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Abstract

Background: Biofilm formation has been studied in much detail for a variety of bacterial species, as it plays a major role in
the pathogenicity of bacteria. However, only limited information is available for the development of archaeal communities
that are frequently found in many natural environments.

Methodology: We have analyzed biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus
acidocaldarius, S. solfataricus and S. tokodaii. We established a microtitre plate assay adapted to high temperatures to
determine how pH and temperature influence biofilm formation in these organisms. Biofilm analysis by confocal laser
scanning microscopy demonstrated that the three strains form very different communities ranging from simple carpet-like
structures in S. solfataricus to high density tower-like structures in S. acidocaldarius in static systems. Lectin staining
indicated that all three strains produced extracellular polysaccharides containing glucose, galactose, mannose and N-
acetylglucosamine once biofilm formation was initiated. While flagella mutants had no phenotype in two days old static
biofilms of S. solfataricus, a UV-induced pili deletion mutant showed decreased attachment of cells.

Conclusion: The study gives first insights into formation and development of crenarchaeal biofilms in extreme
environments.
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Introduction

In nature, most microbes are assumed to exist predominantly in

surface-associated communities, encased in a self-produced

matrix, termed biofilms [1,2,3]. Thus, the formation of biofilms

reflects the native growth conditions for most microbial species.

Cells within biofilms differ substantially from their planktonic

counterparts, particularly with regard to an increased resistance

towards numerous environmental perturbations. Thus, the

mechanism of biofilm formation and its importance for microbial

survival in natural habitats has attracted increasing interest in

recent years.

To date, studies on microbial biofilms have mainly been

conducted on bacteria, in particular with regard to pathogenic

species in which biofilms play an important role in disease

development [4,5]. In sharp contrast, for the archaeal domain only

very limited information is available on this topic. Archaea are

frequently detected in biofilm communities from many different

environments [6,7], but biofilm formation by archaea has only

been sparsely studied. So far, all studies have dealt with the

formation of biofilms by euryarchaeotes. The first archaeal biofilm

was described for the hyperthermophilic Thermococcus litoralis. The

T. litoralis biofilm developed in rich media on hydrophilic sur-

faces, such as polycarbonate filters, and was accompanied by

mannose-type extracellular polysaccharides production [8]. Archae-

oglobus fulgidus biofilm formation, measured as attachment to the

sides of cultivation vessels, was found to be increased in response to

unfavorable environmental conditions, including high metal

concentrations, pH and temperature changes [9]. Upon adhesion

to (a)biotic surfaces, mediated by flagella or pili, Pyrococcus furiosus

and Methanobacter thermoautotrophicus formed monospecies biofilms,

respectively [10,11]. Development of P. furiosus and Methanopyrus

kandlerii bi-species biofilms was shown to be established within less

than 24 hours on biotic surfaces [12].However, the formation of a

layered biofilm was dependent on the initial colonization of the

surface by M. thermoautotrophicus cells to which P. furisous could

adhere by using its flagella and establishing cell-to-cell contacts.

Very recently, two distinct biofilm morphologies were described in

the extremely acidophilic euryarchaeote Ferroplasma acidarmanus

Fer1, a multilayered film forming on glass and pyrite surfaces and

up to 5 mm-long filaments that were also found in natural

environments [13]. Proteomic studies on these biofilms showed

that 6 out of the 10 up-regulated proteins were involved in the

adaptation to anaerobic growth indicating anaerobic zones in the

multilayered Ferroplasma biofilms.

In this study, we use the crenarchaeal model organism Sulfolobus

spp. to initiate comprehensive studies on archaeal biofilms.

Sulfolobus species are hyperthermoacidophiles growing optimally
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at 70–85uC and pH 2–3 that are found worldwide in geothermi-

cally active environments such as solfataric fields. They express a

variety of surface structures including flagella and type IV-like pili

[14,15,16] which have been shown to be involved in motility and

UV light-induced cell aggregation [16,17]. A recent study

indicated that flagella and pili are also essential for initial surface

attachment [18]. The same study demonstrated that Sulfolobus can

attach to a variety of surfaces including glass, mica, pyrite and gold

coated carbon grids. An initiation of microcolony formation by the

attached cells was observed, indicating that Sulfolobus may be able

to develop into structured microbial communities reminiscent to

that of many eubacteria.

To further assess the ability to form biofilms, S. solfataricus, an

European isolate from Italy [19], S. acidocaldarius, originally isolated

from Yellowstone National Park [20] and S. tokodaii, an isolate

from Japan [21], were chosen for a comparative study. Using an

adapted microtitre plate assay, the impact of multiple environ-

mental conditions on biofilm formation by these three Sulfolobus

species was tested. Confocal laser scanning microscopy (CLSM)

was employed to study the formed microbial communities in

detail. We demonstrate that all three Sulfolobus species develop into

distinct three-dimensional communities. The adapted methods will

enable further detailed studies on how archaeal biofilms are

formed and how their structures develop.

Materials and Methods

Strains and growth conditions
Sulfolobus solfataricus P2 (DSM1617), S. acidocaldarius (DSM639),

S. tokodaii (DSM16993), S. solfataricus PBL2025 [22], flagella

deletion mutant DflaJ [16] and the ups pili deletion mutant DupsE

[17] were grown in Brock medium at 76uC, pH adjusted to 3 using

sulphuric acid, and supplemented with 0.1% w/v tryptone [20].

For biofilm formation, cultures were inoculated in standing Petri

dishes and grown for 2–3 days at 76uC in a metal box which was

supplemented with a small amount of water to minimize

evaporation of the media. For these assays Sulfolobus strains were

inoculated with specific starting OD600 of 0.03 for S. solfataricus,

0.01 for S. acidocaldarius and 0.06 for S. tokodaii.

Microtitre plate assay
The assay was performed in polystyrol 96-well tissue culture

plates (flat bottom cell+, Sarstedt) to screen for the efficiency of

biofilm formation under different environmental conditions. To

avoid evaporation of the medium, the plates were covered with a

gas-permeable sealing membrane (Breathe-Easy, Diversified

Biotech, Boston, USA). After two days incubation the microtitre

plate was cooled down to room temperature and the OD600 of cell

cultures from each well was measured using a luminometer

(InfiniteM200, TECAN, Switzerland) at a wavelength of 600 nm.

10 ml of a 0.5% solution of crystal violet (CV) was added and

incubated at room temperature for 10 minutes. Subsequently, the

liquid supernatant was removed from each well and the biofilm

cells attached to the well were washed with water. 100% ethanol

was added to release the crystal violet from the biofilm. The

absorbance of crystal violet from each well was measured at a

wavelength of 570 nm. The efficiency of biofilm formation was

determined by the correlation between the growth of the cells

(OD600 nm) and the absorbance of crystal violet (OD570 nm).

To determine how much biomass was present as biofilm,

biofilms were grown and either resuspended by prolonged

vortexing to obtain the OD600 nm, or stained with crystal violet

to obtain the corresponding OD570 nm values. This relation was

used to calculate the percentage of cells within the biofilm related

to the total amount of cells in biofilm and planktonic cells (see Fig.

S2 and Table S1).

Confocal laser scanning microscopy (CLSM)
For CLSM images the cells were grown for three days in

uncoated plastic dishes (m-Dishes, 35 mm high; Ibidi, Martinsried).

To prevent evaporation at the high incubation temperature, the

lids of the dishes were closed. The medium was carefully

exchanged every 24 hours to ensure aerobic growth conditions.

Prior to confocal microscopy, the liquid supernatant of the biofilm,

with the planktonic cells, was removed and 2 ml fresh medium was

added. Images were recorded on an inverted TCS-SP5 confocal

microscope (Leica, Bensheim, Germany).

DAPI (49,6-diamidino-2-phenylindole), dissolved in water to

300 mg/ml, was used to visualize the cells of the biofilm. 6 ml of the

DAPI stock solution was added to the biofilm and incubated at

room temperature for at least 10 minutes. Images were taken at an

excitation wavelength of 345 nm and an emission wavelength of

455 nm.

A 100 mM stock solution of 7-hydroxy-9H-1,3-dichloro-9,9-

dimethylacridin-2-one (DDAO; Invitrogen, Karlsruhe, Germany),

in demineralised water, was used at a final concentration of 4 mM.

Incubation times varied between 20 and 300 minutes. DDAO has

an excitation wavelength of 646 nm and an emission wavelength

of 659 nm.

Fluorescently labelled lectins were employed to visualize the EPS

(extracellular polymeric substances) of the biofilms. Before adding

lectins to the biofilm, the growth medium was replaced with

medium adjusted to pH 5 to ensure that binding of lectins was not

inhibited by low pH. Fluorescein-conjugated concavalin A (ConA)

(5 mg/ml; Invitrogen, Karlsruhe, Germany), which binds to a-

mannopyranosyl and a-glucopyranosyl residues, was dissolved in

20 mM sodium bicarbonate (pH 8) to a final concentration of

10 mg/ml. Fluorescein-conjugated ConA has an excitation wave-

length of 494 nm and an emission wavelength of 518 nm.

Alexa FluorH 594-conjugated GS-II, specific for N-acetyl-D-

glucosamine (lectin GS-II from Griffonia simplicifolia, 1 mg/ml;

Invitrogen, Karlsruhe, Germany), and IB4, specific for a-D-

galactosyl residues (isolectin GS-IB4 from Griffonia simplicifolia

1 mg/ml; Invitrogen, Karlsruhe, Germany), were dissolved in

100 mM Tris-HCl pH 7.4 and 0.5 mM CaCl2 to final concen-

trations of 8 mg/ml.

The Alexa Fluor-conjugated lectins, which have an excitation

wavelength of 591 nm and an emission wavelength of 618 nm,

were used in concert with ConA. The lectin-biofilm mixtures were

incubated at room temperature for 20–30 minutes in the absence

of light. After incubation, the biofilm was washed with Brock

media (pH 5) to remove excess label and images were taken by

CSLM. Image data obtained were processed by using the IMARIS

software package (Bitplane AG, Zürich, Switzerland).

Scanning electron microscopy
S. acidocaldarius was grown as a standing culture under the

described biofilm conditions in Petri dishes with 30 ml brock

media adjusted with 0.1% trypton together with polylysin treated

glass coverslips. The cells were fixed with 2.5% glutaraldehyde and

incubated for 5 min at room temperature. The coverslips were

carefully removed and stored at 4uC in 24 well plates with PBS-

buffer with 2,5% glutaraldehyde.

The samples were then postfixed with 1% osmium tetroxide for

1 h on ice. After washing the cells were dehydrated in ethanol and

critical-point-dried from CO2. The samples were sputter-coated

with 7 nm Au/Pd and examined at 20 kV accelerating voltage in

an Hitachi S-800 field emission electron microscope.

Crenarchaeal Biofilm Formation
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Results

Adaptation of microtitre plate assay
To enable rapid quantification of surface-attached biomass, we

adapted the commonly used microtitre plate assay based on crystal

violet binding [23] for use at high temperatures. To prevent

evaporation of the medium it was essential to cover the plates with

gas permeable sealing membranes. For incubation at 76uC the

plates were placed into a metal container to further prevent

evaporation of the medium. The requirements for adherence to

abiotic surfaces can vary greatly among microorganisms, there-

fore, different plates with hydrophilic and hydrophobic surfaces

were tested. All three strains, S. acidocaldarius, S. solfataricus and S.

tokodaii, attached preferentially to hydrophilic surfaces at the well’s

walls (data not shown). The conditions for biofilm formation were

further optimized for each of the strains. The amount of biomass

detected after two days was strongly dependent on the starting

OD600 of the inoculum and differed for each strain (Fig. S1). Based

on these results, for all subsequent experiments the starting OD for

S. acidocaldarius was 0.01, for S. solfataricus was 0.03 and for S.

solfataricus was 0.06. It was confirmed that the crystal violet values

reflected the amount of biomass formed, as the obtained values

correlated with the OD values measured from resuspended biofilm

cells (data not shown). For the presentation of the microtitre plate

assay results we show the correlation of the crystal violet release of

the biofilm cells (OD570 nm) divided by the growth of the

planktonic cells (OD600 nm) to emphasize the fraction of the cells

which grow as biofilm under each condition in Fig. 1 and the

absolute amount of surface-associated cells in Fig. S2.

Influence of pH, temperature, and iron concentration on
Sulfolobus biofilm formation

Using the adapted microtitre plate assay the influence of a

variety of conditions on the biofilm formation of the three

Sulfolobus strains was tested. The pH values of a hot spring may be

subject to change, for example by incoming rain or changes in the

pH of fluid entering the hot spring. Therefore, the effect of pH

values ranging from 2 to 7 on biofilm formation were evaluated.

As expected, growth of all three strains was optimal around pH 3–

4, but at pH 6 up to 80 and 70% of the total biomass of S.

acidocaldarius and S. tokodaii, respectively, was present in biofilm

(Fig. 1, second column and Fig. S2, C). Based on the correlation

between OD values and the amount of surface-attached biomass,

it was evident that in both species biofilm formation protects cells

against alkaline pH, as the optimum pH for biofilm formation was

much higher than the growth optimum.

As the temperature in a hot spring may also be subject to rapid

changes, biofilm formation in the microtitre plates were tested at

temperatures ranging from 60–85uC. In the range from 65 to 80uC
S. tokodaii formed equal amounts of biofilm, with decreased levels

only observed at 60 and 85uC, although at 60uC the amount of cells

present in biofilms was the highest (50%)(Fig. 1, first column and

Fig. S2,B). In contrast, S. acidocaldarius and S. solfataricus displayed

increased biofilm formation at both extremes of the temperature

gradient; at 60uC S. acidocaldarius and S. solfataricus showed a 5-fold

and 4-fold increase biofilm formation, respectively, when compared

with the optimal growth temperature of 75uC.

The natural habitats of Sulfolobales are acidic geothermal springs

which are rich in As, S and Fe [24,25]. In these springs hydrous

ferric oxide (HFO) microbial mats are found which contain a

variety of members of the Sulfolobales indicating that these

microorganisms might play a role in mediating the oxidation of

iron in these environments [24]. Therefore, the influence of iron

concentration on biofilm formation was tested.

Whereas the normal iron concentration in the medium of

Sulfolobales is 0.02 g/L, we tested 0.015 g/L to 0.065 g/L. Biofilm

formation by S. acidocaldarius and S. tokodaii was not significantly

influenced by the different concentrations of iron, but S. solfataricus

displayed an optimum curve with the highest biofilm formation at

0.045 g/L (Fig. 1, third column and Fig. S2, D). When different pH

values and iron conditions were combined, it was interesting to see

that S. solfataricus was unable to resist the higher pH in the presence

of high iron concentrations and, subsequently, biofilm formation

was abolished. In contrast S. tokodaii and S. acidocaldarius biofilm

formation was additionally stimulated (Fig. 1, last column and Fig.

S2, E). At pH 6 and 0.065 g/L iron, biofilm formation increased 4-

fold for S. tokodaii and 10-fold for S. acidocaldarius which compared

with normal levels reaching 63 and 83% of cells, respectively, in

biofilm compared to the total cell mass (Table S1 and Fig. S2, E).

In general, the amount of formed biofilm in microtitre plates is

much less for S. solfataricus than for the other two species, most

probably due to the more anaerobic conditions as compared to the

static biofilm assay in Petri dishes.

Structural determination of static biofilms of the three
Sulfolobus strains by confocal laser scanning electron
microscopy

All three Sulfolobus strains were inoculated in uncoated plastic m-

dishes and incubated without agitation at 76uC. Evaporation was

prevented by placing the Petri dishes in a humidified metal box

and the medium was carefully exchanged every 24 hrs with fresh,

prewarmed medium to ensure nutrient and oxygen availability.

After three days the formed biofilms were stained with DAPI, as

described in the Materials and Methods section and analyzed by

confocal laser scanning microscopy (CLSM). We employed DAPI

staining to visualize cells as there is currently no fluorescent

protein available that is stably expressed under the growth

conditions of Sulfolobus spp.. S. solfataricus formed biofilms (20–

30 mm thick) with a carpet like structure covering the whole

surface of the Petri dish with a low density of cells (Fig. 2, middle

column). The biofilm structure of S. tokodaii was 25–35 mm thick

and also exhibited a carpet like structure but, in contrast to S.

solfataricus, these had a high cell density and, occasionally, cell

aggregates were visible (Fig. 3, overlay picture, last row). S.

acidocaldarius readily formed biofilms (25–35 mm thick) which

contained a high density of cells and large aggregates, forming

towering structures above the surface of attached cells (Fig. 3, first

row).

For bacteria it is well known that extracellular DNA can play an

essential role in the formation and stabilization of the three-

dimensional structure of biofilms [26]. To examine whether

extracellular DNA was present in biofilms of the three Sulfolobus

strains, three days old biofilms were stained concomitantly with

DAPI and the membrane-impermeable DNA-binding dye

DDAO. In all three strains the DDAO signal was only present

at locations in the biofilm where aggregates were also visible (Fig. 2,

middle panels C and D). The weak DDAO signal was further

reduced following DNase treatment indicating that the extracel-

lular DNA was removed, but had no effect on the structure of the

biofilms. Therefore, at this stage of the biofilm maturation,

extracellular DNA does not appear to play a structural role in

biofilms of these three Sulfolobus strains.

To estimate the amount of living and dead cells three days old

biofilms were stained with the LIVE/DEAD stain. In S. solfataricus

and S. tokodaii it was evident that throughout the biofilm less then

,2% of the cells were dead whereas in S. acidocaldarius up to ,8%

of cells were dead (data not shown).

Crenarchaeal Biofilm Formation
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Analysis of Sulfolobus matrix components
The extracellular matrix that connects the cells and enables

three-dimensional structuring of the communities is thought to be

composed of (glyco)proteins, lipids, extrallular DNA (eDNA), and

polymeric carbohydrates [27]. We therefore tested, whether

eDNA, proteins, and polysaccharides play an important structural

role in Sulfolobus biofilms. Experiments to inhibit biofilm formation

by the addition of Proteinase K or DNase did not give conclusive

results. Irrespective of the time at which DNase or Proteinase K

was added, no effect on biofilm formation was observed although

both enzymes showed enzyme activity under the conditions tested

(data not shown).

Recently, it has been described that S. solfataricus cells,

particularly when surface-attached, produce extracellular poly-

meric substances (EPS) containing glucose, mannose, galactose

and N-acetyl-glucosamine [18,28]. To test whether cells also

produce EPS during biofilm formation, three days maturated

biofilms of all three Sulfolobus species were stained with DAPI, and

two different fluorescently labeled lectins (Fig. 3). The lectins

selected were concanavalin A (ConA), specific for terminal glucose

and mannose residues and either IB4 (specific for galactosyl

residues) or GSII (specific for N-acetylglucosamine residues). In all

three strains it was observed that the ConA signal (green signal)

corresponded to the DAPI signal (blue signal, Fig. 3). Sulfolobus

cells are covered by an S-layer and is has been described that the

S-layer proteins are glycosylated and can be purified by ConA

affinity chromatography [29,30,31]. Whereas in S. solfataricus the

ConA-derived signal did, in fact, completely overlap with the

DAPI signal, in S. tokodaii and S. acidocaldarius GSII and IB4 lectin

(yellow channel) stained matter was observed on top of the cell

layer and, as no DAPI signal was found in this accumulated

material, we concluded that these two strains secrete EPS. In both

strains, these clouds of EPS also reacted with the other two lectins

indicating the presence of not only mannose and glucose, but also

galactose and N-acetylglucosamine (Fig. S3). In S. solfataricus, only

marginal GSII- and IB4-mediated staining of cell attached sugar

residues was observed, indicating a different glycosylation of

extracellular proteins than in the other two strains.

Figure 1. Effect of varying conditions on biofilm formation of the three Sulfolobus strains in microtitre plates. S. acidocaldarius (first
row), S. tokodaii (second row) and S. solfataricus (third row) were incubated at different temperatures (first column), pH values (second column), iron
concentrations (third column) and a combination of different iron concentrations and pH values (fourth column). The graphs show the correlation of
the measured cristal violet absorbance of attached cells (OD570 nm) and the growth of the planktonic cells (OD600 nm) to emphasize the amount of
cells in a sessile lifestyle at the tested condition. Each point and standard deviation is the mean of 8 samples per condition. Temp, temperature.
doi:10.1371/journal.pone.0014104.g001
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A detailed analysis of a biofilm formed by S. tokodaii and S.

acidocaldarius showed extensive cell-cell connections. These con-

nections became visible when the S. tokodaii sample was incubated

with ConA and analysed by CLSM (Fig. 4). The connection might

be a string of sugars or flagella/pili in which the subunits are

glycosylated. In S. acidocaldarius and S. solfataricus biofilms the lectin

GSII also stained thin connections between the cells (Fig. 4) which

were clearly visible also in SEM pictures (Fig. 5D).

Maturation of S. acidocaldarius over a range of seven
days

All experiments described so far were performed using 2–3 days

old biofilms of Sulfolobus spp.. In order to monitor further

community development under static conditions, biofilms of S.

acidocaldarius were allowed to develop for seven days. Each day one

sample was treated with DAPI and analyzed by CLSM. The

thickness of the biofilm increased from 30 mM in height on day

three to 150 mM (including EPS structures) on day seven

(Fig. 5AB). For a more detailed analysis of the maturation of

biofilm formation by S. acidocaldarius the cells were inoculated in

large Petri dishes in which polylysine covered glass slides had been

placed. These slides were then analyzed by scanning electron

microscopy (SEM). Only 15 minutes after the addition of the cell

suspension a few cells attached to the surface, and some budding of

vesicles was visible (Fig. S4A). After two hours there was not an

apparent increase in the number of attached cells, but nearly all

attached cells had formed filamentous structures adhering the cells

to the surface or neighboring cells (Fig. S4B). After 36 hours,

microcolonies started to form with only a few cells remaining on

the rest of the surface whereas after 48 hours the surface of the

Figure 2. Different structures of static biofilms formed by three Sulfolobus strains S. acidocaldarius, S. solfataricus and S. tokodaii
visualized by CLSM and SEM. A (top views) and B (side views) display the overlays of the images of three day old biofilms treated with DAPI and
DDAO. The bar is 20 mm in length. C (top view) and D (side views) show the single channels of the overlays. DAPI signal: blue; DDAO signal: yellow. E, SEM
images of biofilms of the three Sulfolobus strains incubated for 6 days. CLSM: confocal laser scanning microscopy; SEM: scanning electron microscopy.
doi:10.1371/journal.pone.0014104.g002
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glass plates was completely covered with cells. In the microcol-

onies, cells appeared to be connected by a network of filamentous

structures as was observed previously following lectin staining

(Fig. 5D). These connections grew denser and also increasing

extracellular material accumulated in the later stages of the

biofilm formation (Fig. 5D). Interestingly, on the seventh day the

layer of cells at the surface of the glass slide apparently

disappeared and the density of cells in the detailed view was

reduced compared with the sixth day (Fig. 5C/D). To test

whether the extracellular material visible in the closer SEM view

of the towering structures did indeed consist of EPS, S.

acidocaldarius biofilms were incubated for seven days, stained with

lectins, as described above, and analyzed by CLSM (Fig. 6).

Towering structures were formed which were initiated by the

secretion of EPS and then colonized by cells.

The secretion of certain sugars apparently progressed in a

sequential manner: initially the ConA (glucose and mannose)

derived signal was much stronger, but in later stages both the

GSII (galactose) and the IB4 (N-acetylgucosamine) signal

increased (Fig. 6 and Fig. S5), after which the secretion of

mannose-rich sugars increases again as detected by ConA. This

indicates that these sugars play an important role in biofilm

maturation.

Role of surface appendages on static biofilm formation in
S. solfataricus

Attachment of S. solfataricus cells from shaking cultures to

different surfaces is mediated by flagella and UV induced pili.

Deletion mutants in which either the flaJ gene, encoding the

integral membrane protein of the flagella operon, or the uspE

Figure 3. CSLM analysis of three day old static biofilms of S. acidocaldarius, S. solfataricus and S. tokodaii by lectin-staining. After three
days the biofilms of S. acidocaldarius (first row), S. solfataricus (second row) and S. tokodaii (last row) were incubated with DAPI and different lectins
and were analyzed by CSLM. The first column displays the DAPI signal (blue), the second column the ConA signal (green), the third column the GSII
signal (yellow) and the last column the overlay of the other three channels. Bars are 20 mm in length.
doi:10.1371/journal.pone.0014104.g003

Figure 4. Connections between cells in three days matured static biofilms of S. acidocaldarius, S. tokodaii and S. solfataricus. The left
three pictures show the CLSM analysis of a ConA treated S. tokodaii biofilm (LM: light microscopy picture, ConA: green channel, Overlay: overlay of
the ConA signal and the LM picture). Middel panel: CLSM analysis of GS-II (yellow) treated S. acidocaldarius biofilm. Right panel: CLSM analysis of GS-II
(yellow) treated S. solfataricus biofilm. Arrows indicate the connections. Bars are 4,5 mm in length. CLSM: confocal laser scanning microscopy; LC: light
microscopy.
doi:10.1371/journal.pone.0014104.g004
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gene, encoding the ATPase of the UV-induced pili operon were

incapable of attachment to glass surfaces, gold-coated carbon

grids or mica [18]. In bacterial biofilm development, filaments

such as type IV pili and flagella have a strong effect on the

dynamics of biofilm formation. Therefore, we tested the DflaJ

and DupsE mutants and the wild type S. solfataricus PBL2025

strain for their ability to form static biofilms in three days.

PBL2025 is a S. solfataricus strain which lacks 50 genes predicted

to be involved in sugar metabolism and uptake and is the only

currently available S. solfataricus strain which can be genetically

manipulated [22].

The PBL2025, DflaJ and DupsE strains were grown in petri

dishes and tested in the microtitre plate assay. After three days

the matured biofilms in the petri dishes were stained with DAPI

and analyzed by CLSM. The biofilms of PBL2025 and the DflaJ

strain were comparable to three day old biofilms of S. solfataricus in

height, density and structure, and showed mainly a carpet like

appearance (Fig. 7A and B). However, in biofilms from the DupsE

strain, the surface of the petri dish was not as completely covered

with cells and the biofilm was less dense as compared to PBL2025

and the DflaJ mutant strain. Furthermore, slightly more

aggregates were visible in the biofilms of the DupsE strain. These

observations were supported by the results of the microtitre plate

assay showing that only the DupsE strain produced significantly

less biofilm than S. solfataricus, PBL2025 and DflaJ. We therefore

concluded that cell appendages do not to play an important role

in the early development of static biofilm formation in S.

solfataricus strains.

Discussion

It is well known that archaea and bacteria coexist in natural

biofilms, playing essential roles in the Earth’s biogeochemical

cycles as well as in human disease [2]. The formation of bacterial

biofilms has been very well documented. Studies have been

carried out on euryarchaeal biofilm formation whereas we

presented here the first detailed insights into crenarchaeal biofilm

formation.

We chose the thermoacidophilic crenarchaeotes Sulfolobus spp as

a model to establish methods for the analysis of hyperthermophilic

archaeal biofilm formation. Sulfolobus spp. exist in acidic, mostly

muddy, hot springs all over the world in which the hydrological

dynamics result in rapid variations in temperature, pH and

geochemical conditions. Therefore, these organisms must quickly

adapt to these changing conditions or exist in a state that enables

them remain undisturbed by such changes. As fully maturated

biofilms protect their inhabitants from environmental disturbanc-

es, this form might be a way for Sulfolobus spp to survive in their

habitats. The three selected strains were originally isolated from

well separated geographical locations and each of the strains did,

in fact, behave differently following the initiation of biofilm

formation. Of the three strains, S. acidocaldarius most readily

engaged in community formation either in microtitre plate assays

or in static biofilm conditions when compared with the other

Sulfolobus strains. In particular, when challenged with low

temperature (60uC) or the combination of near neutral pH and

low iron concentrations, S. acidocaldarius responded with highly

Figure 5. CLSM and SEM analysis of the development of a static biofilm of S. acidocaldarius during a time course of seven days. DAPI
signal (blue) in the top view (A) and the side view (B). SEM analysis showing an overview (C) and enlarged view (D) of the developing biofilm. Size
standards are 20 mM in length for A and B, 40 mM in C and 2 mM in D. CLSM: confocal laser scanning microscopy; SEM: scanning electron microscopy.
doi:10.1371/journal.pone.0014104.g005
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increased biofilm formation demonstrating the ability of this strain

to adapt to rapid changes in temperature and pH.

The maturation of bacterial biofilms proceeds via defined steps

including initial attachment and further development into

microcolonies secreting extrapolymeric substances [32]. During

maturation multilayered biofilm structures are shaped and kept

together by the secretion of EPS, extracellular DNA, and proteins

[27,33]. Cells can be released from matured biofilms at any time

point to proceed with a planktonic life style. Very recently, we

have shown that S. solfataricus displays flagella and pili-dependent

attachment to abiotic surfaces [18]. After two days of attachment

to a glass slide in a shaking culture the cells started to pro-

duce EPS which contained glucose, mannose, galactose and

N-acetylglucosamine demonstrating the first phase of biofilm

formation. Similar to bacterial biofilm formation, it is evident that

after initial attachment Sulfolobus cells start to form microcolonies

that are surrounded by an extracellular matrix, containing EPS

and, most probably, proteins. The function of EPS formation in

these Sulfolobus strains may serve a variety of purposes. A natural

deletion mutant of S. solfataricus which lacks 50 genes overpro-

duced EPS when attached to a glass slide [18]. The deleted region

contains genes mainly involved in sugar degradation and

transport and these were shown to be upregulated in attached

S. solfataricus cells, implying that they play an important role in the

modulation of the EPS. One might speculate that the EPS is used

as a carbohydrate reservoir which might also be the case when the

Figure 6. Lectin-based analysis of developing static biofilm of S. acidocaldarius during a time course of seven days. Samples were
treated with DAPI (blue channel), Con A (green channel) and IB4 (yellow channel) and analyzed by CSLM. For each channel the top view and the side
view is presented. An overlay shows all three channels. Bars are 20 mm in length. CLSM: confocal laser scanning microscopy.
doi:10.1371/journal.pone.0014104.g006
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cells are engaged in biofilm formation. When the S. acidocaldarius

biofilm was incubated for seven days it was evident that the

different sugars were produced in a consecutive manner implying

that they may serve different purposes. Moreover, a layer of EPS

was produced which enabled the formation of three-dimensional

tower-like structures, especially in S. acidocaldarius. It appeared that

after seven days the S. acidocaldarius biofilms detached by releasing

attached cells to the planktonic phase.

In bacteria, cell appendages such as type IV pili and flagella

are very well known for their influence and importance in the

dynamics and development of static and hydrodynamically grown

biofilms [34]. Like in Vibrio cholerae and Shewanella oneidensis MR-1,

the S. solfataricus pili mutant DupsE exhibited decreased biofilm

formation in the microtitre plate assay [35,36]. Also more dense

aggregates were observed as in Pseudomonas aeruginoasa and S.

oneidensis MR-1 type IV pili mutants [36,37]. However, the

flagella mutant showed no obvious differences in static biofilm

formation to the wild type, As the S. solfataricus flagella and pili

mutant could not attach to several different surfaces in shaking

culture [18], it will be interesting for future studies whether

flagella and pili have a greater impact on biofilm formation in

flow chamber systems.

Taken together, we demonstrated that Sulfolobus species can

engage in biofilm formation and developed methods to study

these in more detail. Of the three strains, S. acidocaldarius formed

the largest amounts of biomass and was able to evade unfavorable

conditions most successfully by choosing this life style. Interest-

ingly, these data support the observation that S. acidocaldarius is

mainly sampled from the crusts surrounding acidic hot springs

and mud holes (Karl-Otto Stetter, personal communication)

whereas S. solfataricus and S. tokodaii are primarily isolated from

the midst of these types of hot springs, where the hot fluids are

bubbling up to the surface [38] (Christa Schleper, personal

communication).

In the future, it will be interesting to study how Sulfolobus strains

behave in mixed biofilms and even in communities including other

inhabitants of these acidic hot springs.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0014104.s001 (0.12 MB

DOC)

Figure S1 Optimization of inoculation conditions for biofilm

formation of S. acidocaldarius, S. solfataricus and S. tokodaii. The

strains were inoculated with different OD 600 and incubated in a

microtitre plate for three days. The correlation of the measured

crystal violet absorbance of the formed biofilm and the OD600

values of the planktonic cells is presented. Each bar represents the

mean of 8 different samples.

Found at: doi:10.1371/journal.pone.0014104.s002 (0.23 MB TIF)

Figure S2 Data shown in Figure 1 presented as calculated

percentage of cells within the biofilm related to the total amount of

cells in biofilm and planktonic cells. (A) Biofilms were grown and

either resuspended by prolonged vortexing to obtain the

OD600nm, or stained with crystal violet to obtain the OD570nm

values. This relation was used to calculate the percentage of cells

within the biofilm related to the total amount of cells in biofilm

and planktonic cells for (B) different temperatures, (C), different

pH values, (D) different iron concentrations, and (E) a combina-

tion of different iron concentrations and pH values (D). S.

acidocaldarius (blue), S. tokodaii (green) and S. solfataricus (red)

are indicated by different colors.

Found at: doi:10.1371/journal.pone.0014104.s003 (0.49 MB TIF)

Figure S3 CSLM analysis of three day old static biofilms of S.

acidocaldarius, S. solfataricus and S. tokodaii by lectins. After

three days the biofilms of S. acidocaldarius (first row), S.

solfataricus (second row) and S. tokodaii (last row) were incubated

with DAPI and different lectins and were analyzed by CSLM.

The first column shows the DAPI signal (blue), the second

column the Con A signal (green), the third column the IB4 signal

(yellow) and the last column the overlay of the other three

channels. Bars are 20 mm in length. CLSM: confocal laser

scanning microscopy.

Found at: doi:10.1371/journal.pone.0014104.s004 (5.80 MB TIF)

Figure S4 SEM pictures from early stages of S. acidocaldarius

biofilm formation from 15 minutes to 48 hours after incubation.

(A) shows the overviews and (B) and (C) more detailed views of the

respective picture in A in the same column of the developing

biofilms. The length of the bars is indicated in the images. SEM:

scanning electron microscopy.

Found at: doi:10.1371/journal.pone.0014104.s005 (7.76 MB TIF)

Figure S5 Lectin based analysis of developing static biofilm of S.

acidocaldarius. Samples were treated with DAPI (blue channel),

Con A (green channel) and GSII (yellow channel) and analyzed by

CSLM. For each channel the top view and the side view is

Figure 7. Three day matured static biofilms of S. solfataricus
PBL2025, DflaJ and DupsE. Biofilms of PBL2025, DflaJ and DupsE were
stained with DAPI and analyzed by CLSM (A–C, respectively).
Complementary, a microtitre plate assay was performed for 72 hrs
with all three strains and biofilm formation is presented in D as the
correlation of the crystal violet absorbance (OD570 nm) divided by the
optical density of the planktonic cells (OD600 nm) and in E the crystal
violet absorbance (OD570 nm) is indicated. Bars are 20 mm in lengt.
doi:10.1371/journal.pone.0014104.g007
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presented. Overlay shows all three channels again including top-

and side views. Bars are 20 mm in length.

Found at: doi:10.1371/journal.pone.0014104.s006 (9.90 MB TIF)
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