

gene, with a 48bp variable number tandem repeat (VNTR)

polymorphism in exon III of chromosome 11. This polymorphic

region typically includes 2 to 11 repeats. Individuals with at least

one allele containing 7 or more repeats (7R+) show both reduced

binding affinities and receptor densities for dopamine neurotrans-

mission in the ascending corticomesolimbic reward pathway that

extends from the ventral tegmental area to the nucleus accumbens,

prefrontal cortex, and other cortical regions [28]. Individuals with

these long alleles are predisposed to sensation-seeking behaviors

including both migration and novelty-seeking, resulting in

differential survival and reproduction [23,25–26,29]. The dopa-

minergic reward pathway influences physiological arousal, plea-

sure, and intrinsic reward [30]. Humans that possess at least one

allele 7-repeats or longer (7R+) display behavioral phenotypes

associated with attention deficit hyperactivity disorder (ADHD)

[31], alcoholism [32–33], financial risk-taking [34], disinhibition

and impulsivity [24], and sexual behavior [35,36]. The latter

includes associations between DRD4 genotype and sexual desire,

arousal, and function [36], as well as likelihood of initiating sexual

activity among young adults [35]. DRD4 7R+ has also been

reported as unrelated to number of previous sexual partners [37],

however the high reward-seeking variant of the dopamine

transporter gene DAT1 was associated with increased number of

sexual partners [38], although only in males. There is also support

for an association between DRD4 7R+ and multiple/interracial

ancestries [39]. DRD4 VNTR genotype frequencies vary widely

across the globe, reflecting the adaptive utility of both motivations

for dispersal [23] and in some cases culturally constrained

behavioral phenotypes [26]. Taken together this suggests that

the relationships between sexual behavior, human evolution, and

dopamine modulating genes are fairly nuanced. Given the

important role of dopamine in sexual behavior [17], it is predicted

that variation in DRD4 will be associated with uncommitted

sexual behavior in men and women.

Methods

Participants and Procedures
All aspects of this research were conducted in accordance with

guidelines for the use of humans as research participants, and was

approved by the University’s AAHRPP accredited Human

Subjects Research Review Committee. All participants provided

written and verbal informed consent before initiating the study.

Participants were 181 young adults (118 females, 63 males)

recruited from a midsized state university in the northeastern

United States. Average age of participants was 20.11 years (SD

= 1.62). Participants were primarily of European ancestry (61%),

with 19% of Asian ancestry, 9% Hispanic, 1% African-American,

4% multi-racial, and 6% ‘‘Other.’’ Participants were recruited

through the Psychology Department Human Subjects Research

Pool and attended group assessment sessions seated every other

seat and row with alternating order/color packets to ensure both

actual and self-perceived privacy while they completed a

confidential survey relating to sexual behavior and provided a

DNA sample.

Phenotypic Assessment
The self-report survey included a comprehensive measure of

demographics and questions on past sexual behavior, sexual

expectations, and preferences, within which the primary depen-

dent variables of interest were assessed. Participants were also

assessed for smoking habits using the Fagerström Test of Nicotine

Uncommitted Sex and Dopamine
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Dependence (FTND) [40] and delayed reward discounting (DRD)

using the Monetary Choice Questionnaire (MCQ) [41]. The

MCQ is a self-report measure of DRD, which is an index of

impulsivity, reflecting preferences for smaller immediate rewards

compared to larger delayed rewards. In this case, participants

made hypothetical choices for smaller amounts of money

immediately versus larger amounts after a period of days (e.g.,

would you prefer $25 today, or $60 in 14 days); the MCQ provides

indices of overall discounting as well as discounting for small,

medium, and large rewards. Both the FTND and MCQ have been

psychometrically validated.

Genotyping
For DNA analysis, a non-invasive oral buccal wash sample was

obtained using 10 ml of ScopeTM mouthwash [42]. Sufficient

DNA for DRD4 PCR amplification was extracted from 96%

(173/181) of the buccal cell samples. DNA was extracted using an

abbreviated silica extraction protocol.

The human DRD4 gene on chromosome 11 contains a 48bp

variable number tandem repeat (VNTR) polymorphism in exon

III. Previous studies have highlighted problems associated with

consistent genotyping of the DRD4 VNTR region [43], suggesting

multiple PCR and electrophoresis runs for each sample to control

for allelic dropout. Thus, the PCR reaction was modified to reflect

the high GC content (see below) and all samples that were initially

scored as homozygotes were reanalyzed two additional times with

different starting template concentrations to unambiguously

confirm genotypes. The PCR reaction consisted of 1x Q-Solution

(Qiagen), 1x Buffer (Qiagen), 1 mM Primer 1 (59 GCGAC-

TACGTGGTCTACTCG 39), 1 mM Primer 2 (59 AGGACCCT-

CATGGCCTTG 39), 200 mM dATP, 200 mM dTTP, 200 mM

dCTP, 100 mM dITP, 100 mM dGTP, 0.3 units HotStar Taq

(Qiagen), and 1 ml of DNA template, in a total volume of 10 ml.

The PCR profile began with 15 minutes at 95uC for enzyme

activation and denaturing of template DNA followed by 40 cycles

consisting of 1 minute denaturation at 94uC, 1 minute annealing at

55uC, 1.5 minute extension at 72uC, and finished with a 10 minute

extension at 72uC. Amplicons were electrophoresed through 1.4–

2.0% agarose gels containing ethidium bromide and genotypes

were determined by comparison with a 100 bp ladder.

Data Analysis
The primary dependent variables were history of sexual

intercourse, infidelity (‘‘cheated on’’ a committed partner), and

promiscuity (‘‘one-night stands’’). In each case, categorical (i.e.,

Yes/No) and continuous (i.e., number) assessments were made.

Nonparametric statistics and generalized linear model (GLM)

analyses yielded largely parallel results, but for brevity only GLM

results are shown when appropriate. Exact p values are reported

for consideration by future studies. For continuous variables,

medians with interquartile ranges are provided as measures of

central tendency.

To facilitate truthful responding and per the Human Subjects

Research Review Committee, participants were permitted not to

answer individual items if they were uncomfortable given the

personal nature of the assessment. This resulted in small portions

of absent data: history of sexual intercourse, 8%; one night stands,

10%; infidelity, 4%. Genotypes were grouped as 7R+ (at least one

allele 7-repeats or longer) or 7R- (both alleles less than 7-repeats);

the 7R+ genotype was present in 24% of the sample. The analyses

comprised three approaches, the primary approach and two

strategies for ruling out alternative explanations. The primary

analyses examined the relationship between the phenotypes of

interest and DRD4 VNTR status. Second, possible contributions

of population stratification were examined by re-running the

analyses within the largest homogeneous group in terms of racial

ancestry. Finally, the relationships among DRD4 VNTR geno-

type, sex, age, sexual behavior, smoking behavior, and impulsivity

(DRD) were examined to determine the specificity of the

associations in the primary analyses.

Results

Sexual Behavior and DRD4 VNTR Genotype
Seventy seven percent of the sample reported a history of sexual

intercourse, and no differences were evident between the genotypic

groups (x2 [df = 1] = 0.32, p = 0.57). Among those who reported

previous sexual experience, there was no genotypic difference in

terms of the total number of sexual partners (F [1, 125] = 1.59,

p = 0.21). In contrast, categorical rates of promiscuous sex differed

significantly between 7R+ and 7R- individuals (x2 [df = 1] = 5.58,

p = .018). This difference reflected an almost 2-fold greater

promiscuity rate in 7R+ (45%) compared to 7R- (24%) individuals

(see Figure 1). However, no significant differences were evident in

the total number of reported instances of promiscuity between the

two genotypic groups among those who reported promiscuous sex

(F [1,33] = .30, p = .59). A similar pattern was evident for sexual

fidelity, where 50% of 7R+ individuals reported being unfaithful

compared to only 22% of 7R- individuals (See Figure 2), although

this difference fell short of statistical significance (x2 [df = 1] = 2.15,

p = .14). However, among individuals who reported sexual

infidelity, 7R+ individuals reported significantly more extra-pair

copulation partners (mean = 1.79, SEM = .20) compared to 7R-

(mean = 1.14, SEM = .14) individuals (F [1,40] = 7.08, p = .011).

Taken together, 7R+ were almost twice as likely to have engaged in

promiscuous sex, and, when they were unfaithful, 7R+ individuals

reported more than 50% more extra-pair copulation partners than

7R- individuals (See Figure 3).

Sample Racial Ancestry Characteristics and Population
Stratification

To examine possible population stratification effects (a ‘‘chop-

sticks gene’’) [44], the preceding analyses were re-run in the largest

racially homogenous ancestry (i.e., European, 61%), and all

significant and nonsignificant findings were replicated. Participants

were categorized racially according to their self-report of the

racial/ethnic ancestry of all four of their grandparents. Group

membership was assigned based on all four grandparents being of

the same ancestry or being of multiple ancestries.

Within individuals of European ancestry, 7R+ individuals were

more likely to report having engaged in promiscuous sexual

behavior (x2 [df = 1] = 4.24, p = .04), but, among those who

reported at least one promiscuous episode, no difference in the

number of instances (F [1,18] = .21, p = .65). Also consistent with

the primary findings, 7R+ individuals were no more likely to have

been unfaithful (x2 [df = 1] = 1.60, p = .21), but, among those who

reported infidelity, 7R+ reported a larger number of extra-pair

copulation partners (F [1,26] = 5.83, p = .023). This is the same

pattern as the total sample, suggesting systematic differences by

racial/ethnic ancestry did not contribute to these findings.

Roles of Sex (Gender), Smoking Status, and Impulsivity
No sex differences were evident in terms of genotype frequency

(female 7R+ frequency = 23%, male 7R+ frequency = 26%),

suggesting it is unlikely that the findings are a function of

systematic sex differences (x2 (df = 1) = .20, p = .66). Similarly,

genotype frequency did not systematically vary by age (F [1, 167]

= 1.64, p = .20) and age was not associated with continuous

Uncommitted Sex and Dopamine
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measures of promiscuity (Pearson r = .02, p = .90) or infidelity

(Pearson r = .13, p = .40). These analyses suggest that participant

age did not play a role in the primary findings. Genotype status

was not associated with dichotomous smoking status (x2 [df = 1]

= 1.12, p = .29). Interestingly, however, among cigarette smokers,

7R+ individuals had higher levels of nicotine dependence (mean

= 3.22, SEM = .50) compared to 7R- (mean = 1.47, SEM = .34;

F [1,26] = 8.32, p = .008). However, FTND was associated with

neither instances of promiscuity (Pearson r = .02, p = .95), nor

instances of infidelity (Pearson r = 2.02, p = .97), suggesting

independent relationships. Taken together, this suggests that the

findings were not attributable to smoking status or nicotine

dependence. Finally, DRD4 VNTR genotype was not associated

with delayed reward discounting in general (F [1, 158] = .60,

p = .44), or for large (F [1, 158] = .83, p = .37), medium (F [1, 158]

= .28, p = .60), or small (F [1, 158] = .51, p = .48) rewards, further

suggesting that the primary findings were not attributable to a

more general preference for smaller immediate rewards over

larger delayed rewards.

Discussion

These results are the first evidence (to our knowledge) of a

significant association between a specific genetic locus and both

promiscuous sexual behavior and infidelity. These findings show

that genetic variation in the brain9s dopaminergic reward pathway

appears to be an influential factor in individual differences in

motivation to engage in sexual behavior of a risky and

uncommitted nature. Further, this potentially suggests an

evolutionary mechanisms contributing to the substantial global

allelic variation of the DRD4 VNTR genotype. Individuals

genotyped as 7R+ were significantly more likely to reported

having ever engaged in promiscuous sex (i.e., a one-night stand).

Of those reporting infidelity, 7R+ individuals were cheating on

Figure 2. Percent who report extra-relationship sexual experiences, by DRD4 genotype group.
doi:10.1371/journal.pone.0014162.g002

Figure 1. Percent who report promiscuous sexual experiences, by DRD4 genotype group.
doi:10.1371/journal.pone.0014162.g001
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romantic partners more often, which under certain circumstances

could result in higher genetic fitness via greater offspring diversity

as well as increased total fecundity. This suggests that in local

environments where monogamy and sexual fidelity are advanta-

geous, the 7R- genotype would be subject to positive selective

pressure. In contrast, in environments where monogamy and

fidelity are disadvantageous, the 7R+ genotype would be subject to

positive selective pressure. This may be additionally elucidated

from the perspective of r/K selection [45]. In r-selected

environments (i.e., unpredictable and unstable environments,

where the ability to mate more and produce more offspring is

favored), 7R+ genotype would be expected to rise in frequency.

That is, in environments where ‘‘cad’’ behavior is adaptive,

selective pressure for 7R+ would be positive; but in environments

where ‘‘dad’’ behavior is adaptive, selective pressure for 7R+
would be negative. This is consistent with the dramatic differences

in DRD4 VNTR allele frequencies and behavioral patterns found

globally such as in the generally polygamous and agonistic

Yanomamö Indians of South America (high 7R+ frequencies)

and the generally egalitarian !Kung of the Kalahari (low 7R+
frequencies) [26]. Evidence that DRD4 VNTR status is related to

social and sexual behavioral strategies provides a plausible

mechanism for varying selective pressure and observed racial,

ethnic, and regional differences in allele frequencies.

DRD4 VNTR variation has been associated with a wide array

of behavioral tendencies and psychiatric conditions. Among the

most consistent are the association between 7R+ and ADHD [31]

and that 7R+ individuals exhibit augmented anticipatory desire

response to stimuli signaling dopaminergic incentives, such as

food, alcohol, tobacco, gambling, and opiates [27,32–34].

Although it is as yet speculative, these associations suggest that

7R+ individuals may allocate greater attention to appetitive

rewards, contributing to the behavioral differences in promiscuity

and infidelity observed here.

Important as this finding may be, it is also important to sound

several notes of caution. First, a consistent challenge in genetic

association studies are that of third variable confounds, or

unmeasured variables that are causally responsible for the

observed finding but are associated with the measured variables

thus generating a spurious association. In this case, such third

variables could be additional genetic loci in partial or complete

linkage with the DRD4 VNTR variation, or alternative unmea-

sured phenotypes that are likewise associated with the dependent

variables. We attempted to rule out some such alternative

possibilities in this study. Population stratification is one example,

but did not play a role insofar as the findings were robust within

the largest group of self-reported racial ancestry. We also

examined gender, age, impulsivity, and substance use in the form

of nicotine dependence, with no evidence that the results were

better accounted for by those factors. However, it is nonetheless

possible that other unmeasured third variables could have played a

role. For example, it is conceivable that 7R+ individuals may be

more likely to be forthright about their sexual behavior, inflating

the associated rates compared to 7R- individuals. Alternatively,

the genotype groups within this study could have systematically

varied in dimensions of attractiveness (actual or perceived) or other

mating-relevant aspects that may have influenced the results. As

such, and as the first report of this association, it is important to

recognize that alternative explanations remain possible and these

findings should not be considered definitive at this point.

Presuming this association is robust across samples in future

studies, a second reason for caution is that the behavioral

outcomes examined are probabilistic and by no means deterministic.

That is, our findings suggest higher rates and instances of the

behaviors assessed, but not that all individuals who are 7R+ or 7R-

will necessarily exhibit the behavioral outcomes associated with

each genotype. For example, as is noted, about a quarter of the

7R- individuals reported promiscuous sex, which was a signif-

icantly lower rate than the 7R+ individuals but by no means

trivial. Given general reasons to be cautious in behavioral genetic

research and the inherently probabilistic relationship observed, we

emphasize that it would be prudent to avoid premature and facile

characterizations of the DRD4 VNTR polymorphism as ‘‘the

promiscuity gene’’ or ‘‘the cheating gene.’’ Looking forward, it will

be essential to replicate these findings and confirm genotypic and

phenotypic specificity. If it is robust, an important priority will be

on ‘‘connecting the dots’’ between genotype and variation in

human sexual behavior by identifying the proximal neurobiolog-

ical and behavioral mechanisms that underlie the genetic

influences.

Figure 3. Number of extra-relationship sexual partners, by DRD4 genotype group.
doi:10.1371/journal.pone.0014162.g003
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It should also be noted that recent historical (both biologically

and socially influenced) shifts in sexuality discourse and rates of

sexually permissive activity result in frequent uncommitted sexual

behaviors among young adults today [46]. While sexual

reproduction remains the currency of evolution, cultural regula-

tion of sexual behaviors constrain the evolutionary best interests of

individuals within a population. We suspect that the associations

we observed between dopaminergic sensation-seeking and sexual

behavior may be independent of other evolved mechanisms that

promote pair-bond stability and romantic attachments. That is,

the motivation to engage in extra-relationship sexual experiences

(infidelity) or promiscuous sexual activities (one-night stands) can

remain disconnected from any motivation for attachment and

commitment even in the presence of strong existing pair-bonds.

Characterizing the neurogenetic bases of diverse forms of sexual

behavior will be essential in future studies that wish to elucidate

the evolutionary and biocultural determinants of human behavior

and sexuality.
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