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Abstract

A major challenge in the field of systems biology consists of predicting gene regulatory networks based on different training
data. Within the DREAM4 initiative, we took part in the multifactorial sub-challenge that aimed to predict gene regulatory
networks of size 100 from training data consisting of steady-state levels obtained after applying multifactorial perturbations
to the original in silico network. Due to the static character of the challenge data, we tackled the problem via a sparse
Gaussian Markov Random Field, which relates network topology with the covariance inverse generated by the gene
measurements. As for the computations, we used the Graphical Lasso algorithm which provided a large range of candidate
network topologies. The main task was to select the optimal network topology and for that, different model selection
criteria were explored. The selected networks were compared with the golden standards and the results ranked using the
scoring metrics applied in the challenge, giving a better insight in our submission and the way to improve it. Our
approach provides an easy statistical and computational framework to infer gene regulatory networks that is suitable for
large networks, even if the number of the observations (perturbations) is greater than the number of variables (genes).
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Introduction

Traditional methods where one gene or one chemical reaction

was studied at a time, have taken step to more sophisticated ones,

which try to elucidate the complex machinery connecting all the

biochemical reactions happening in a cell. Advanced data

collection techniques are able to produce a great variety of data

that aim to be the vehicle to better understand the processes within

a cell. Development of statistical and mathematical methodology

to study such data plays a key role to elucidate and model the

mechanisms behind the cell biochemical complex architecture. In

particular, it is of great interest to represent the cell biochemistry

into networks that mimic the chemical reactions taking place in the

cell.

The DREAM project [1,2], acronym for Dialogue on Reverse

Engineering Assessment and Methods, is an initiative that tries to

motivate the systems biology community to investigate and

develop methodologies that translate biochemical processes into

gene regulatory networks, by challenging the participants to infer

network structure from some given in silico gene expression data

sets. This in silico data were generated by the GeneNetWeaver tool

version 2.0 [3] based on the ideas in [4]. The multifactorial sub-

challenge, posted in the DREAM4 initiative web page [5] aimed

to reverse engineer five gene regulatory networks of size 100 with

an experimental scenario assuming that extensive knockout/

knockdown or time series experiments, could not be performed.

The data for this multifactorial sub-challenge consisted of

measurements of steady-state levels of the network, which were

obtained by applying 100 multifactorial perturbations to the

original network. These steady-state level measurements intrinsi-

cally do not give information about the regulatory network

dynamics, but about the system equilibrium once it has recovered

after the intervention or perturbation.

Given the steady-state nature of the multifactorial sub-challenge

data, we focused on Gaussian Markov Random Field theory [6]

that leads to the estimation of undirected graphical models [7].

Understanding the topology of a gene regulatory network is

equivalent to know which are the connections between the genes

involved in the network summarized in the adjacency matrix, that

represents the web of connections between the genes of the

network.

Gaussian Markov Random Fields theory (GMRF) relates the

inverse of the process covariance matrix, described by the elements

of the network, in our case a set of genes, with the adjacency

matrix that describes the topology of the network. If the (i,j)th

element of the covariance inverse matrix is zero, then variables i

and j are conditionally independent given the others and do not

have an edge in the network. Due to the symmetric nature of

inverse covariance matrix the estimated network topology is

undirected.

This relation between the covariance inverse and the adjacency

matrix links GMRF theory with graphical models, so extending the
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graphical models provided by relevance networks [8]. The graphical

Lasso algorithm [9] is an appealing, new approach to estimate the

process covariance inverse and thus appeared very suitable to provide

the gene regulatory network under the GMRF umbrella. The

graphical Lasso computes the covariance inverse matrix by applying

an L1 penalty to the GMRF loglikelihood [9,10], as in the regular

lasso [11]. The L1 penalty is the sum of the absolute values of the

entries of the covariance inverse and due to the geometry of this

penalty, the resulting covariance inverse contains entries being

exactly zero. The corresponding network is thus sparse. This is an

attractive feature of the graphical Lasso, as many of the cell metabolic

or enzymatic process networks are known to be sparse [12]. Networks

which are very densely connected are unlikely to represent the true

biochemical processes within a cell.

Materials and Methods

Data sets
The data provided in the multifactorial sub-challenge of

DREAM4, consisted of in silico networks of gene expression

measurements of steady-state levels, obtained by applying 100

different multifactorial perturbations to the original network,

containing in total 100 genes. The multifactorial perturbations

were induced by slightly increasing or decreasing the basal

activation of all the genes in the network simultaneously by

different random amounts [5]. If we think of the data in a matrix

format, the data set for each network (Fig. 1) consists of a matrix

with 100 rows and 100 columns. Each row of this matrix contains

the 100 genes expression measurements for the network for a

Figure 1. The experimental data. Visualization of the gene levels for all the perturbations ordered according to the first principal component.
doi:10.1371/journal.pone.0014147.g001
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given perturbation, and each column stores the expression levels

for a given gene for all the perturbations. From the data matrix

we can compute the sample covariance matrix of the gene

expression measurements, but this will be a poor estimate of the

true covariance matrix S because of the low number of

perturbations.

Gaussian Markov Random Fields (GMRF)
With the aim of predicting the network structures in the

multifactorial sub-challenge and considering that the only

available data consisted of static records (i.e steady-state levels),

it seemed reasonable to tackle the problem by a Gaussian Markov

Random Field [6]. A Gaussian Markov Random Field (GMRF)

consists of a finite set of random vectors x~(x1, . . . ,xp)[<pg that

have a multivariate Gaussian probability density function

Np(m,S)~(2p){p=2jSj{1=2
exp {

1

2
(x{m)T S{1(x{m)

� �
ð1Þ

with mean vector m~(m1, . . . ,mp) and p|p covariance matrix

S. The multivariate Gaussian character of the set x gives the

Gaussian random field its name. In our case p is the number of genes

and xi (i~1, . . . ,p) is a random variable representing the in silico

gene expression measurements for node ( = gene) i of the network.

We consider the rows of the data matrix as a random sample of

size n~100 of x.

The Markov adjective is for the Markovian global, local and

pairwise conditional independencies which describe the relation-

ships between the elements of the GMRF network [13]. These

three types of conditional independency are equivalent and govern

the factorization of the joint probability distribution [14]. In

particular, the independence of two random variables xi,xj given

the rest (i.e. the pairwise conditional independence) implies that the

corresponding entry in the covariance inverse (S{1)ij is zero,

which indicates the non-existence of an edge between variables xi

and xj in the network. Consequently, pairwise conditional

independence plays a fundamental role in network reconstruction

since it provides information about the existence of edges between

any pair of elements of the GMRF. Due to the symmetry of S{1,

the inferred networks will be undirected. The graphical represen-

tation of a GMRF consists of an undirected graph that is defined

as tuple G~(n, E) of a set of nodes n or genes in our case, and a set

of edges, e, that describe the connections between the nodes or

genes of the network.

In summary, estimating an undirected gene regulatory network

graph is analogous to estimating the pairwise conditional

independencies between the genes and, in our GMRF approach,

is analogous to finding the zero entries of the inverse covariance

matrix of the genes in the network. The covariance inverse

H~S{1 is also known as the precision matrix.

In a GMRF the conditional mean of xi given the rest (x{i) is

linear in the measurements at the other nodes:

E(xijx{i)~mi{
1

Hii

X
j:j=i

Hij(xj{mj) ð2Þ

which has the same form as a multiple linear regression of xi on

x{i with regression coefficients {
Hij

Hii

,j=i

� �
and depends only

on the variables/nodes that are connected to xj .

Graphical Lasso Algorithm
The sample covariance matrix S of the gene expression

measurements is a poor estimate of the true covariance matrix S
because of the low number of perturbations; its inverse, when it

exists, will be dense. Equation (2) suggests that it is possible to learn

about the dependence of xi on x{i via (penalized) multiple linear

regression [15,16], in particular via the lasso [11] to obtain

sparsity. However, things are a bit more complicated as xi appears

not only as response variable as in equation (2), but also as

predictor in the equations for j=i.

A both rigorous and efficient solution is the graphical lasso [9].

This maximizes the L1 penalized loglikelihood l of the GMRF

[10], defined by

2

n
l(H)~log(det(H)){trace(SH){rEHE1, ð3Þ

with respect to the precision matrix H~ŜS{1. Here, EHE1 is the

L1 norm of H, that is the sum of absolute values of the elements of

H, and r is a penalty that governs the sparsity of the network. In

practice, this optimization problem is carried out for a series of r
values, resulting in a series of networks that vary from very dense

networks for low values for r to very sparse networks for high

values (Fig. 2A).

We now present a derivation of the graphical lasso algorithm

[9], ending with an intuitive view of it. The gradient equation of

the graphical lasso problem is [9,10]

L
LH

(l(H))~W{S{r:sign(H)~0, ð4Þ

where W is the estimate of S, i.e. W~H{1. It is possible to solve

this gradient equation (4), in an iterative block descendant fashion

[10], by considering the partition of the GMRF x~(P1,P2) into

the two groups P1~fx1, . . . ,xp{1g and P2~xp. The correspond-

ing partition of H and its inverse W is

H~

H11 . . .H1p{1 H1p

..

. ..
.

Hp{11 . . .Hp{1p{1 Hp{1p

H1p . . .Hp{1p Hpp

0
BBBB@

1
CCCCA~

H11 H12

HT
12 H22

� �
ð5Þ

W~

w11 . . . w1p{1 w1p

..

. ..
.

wp{11 . . . wp{1p{1 wp{1p

w1p . . . wp{1p wpp

0
BBBB@

1
CCCCA~

W11 w12

wT
12 w22

� �
, ð6Þ

where the column vector w12 contains the marginal covariances

between xp and the other elements in the GMRF x. We partition

S correspondingly.

Friedman and coauthors [9] showed that for each given

partition and W11, equation (4) can be solved for w12 and w22

by a fast, regular lasso algorithm. The loglikelihood (3) is then

maximized by considering all the possible partitions P1~fx{ig,
P2~xi of the GMRF x in turn and by iterating this process

(Table 1). A key element is that, after w12 and w22 are calculated,

they are inserted in the full W before a new partition is created.

The matrix W11, for a given partition, thus changes across

iterations, until convergence.

Graphical Lasso Network
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We now show how, for a given partition, w12, w22 and the

corresponding covariance inverse estimates can be obtained by a

regular lasso algorithm. For a given partition, the partitioned

version of equation (4) yields

w12{s12zr:sign(H12)~0 ð7Þ

and also

w22{s22{r~0, ð8Þ

so that w22~s22zr. Equation (7) is less easy to solve as we do

not know the sign of H12 yet. But, as W~H{1, the partitioned

version of

W|H~
I 0

0T 1

� �
, ð9Þ

gives

W11h12zw12h22~0, ð10Þ

so that

h12~{h22W{1
11 w12:{h22b: ð11Þ

The sign of H12 is thus opposite to the sign of b:W{1
11 w12 since

H22w0. Rewriting equation (7) in terms of b on using equation

(11) gives

W11b{s12zr:sign(b)~0: ð12Þ

Equation (12) can be recognized as the gradient equation of the

lasso problem [11]

y~Xbze, s:t EbE1ƒt ð13Þ

with s12 and W11 replacing XT y and XT X, respectively. Each

individual problem (12) is solved by coordinate descent [9,17].

The graphical lasso algorithm (Table 1) can thus intuitively be

viewed as a set of coupled lasso regression problems that share the

same W and H~W{1. Table 1 summarizes the algorithm.

Network selection
The efficiency of the Graphical Lasso algorithm allows to

compute a great variety of network topologies just by evaluating a

grid of penalty values r. Since the parameter r is responsible for

the network sparsity, it is of particular interest to find which is the

optimal estimated network in terms of this parameter. This

problem of optimal network selection is equivalent to that of

Figure 2. Influence of the graphical Lasso penalty on network
complexity and Bayesian Information. A: Number of edges versus
penalty for data set 3 in the multifactorial challenge with down arrows
indicating the chosen r associated with (from left to right) AIC,
MAX_AUROC, MAX_AUPR and BIC. The horizontal line connects
min(log10(r)) and max(log10(r)) of the 50 best BIC networks chosen
in the ensemble network. B: BIC versus penalty for the five data sets.
doi:10.1371/journal.pone.0014147.g002

Table 1. Graphical Lasso algorithm.

Graphical Lasso algorithm

1.Start with W~SzrI (diagonal is fixed from now)

2.Split matrix W as in (6) taking in turn each variable to be the last column

2.1 For each split solve equation (12) for b using the lasso coordinate descent
algorithm

2.2 Update w12~W11b̂b

2.3 In the final cycle, calculate for each split

h12~{b̂bh22 with 1=h22~w22{wT
12b̂b

3.Repeat until convergence

doi:10.1371/journal.pone.0014147.t001

Graphical Lasso Network
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traditional model selection. We would want to have a model

selection method that enables to select the adjacency matrix that

best predicts the true topology. The main challenge here, is not

only to discover the best network in terms of prediction accuracy,

but to find a trade off between network sparsity and prediction

accuracy in the hope to get closer to the true network. There are

many model selection techniques. Cross validation [18], based on

the performance of the estimated network into a test data set, is

one of the most widely used. However, cross validation does not

take into account the complexity of the selected network. With the

goal in mind of finding sparse networks, we decided to minimize

the Bayesian information criterion [19] and, just for the record,

the Akaike criterion [20]

BIC(m)~{2Lzln(n)ed(m) ð14Þ

AIC(m)~{2Lz2ed(m) ð15Þ

where L corresponds to the log-likelihood of model m (l(H) in

equation (3) without the penalty term), ed(m) is the effective model

dimension, here the number of non-zero edges in the network

corresponding to model m [21–23], and n is the number of

observations (perturbations). The BIC best enjoys the fame of

being a trade off between model prediction and model complexity

and thus to select sparser networks than those chosen by AIC or by

cross validation. This is illustrated by the arrows in Fig. 2A

showing the values of r that minimize the BIC and AIC for data

set 3.

In the submission to the DREAM4 challenge, each network had

to consist of a ranked list of regulatory links ordered according to

their confidence value. In the original description, links had to be

directed but, as directionality is difficult to detect without

experimental interventions, we consider here only undirected

links. In our submission, we determined the confidence value of a

link (edge) in a rather ad-hoc fashion as follows. We first set a series

of 100 equispaced values in terms of log(r) (Fig. 2). For each value

of r, we then calculated the covariance inverse and associated BIC

value. We then ordered the covariance inverses according to BIC,

selected the 50 best ones and converted each to a network, i.e.

adjacency matrix A~(abs(Hw0)), yielding 50 networks. The

assigned confidence of an edge was the number of networks in

which the edge was present divided by 50, the rationale being that

we are more confident about an edge if it appears in more

networks. As the resulting ranked network uses an ensemble of 50

networks, we term it the Ensemble network. In hindsight, we feel

that the procedure is rather ad-hoc as it depends on the selected

range of penalty values and the fraction of networks used in the

ranking, which are both rather arbitrary. For that reason, we

evaluated for this paper also the best BIC (and AIC) network per

data set. For this evaluation we ordered the edges of the network

according to the absolute value of their covariance inverse entry

(abs(Hij)), the rationale being that the size of Hij is traded against

the loglikelihood of the network in equation (3) and thus has at

least some statistical meaning. The network ranked in this way is

termed the BIC (AIC) network. Selecting a particular r matters,

because the models obtained via the graphical lasso algorithm for a

grid of different penalties are not necessarily nested and therefore

an edge that appears in a network with high r value can disappear

when a smaller r is considered. The corresponding entries of the

covariance inverse may change non-monotonically with r. A

referee suggested another ranking scheme, in which a given edge is

ranked according to the maximal value of the penalty r for which

the putative edge is present in the predicted network. The network

ranked in this way is termed MAX r.

Post-hoc network validation
After submission, the true networks were released and it is thus

possible to evaluate each submitted network according to the true

one. Because of the confidence rating of edges, each submitted

network is not just a single network but a ranked list of networks,

containing from one to many edges, depending on the required

confidence for an edge to exist and the total list size. For each

given confidence threshold, the resulting network can be evaluated

and compared with the golden standard, as follows.

Given two nodes in a network xi and xj , the edge prediction

problem can have four possible outcomes when compared with the

true network: (i) if the edge occurs in both the true and the

predicted network, the prediction is called a true positive (TP), (ii) if

the edge is predicted but does not occur in the true network, it is a

false positive (FP), (iii) if the edge does neither occur in the true

network nor in the predicted one, it is a true negative (TN), (iv) if the

edge occurs in the true network, but is not predicted, it is a false

negative (FN). Once the TP,TN,FN,FP events are counted, it is

possible to calculate True Positive Rate (TPR) and False Positive Rate

(FPR)

TPR~
TP

TPzFN
, FPR~

FP

FPzTN
ð16Þ

and precision and recall [24–26]

Precision~
TP

TPzFP
, Recall~

TP

TPzFN
: ð17Þ

Precision is a measure of the exactness or fidelity of the network

forecast, recall ( = TPR) is a measure of completeness, whereas

FPR is the statistical Type I error (false alarm). In the words of

[27], ‘‘Precision may be defined as the probability that an object is relevant

given that it is returned by the system, while the recall is the probability that a

relevant object is returned’’.

By sliding the confidence threshold, the pairs (TPR, FPR) and

(precision, recall) give rise to the Receiver Operating Character-

istic (ROC) curve and Precision-Recall (PR) curve, respectively

(Fig. 3). Popular overall measures of performance are then the

Area Under the ROC and PR curves (AUROC and AUPR,

respectively). The challenge organizers provided three more

performance measures based on the P-value. The P-value is ‘‘the

probability that a given or larger area under the curve value is

obtained by random ordering of the T potential network links.

Distributions for AUROC and AUPR were estimated from

100,000 instances of random network link permutations.’’ The

overall P-value is then the geometric mean of the P-values of the

individual data sets and the associated score is {log10(P). This

score is calculated for both AUROC and AUPR and the two

values are averaged to obtain the overall score.

We also investigated how well the graphical lasso could have

done once we know the true networks. For this we determined the

r values maximizing AUROC and AUPR, yielding the AUROC

and AUPR networks. The gap between the maximum AUROC

and AUPR and those of the AIC, BIC and Ensemble networks

indicates how much the results could have improved if we would

have an ideal method of penalty selection.

Graphical Lasso Network
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Results

The goal of the multifactorial sub-challenge was to reverse

engineer five gene regulatory networks from training data

consisting of steady-states levels of variation of the original

networks, obtained after applying multifactorial perturbations to

the system. The type of training data (only steady state, neither

time series nor knockout/knockdown nor any other intervention

data) motivated our choice for the GMRF approach to solve the

problem in question.

The network topology was estimated by setting the edges to

correspond to the nonzero elements of the estimated covariance

inverse matrix H. This covariance inverse was estimated from the

training data by maximizing the penalized likelihood (3). The

graphical lasso algorithm performed the computations in a very

efficient and fast fashion, making it possible to compute the best

covariance inverse for a series of 100 r values within 60 seconds

per data set on a laptop.

Fig. 2A shows for data set 3 how the number of nonzero

elements in the covariance inverse decreases with increasing

penalty r and also indicates the values of r that minimize (from left

to right) AIC, MAX-AUROC, MAX-AUPR and BIC. It also

shows the range of the 50 best r values used in the Ensemble

network. As expected BIC yielded a much sparser network (ca.

500 edges) than AIC and Ensemble (both 5000 edges), whereas the

true number of edges was 192 in network 3. The methods that

select r knowing the truth (MAX-AUROC and MAX-AUPR)

produce networks that have both more edges than the network

selected by BIC (Fig. 2A). Fig. 2B shows that r values minimizing

BIC vary little across the five data sets.

Fig. 3 shows the ROC and PR curves for the different r
selection methods, averaged across the five data sets, while Table 2

shows the performance numerically. Fig. 3 and Table 2 show that

AIC networks produced very poor results and that the Ensemble

and MAX r networks performed remarkably similar. BIC

performed better than these in terms of AUPR score, but worse

in terms of AUROC score. The network selected on the basis of

maximum AUPR was better in terms of AUPR score, and about

equal to Ensemble in terms of AUROC score. The network

selected on the basis of maximum AUROC was only slightly better

in terms of AUROC, and about equal to BIC in terms of AUPR

score. The ensemble network that we submitted ranked fifth on the

overall score. The modifications we investigated afterwards gave

only modest improvement, as the different r selection methods

gave very similar results, except for the AIC method. Overall, BIC

would have done slightly better, as it can be seen in Table 2. The

winning team in the undirected 100 multifactorial sub-challenge

had 37.3 and the team just above us had an overall score of 27.99.

The worst score was close to 0.

Furthermore, we studied the performance of the presented

methodology with only half of the 100 perturbations. The results

show for all the methods a decrease in the overall scores of about

20 percent (Table 3).

We also compared our approach with simple correlation

networks, both for the full data (n = 100) and half the data

(n = 50). Correlation networks were obtained by connecting two

genes with an edge if the absolute value of their correlation was

higher than a predefined threshold. The ranking of the edges was

done according to the absolute value of the correlations. Table 4

shows that the performance depends somewhat on the threshold

with the highest scores for threshold 0, that is, the relevance

network (REL. in Table 4). The overall scores for the relevance

networks (31.64 for n = 100, and 26.30 for n = 50) are higher than

those obtained with the graphical lasso (Table 2 and Table 3). The

overall score for n~100 is equal to that of the second team in the

multifactorial sub-challenge. The only two places were the

graphical lasso wins over the relevance network are the precision

at 1% and 10% recall for the full data. This advantage is then lost

again for half the data.

Discussion

We used a GMRF framework to tackle the problem of reverse

engineering of regulatory networks based on data from random

multifactorial perturbations, as posted in the DREAM4 challenge.

The graphical lasso algorithm was used to compute the network

topologies offering a very fast and easy computational set up, to

provide a large range of candidate network topologies. This sub-

challenge consisted of inferring directed networks, however, with

the static nature of the provided training data, we believe that it is

Figure 3. Performance of the five network reconstruction
methods. The ROC and PR curves (Ensemble, AIC, BIC, MAX_AUPR and
MAX_AUROC) are vertical averages of the curves for the five data sets.
doi:10.1371/journal.pone.0014147.g003

Graphical Lasso Network
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very complex to infer directionality or similarly causal relation-

ships, and therefore we focused on the estimation of undirected

networks which motivated the selection of our approach to tackle

the problem.

We submitted networks with edge ranking based on edge

frequency in an ensemble of the 50 best (out of 100) BIC networks.

This ranked network turned out to perform very similar to MAX r
and similar to the single networks selected by BIC and ranked with

confidence value proportional to the absolute value of the entry in

the corresponding covariance inverse. The ensemble and MAX r
networks contained a larger number of edges in than the networks

selected by BIC. Other ways to construct ensembles might perhaps

improve the quality of the predictions and are a topic of further

research.

The similarity between the ensemble and MAX r networks goes

beyond their performance in Tables 2 and 3. The Spearman

correlation between the confidence values, averaged across the five

networks, was 0.97 and their ranked networks are therefore very

similar. An explanation is that an edge that comes in early (at a

high penalty value) gets high confidence in the MAX r method, is

likely to stay in the model for a large range of smaller r values and

thus occurs in many of the networks we consider. Such an edge is

likely to get a high rank in the ensemble method as well, because

this method assigns the rank on the basis of the number of

networks (among the 50 best BIC networks, see Fig. 2A) in which

the edge occurs. Vice versa, a edge that comes in late (at a low

penalty value, so that it gets low confidence in the MAX r method)

cannot occur in many of the 50 best networks and will thus receive

low confidence in the ensemble method.

In our approach we assumed multivariate normality, that is

normality of all marginal and conditional distributions of the

measurements and, related to this, linearity between the

conditional mean expression of a gene and the expression levels

of its neighboring genes (equation (2)). These are strong

assumptions, which are unlikely to hold true exactly. With few

observations, these assumptions are hard to check. Q-Q plots,

made assuming a sparse covariance inverse, did not show gross

deviations from normality. A log-transformation of the measure-

ments did not improve performance. The small data set size

requires a simple model to produce reasonable results. Simplicity

and speed are the key features of our approach.

Our study contributes to a better understanding of the

properties and performance of the graphical lasso algorithm to

estimate undirected networks. We showed that the method also

Table 3. Average performance measures for different network reconstructions across data sets, when only half of the
perturbations were used, standard deviations in parentheses.

Measures Ensemble AIC BIC MAX-AUPR MAX-AUROC MAX r

AUPR 0.18(0.04) 0.19(0.05) 0.21(0.05) 0.22(0.06) 0.22(0.06) 0.18(0.03)

AUROC 0.64(0.05) 0.63(0.04) 0.64(0.04) 0.63(0.04) 0.64(0.05) 0.64(0.05)

Pr1Rec 0.83(0.24) 0.82(0.26) 0.82(0.26) 0.92(0.18) 0.89(0.26) 0.83(0.24)

Pr10Rec 0.53(0.17) 0.64(0.23) 0.69(0.16) 0.73(0.14) 0.70(0.16) 0.53(0.16)

Pr50Rec 0.07(0.02) 0.07(0.02) 0.07(0.02) 0.07(0.02) 0.07(0.02) 0.07(0.02)

Pr80Rec 0.05(0.01) 0.04(0.01) 0.04(0.01) 0.04(0.01) 0.05(0.01) 0.05(0.01)

AUPR score 26.83 28.07 32.51 35.55 34.32 26.58

AUROC score 7.99 7.29 7.69 7.60 8.39 8.02

Overal score 17.41 17.68 20.10 21.57 21.36 17.30

log10(r) 2 23.00(0.00) 22.72(0.27) 22.41(0.15) 22.66(0.23) 2

Pr1Rec, Pr10Rec, Pr50Rec, Pr80Rec represent precision at 1%, 10%, 50%, and 80% recall. The last row shows the best penalty value.
doi:10.1371/journal.pone.0014147.t003

Table 2. Average performance measures for different network reconstructions across data sets with standard deviations in
parentheses.

Measures Ensemble AIC BIC MAX-AUPR MAX-AUROC MAX r

AUPR 0.23(0.04) 0.05(0.01) 0.26(0.06) 0.28(0.06) 0.26(0.08) 0.23(0.03)

AUROC 0.67(0.05) 0.58(0.02) 0.65(0.04) 0.68(0.04) 0.69(0.04) 0.68(0.04)

Pr1Rec 0.84(0.26) 0.18(0.27) 1(0.00) 0.82(0.25) 0.79(0.32) 0.81(0.27)

Pr10Rec 0.66(0.13) 0.06(0.02) 0.83(0.14) 0.83(0.13) 0.79(0.32) 0.65(0.13)

Pr50Rec 0.10(0.04) 0.05(0.01) 0.07(0.02) 0.10(0.04) 0.11(0.04) 0.11(0.04)

Pr80Rec 0.05(0.00) 0.04(0.01) 0.05(0.01) 0.05(0.01) 0.05(0.01) 0.05(0.01)

AUPR score 36.58 2.25 43.00 47.30 43.55 35.29

AUROC score 11.19 3.49 8.52 11.26 12.80 11.79

Overall score 23.89 2.87 25.76 29.28 28.17 23.54

log10(r) 2 26(0.00) 22.38(0.08) 22.60(0.07) 22.94(0.34) 2

Pr1Rec, Pr10Rec, Pr50Rec, Pr80Rec represent precision at 1%, 10%, 50%, and 80% recall. The last row shows the best penalty value.
doi:10.1371/journal.pone.0014147.t002
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works when the number of genes is larger than the number of

perturbations. However, in this challenge relevance networks have

shown a better performance, both for the full data and for half the

data. For networks containing cliques that are locally dense,

correlation networks might have an advantage compared to the

sparsity imposed by the graphical Lasso algorithm with a single

penalty term, as used in this study.
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