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Abstract

Background: Late Onset Alzheimer’s disease (LOAD) is the leading cause of dementia. Recent large genome-wide
association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the
involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD
pathophysiological processes.

Methodology: We applied a recently developed tool for mining GWAS data for biologically meaningful information to a
LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset.

Principal Findings: We found a significant overrepresentation of association signals in pathways related to cholesterol
metabolism and the immune response in both of the two largest genome-wide association studies for LOAD.

Significance: Processes related to cholesterol metabolism and the innate immune response have previously been
implicated by pathological and epidemiological studies of Alzheimer’s disease, but it has been unclear whether those
findings reflected primary aetiological events or consequences of the disease process. Our independent evidence from two
large studies now demonstrates that these processes are aetiologically relevant, and suggests that they may be suitable
targets for novel and existing therapeutic approaches.
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Introduction

Alzheimer’s disease (AD) is the leading cause of dementia [1,2]

with a heritability of 56–79% [3]. It causes great social, emotional,

and financial burdens to sufferers, their families and carers and

there are no effective treatments that can slow or halt disease

progression [4].

Genetic studies have been successful in identifying a number of

causal loci (APP, PSEN1 and PSEN2) for familial early onset forms

of AD and in doing so have supported the amyloid cascade

hypothesis [5]. Identical amyloid pathology to that observed in

early onset disease is seen in the more common late onset form of

AD (LOAD), thus implying the relevance of the amyloid cascade

in both forms of disease. However, genetic variation at the early

onset loci has not been reliably associated with LOAD. Indeed

until recently, APOE was the only genetic locus with robust support

in LOAD [6]. However, the publication of two genome-wide

association studies (GWAS) and replications have recently

established three novel LOAD susceptibility loci: CLU, PICALM

and CR1 [7,8,9,10].

Pathway Analysis of AD GWAS
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Genome-wide significant SNPs in complex traits generally

explain only a proportion of the heritability of that disorder [11].

Much of the residual heritability underlying common traits

appears to lie in SNPs that do not achieve genome-wide

significance, meaning that a substantial proportion of the

associated genetic signal in current GWAS is hidden below the

genome-wide significance threshold. We know that SNPs that are

robustly associated with particular common disorders are not

randomly distributed across all genes. Instead, the implicated

genes show biologically relevant relationships between each other

[12,13,14,15]. This is also true for SNPs in genes for which there is

weaker individual evidence for association that falls short of

stringent levels of genome-wide significance and statistical

approaches have recently been developed to identify sets of

functionally related genes containing genetic variants that

collectively show evidence for association [14,16]. We used the

ALIGATOR algorithm [16] to examine SNPs in two AD GWAS

[7,8] for enrichment in related categories of genes. We also

confirmed the results using gene set enrichment [15] and set-based

analyses [17] to uncover sets of functionally related genes showing

evidence for association with disease. The identification of such

patterns in association datasets is likely to be crucial in moving

beyond the genetic data to an understanding of function.

Materials and Methods

Data summary
The GWA studies were performed as described in Harold and

colleagues [7] and Lambert and colleagues [8]. We have obtained

approval to perform a genome-wide association study including

19,000 participants (Multi-centre Research Ethics Committee for

Wales MREC 04/09/030; Amendment 2 and 4; approved 27th

July 2007). All individuals included in these analyses have provided

informed written consent to take part in genetic association

studies.

Statistical analysis
Excess of SNPs passing significance thresholds. The

number N of independent SNPs in the whole genome (excluding

APOE, CLU and PICALM) was estimated by the method of Moskvina

& Schmidt [18], as were the observed number of independent SNPs

significant at each p-value criterion. In the absence of excess

association, the expected number of independent SNPs significant at

significance level a is distributed as a binomial (N,a).

Pathway analyses. ALIGATOR analysis was carried out

essentially as in Holmans and colleagues [16] using gene ontology

(GO) and KEGG defined functional categories [19,20].

ALIGATOR converts a list of significant SNPs into a list of

significant genes, and tests this list for enrichment within functional

categories. Unlike methods designed for gene-expression data

(where there is typically only one measurement per gene),

ALIGATOR corrects for variable numbers of SNPs per gene.

Each gene is counted once regardless of how many significant

SNPs it contains, thus eliminating the influence of LD between

SNPs within genes. Replicate gene lists of the same length as the

original are generated by randomly sampling SNPs (thus

correcting for variable gene size). The lists are used to obtain p-

values for enrichment for each category and to correct these for

testing multiple non-independent categories, and to test whether

the number of significantly enriched categories is higher than

expected. The present analysis was restricted to categories

containing at least three genes: 6723 GO and 194 KEGG

categories. Categories required at least two signals to be counted as

enriched to remove the possibility of a small category being

deemed significantly enriched based on one signal. SNPs that

mapped to within 20kb of a gene (genome build 36_3) were

assigned to that gene: if SNPs mapped within 20kb of more than

one gene all such genes were included. Based upon the linkage

disequilibrium (LD) structure of the region, 33 genes near APOE

(chromosome 19: 49.6–50.6 Mb) were removed from the analysis.

This was to remove the effects of genes whose evidence for

association was merely a consequence of LD with the very strong

APOE signal. APOE itself was included in the analysis since it is

likely to be the AD susceptibility gene in this region. Any one SNP

was not allowed to add more than one gene to any category to

prevent the analysis being biased by SNPs located in multiple

overlapping genes that are functionally related.

As independent validation of the results obtained from the

analysis of GO categories, we also utilised the Mouse Genome

Informatics (MGI) database [21]. This contains a comprehensive

catalogue of behavioural, physiological and anatomical pheno-

types observed in mutant mice. Extracting phenotype data for

single gene studies (excluding all transgenes), we converted mouse

genes to their human orthologs using the MGI’s mouse/human

orthology assignment. We were able to map 5671 different

phenotypic annotation terms to 6297 human genes, and the gene

sets corresponding to each annotation were tested for enrichment

in the Harold et al. data using ALIGATOR, as described

previously.

Set-based analyses on genes and gene sets. Two gene-

wide analyses were carried out using PLINK [17]. The first was

based on the most significant single-SNP p-value and the second,

‘set-based’, analysis was based on the average chi-squared statistic

of all SNPs in the gene, calculated under an allelic association

model. The former analysis will detect significant association in

genes with a single strong signal, while the latter analysis will

highlight genes with several independent signals, even if each of

these is of modest significance individually. The analyses are thus

complementary. Significance in each case was obtained by

comparing the test statistic in the observed data to that obtained

when disease status was randomly permuted among individuals,

thereby accounting for inter-SNP LD. 1000 permutations were

performed (10000 for genes with a gene-wide p-value,0.01).

Genes without at least one SNPs p,0.05 were not analysed.

As a validation of the ALIGATOR results, set-based analysis

was also performed on the set of SNPs within each of the GO

processes that were significantly enriched in both GWAS datasets.

1000 permutations were used for each process. Set-based analysis

is robust to LD between and within genes, as well as SNPs being in

several genes.

Gene-set-enrichment (GSEA) analysis. As a further

validation of the ALIGATOR results, gene-set enrichment

analysis (GSEA) was performed using the method described in

Wang et al. [15]. Rather than defining a list of significant genes,

GSEA ranks all genes in order of a gene-wide association statistic,

and tests whether the genes in a particular gene set have higher

rank overall than would be expected by chance. Following Wang

et al., in order to allow for varying numbers of SNPs per gene, the

gene-wide statistic used was the Simes-corrected single-SNP p-

value [22]. Since apparently significant GSEA enrichments can

result from a single gene that is strongly associated with disease

[23], we removed the APOE region before performing the

analysis.

Results

In the GWAS study of Harold et al. [7] involving approximately

12,000 AD cases and controls, we observed a considerable excess

Pathway Analysis of AD GWAS

PLoS ONE | www.plosone.org 3 November 2010 | Volume 5 | Issue 11 | e13950



of SNPs surpassing different thresholds of significance when

compared with those expected by chance (Table 1), suggesting the

existence of many LOAD susceptibility loci that were not detected

at genome-wide significance. To exploit any signal arising from the

excess of nominally significant SNPs in the GWAS, we used

ALIGATOR [16], to identify functional categories that were

enriched for association signals.

We found that in the real data, significantly more GO categories

were enriched for genes containing at least one SNP surpassing

varying thresholds of nominal significance compared with the

simulated data (Table 2). The most significant excess in enriched

GO categories was based upon a list of 589 autosomal genes

defined by having at least 1 SNP with p,0.001. In that analysis,

there was a significant excess of categories regardless of the

threshold (p,0.05, p,0.01, p,0.001) for defining a category

containing a significant excess of associated genes. This list was

used to define enriched GO categories for further study [16].

However, we note that significant excesses of enriched categories

were also observed for gene lists defined by other SNP association

criteria and that the categories themselves were similar, suggesting

the conclusions of this study are not highly sensitive to the

threshold used to define nominal SNP association.

From the most significantly enriched categories in the Harold

GWAS [7] (Table 3, Table S1), two main themes emerged: sterol

and lipid metabolism and the immune response. Many of the top

20 categories relate to these processes and aspects of these

processes are detected throughout the significant GO categories.

Note that several categories show significant enrichment even after

correcting for the multiple GO categories tested (study-wide

p,0.05). A similar analysis was performed on the GWAS data

from Lambert and colleagues, in which the same SNP threshold of

p,0.001 defined a list of 423 autosomal genes. Sterol and lipid

metabolism and the immune system again emerge as clear themes

in the list of significantly enriched categories derived from the

Lambert data (Table S2). None of the categories relating to b-

amyloid (Ab) and its processing were significant in this analysis

either in the Harold (Table S1) or Lambert (Table S2) data.

In order to investigate whether we could replicate this signal we

restricted enrichment analysis of the Lambert data [24] to the 173

GO processes with enrichment p,0.05 in the Harold data [7]. Of

the 173 categories, twenty-five processes were also enriched for

genes containing a SNP with p,0.05 in the replication dataset, a

number that is significantly greater than expected (p = 0.0045).

This provides evidence for a common underlying genetic

association between the studies. Note that the significance of this

overlap is not due to the biological areas in question being

relatively well annotated since the same set of processes was tested

in both the real and simulated gene lists (see Methods). Table 4

shows that these processes relate to the immune system and

complement pathways and to cholesterol and lipid metabolism

with one exception: cholinergic synaptic transmission. For the

majority of these processes, their joint enrichment (defined as the

product of the enrichment p-values in the two studies) is significant

even after correction for testing multiple GO categories, thus

providing strong evidence for their involvement in disease

susceptibility.

ALIGATOR enrichment analysis was also performed on 194

KEGG [20] human pathways. Six KEGG pathways were

significantly enriched (p,0.05) in both the Harold and Lambert

datasets [7,8]. This is higher than would be expected by chance

(p = 1.1661023). These pathways, and their enrichment p-values,

are listed in Table S3. The genes contained in the pathways,

together with the p-values of the most significant SNP are listed in

Table S4. Inspection of Table S4 reveals that, in addition to CR1

and CR2 (members of pathway hsa4640: hematopoietic cell

lineage), there are several genes in the HLA region contributing to

the enrichment signal in both datasets. These genes may reflect the

same association signal due to LD, and were therefore collapsed

into one signal: when the enrichment analysis was repeated, no

Table 1. More significant SNPs are seen than expected.

Significance a
# SNPs in
original data

Estimated #
independent SNPs

# SNPs
expected p-value

Ratio:
Est/Exp

0.000001 1 1 0.408 0.177 2.45

0.00001 16 12.6 4.0 7.561026 3.17

0.0001 75 65.53 38.3 5.361026 1.71

0.001 706 601.22 362.2 3.3610236 1.66

0.01 6064 4837.72 3294.6 8.76102171 1.47

0.05 29122 22064.52 14571.4 ,102200 1.51

The total number of SNPs considered was 528488, the whole genome without APOE, PICALM or CLU SNPs. The estimated number of independent SNPs at each
significance level takes linkage disequilibrium into account. The ratio Est/Exp is the ratio of the estimated number of significant SNPs for any a divided by the expected
number of independent SNPs seen at that a.
doi:10.1371/journal.pone.0013950.t001

Table 2. Significantly more GO pathways are identified than
expected.

SNP list
criterion #genes p,0.05 p,0.01 p,0.001

#cat p #cat p #cat p

p,1e-4 72 115 0.009 50 0.006 16 0.008

p,1e-3* 589 254 0.005 127 ,0.001 57 ,0.001

p,0.005 2212 291 0.006 76 0.006 18 ,0.001

p,0.01 3703 282 0.023 64 0.031 8 0.110

p,0.05 10709 228 0.078 44 0.096 4 0.295

The analysis used only autosomes and was restricted to GO categories with at
least two hits. SNPs that mapped to within 20kb of a gene were assigned to
that gene: if SNPs mapped within 20kb of more than one gene all such genes
were included. SNPs in the APOE region (49.6–50.6 Mb on chromosome 19, 34
genes) were removed from the analysis. Only the most significant of any GO
categories containing the same list of significant genes was permitted and any
one SNP was not allowed to add more than one gene to any GO category. P-
values were generated using 5000 permutations of the data except for * 50,000
permutations.
doi:10.1371/journal.pone.0013950.t002

Pathway Analysis of AD GWAS

PLoS ONE | www.plosone.org 4 November 2010 | Volume 5 | Issue 11 | e13950



pathway was significantly enriched (p,0.05) in both datasets. The

enrichment significance for each of the MGI mouse phenotype

annotations is shown in Table S5. It can be seen that several of the

most significantly enriched annotations relate to lipids, cholesterol

and innate immunity, similar to the top-ranking GO categories in

Tables 3 and 4.

To investigate which genes contribute to the association signals

seen in the enriched GO processes identified by both GWAS, two

further analyses were performed in the Harold data using PLINK

[17]. First, a gene-wide correction was applied to the most

significant single-SNP p-value in each gene. Second, a ‘set-based’

analysis was applied to each gene based on the average single-SNP

chi-squared statistic of all SNPs in that gene. The latter analysis

measures the overall association evidence across a gene,

highlighting genes with multiple association signals. Results for

all genes in the cholesterol-related processes listed in Table 4 are

given in Table S6, and for all genes in the immune-related

processes in Table S7. Gene-wide significance of genes with a SNP

with p,0.001 in either study are shown for lipid-related genes in

Table 5 and for immune-related genes in Table 6. As expected,

most of the genes in Tables 5 and 6 show gene-wide significant

association evidence (Tables S6 and S7), but other genes in these

processes are also significant. Tables 5 and 6 also give the most

significantly associated SNP from each gene for both studies and

the r2 between them. Note that the immune-related genes include

both CLU, which contains a SNP showing genome-wide significant

association in both GWAS, and CR1, which contains a SNP that is

genome-wide significant in one study [8] and has a p-

value,161025 in the other [7]. It was not possible to perform

gene-wide analyses on the Lambert data since individual

genotypes were not available. However, the most significant p-

values from the genes of interest are shown in Tables 5, S6 and S7.

Similar gene-wide analyses were performed on the genes in the

enriched KEGG pathways (Table S4).

Set-based and GSEA analysis was applied to each of the 25 GO

processes with ALIGATOR p,0.05 in both the GWAS datasets

(Table 4). GSEA analysis was applied in both Harold [7] and

Lambert [8] datasets, while the set-based analysis was applied in

the Harold dataset only (with the APOE region removed) since

individual genotypes were not available in the Lambert dataset.

Set-based analyses were also applied to the complete set of

cholesterol-related genes in Table S6, and the complete set of

immune-related genes in Table S7. The cholesterol-related genes

gave a set-based p = 0.005, and the immune-related genes

p = 0.005. After removing the SNPs giving rise to the GO signal

(i.e. the most significant SNPs from the genes in Tables 5 and 6),

the p-values are p = 0.009 and p = 0.007, respectively. This shows

that the association signal in these genes is not restricted to a few

highly-significant SNPs. GSEA analysis in the Harold dataset was

significant for all of the processes except for GO:0007271 (synaptic

Table 3. The most significantly overrepresented gene ontology processes.

GO process
category
total

# genes
on list p-value

Study-wide
p-value Function

GO:0032488 4 3 ,1.00E-05 0.042 Cdc42 protein signal transduction

GO:0033700 8 4 ,1.00E-05 0.042 phospholipid efflux

GO:0043691 14 7 ,1.00E-05 0.042 reverse cholesterol transport

GO:0030301 34 8 ,1.00E-05 0.042 cholesterol transport

GO:0015918 34 8 ,1.00E-05 0.042 sterol transport

GO:0034369 18 6 ,1.00E-05 0.042 plasma lipoprotein particle remodeling

GO:0034368 18 6 ,1.00E-05 0.042 protein-lipid complex remodeling

GO:0034367 18 6 ,1.00E-05 0.042 macromolecular complex remodeling

GO:0034375 11 5 ,1.00E-05 0.042 high-density lipoprotein particle remodeling

GO:0034382 3 3 ,1.00E-05 0.042 chylomicron remnant clearance

GO:0016125 87 11 2.00E-05 0.066 sterol metabolic process

GO:0022411 55 8 2.00E-05 0.066 cellular component disassembly

GO:0006958 28 6 2.00E-05 0.066 complement activation, classical pathway

GO:0002455 28 6 2.00E-05 0.066 humoral immune response mediated by circulating
immunoglobulin

GO:0042632 33 7 4.00E-05 0.093 cholesterol homeostasis

GO:0055092 33 7 4.00E-05 0.093 sterol homeostasis

GO:0006956 37 6 4.00E-05 0.093 complement activation

GO:0002541 38 6 4.00E-05 0.093 activation of plasma proteins involved in acute
inflammatory response

GO:0045087 120 11 6.00E-05 0.113 innate immune response

GO:0008203 78 10 8.00E-05 0.129 cholesterol metabolic process

The 589 genes identified as having GWAS SNP signals p,0.001 were used: APOE was included in the gene list. In this analysis one SNP was not allowed to add more
than one gene to any gene ontology category. ‘‘Study-wide p-value’’ is the probability of obtaining by chance at least one GO category with a category-specific
enrichment p-value at least as significant as that observed. . There are genes in the pathways that are in close proximity and that are both included because of the same
significant SNP in both genes, as genes were associated with a SNP if it mapped within 20kb of a given gene: details of these genes are in Tables 5 and 6. If CR2, IL18RAP
and IL18R1 are removed (effectively counting CR1/CR2 as one signal and IL1RL1/IL18RAP/IL18R1 as one signal) the GO analysis yields GO:0006958 and GO:0002455: 27
genes, 5 significant (0.60 expected) p = 0.0002, GO:0006956: 36 genes, 5 significant (0.79 expected) p = 0.0004, GO:0002541: 37 genes, 5 significant (0.81 expected)
p = 0.0004 and GO:0045087: 117 genes, 8 significant (2.58 expected) p = 0.0044. Only processes are presented. The full data are available in Table S1.
doi:10.1371/journal.pone.0013950.t003

Pathway Analysis of AD GWAS

PLoS ONE | www.plosone.org 5 November 2010 | Volume 5 | Issue 11 | e13950



transmission, cholinergic), with p-values very similar to that of the

ALIGATOR analysis. In the Lambert dataset, all the immune-

related pathways gave significant GSEA p-values, as did some of

the lipid/cholesterol-related pathways. A pathway giving signifi-

cant results in ALIGATOR but not in GSEA is likely due to the

genes containing SNPs with p,0.001 being large (and thus subject

to a stringent Simes correction), and the remaining genes showing

little association evidence. In general, the set-based and GSEA

analyses gave similar results to the ALIGATOR analyses, giving

confidence that the results obtained by the latter reflect underlying

biology.

Discussion

Our analysis of two large independent GWAS of LOAD

strongly implicates genetic variation in the functions of the

immune system and in lipid metabolism as causes of LOAD

susceptibility. A previous analysis of the Lambert et al. data [8,24]

highlighted similar biological processes despite not showing an

overall excess of enriched GO categories. It highlights potential

mechanisms related to these processes that should be the subject of

further detailed genetic and functional investigations. This study

has implications for the interpretation of GWAS of complex

disease as it demonstrates that useful biological insights may be

gained from association signals below the threshold for genome-

wide significance, as previously shown for the WTCCC study

[16,25] where pathways known to be related to the diseases

studied were highlighted by ALIGATOR. These analyses

potentially highlight non-genome-wide significant SNPs that could

explain some disease heritability which current GWAS do not

have the power to detect.

The power of genetic data lies in their ability to highlight

primary susceptibilities to disease, that is, they illuminate aetiology.

This does not mean that all genes with a nominally significant SNP

Table 4. List of GO categories significantly (p,0.05) enriched in both GWAS.

GO category
ALIGATOR p
(Harold)

ALIGATOR p
(Lambert) Joint p

Empirical
GSEA p
(Harold)

Empirical
GSEA p
(Lambert)

Set-based p
(Harold) Function

GO:0015918 ,0.00001 0.0012 0.0079 ,0.0001 0.0072 0.003 sterol transport

GO:0030301 ,0.00001 0.0012 0.0079 ,0.0001 0.0072 0.003 cholesterol transport

GO:0043691 ,0.00001 0.0086 0.0079 ,0.0001 0.0876 0.002 reverse cholesterol transport

GO:0033700 ,0.00001 0.0278 0.0079 0.0018 0.5852 0.008 phospholipid efflux

GO:0034375 ,0.00001 0.0348 0.0079 0.0014 0.7218 0.006 high-density lipoprotein particle
remodeling

GO:0006958 0.00002 0.0108 0.0082 0.0004 0.0040 0.002 complement activation, classical
pathway

GO:0002455 0.00002 0.0108 0.0082 0.0004 0.0040 0.002 humoral immune response mediated by
circulating immunoglobulin

GO:0042632 0.00004 0.0092 0.0086 0.0000 0.3888 0.003 cholesterol homeostasis

GO:0055092 0.00004 0.0092 0.0086 0.0000 0.3888 0.003 sterol homeostasis

GO:0006956 0.00004 0.0226 0.0099 0.0012 0.0018 0.004 complement activation

GO:0002541 0.00004 0.0228 0.0099 0.0016 0.0010 0.004 activation of plasma proteins involved
in acute inflammatory response

GO:0002504 0.00232 0.0008 0.0122 0.0360 0.0506 0.033 antigen processing and presentation of
peptide or polysaccharide antigen via
MHC class II

GO:0055088 0.00026 0.0170 0.0181 0.0004 0.5816 0.010 lipid homeostasis

GO:0006869 0.00028 0.0332 0.0306 0.0000 0.0046 0.003 lipid transport

GO:0016064 0.00048 0.0412 0.0519 0.0020 0.0044 0.004 immunoglobulin mediated immune
response

GO:0010876 0.00048 0.0426 0.0531 0.0000 0.0032 0.003 lipid localization

GO:0010872 0.00120 0.0198 0.0592 0.0188 0.3844 0.007 regulation of cholesterol esterification

GO:0019724 0.00058 0.0450 0.0633 0.0014 0.0042 0.008 B cell mediated immunity

GO:0006955 0.00126 0.0214 0.0647 0.0030 0.0010 0.003 immune response

GO:0034377 0.00318 0.0250 0.1379 0.0068 0.6926 0.027 plasma lipoprotein particle assembly

GO:0065005 0.00318 0.0250 0.1379 0.0068 0.6926 0.027 protein-lipid complex assembly

GO:0002443 0.00410 0.0320 0.1872 0.0028 0.0018 0.022 leukocyte mediated immunity

GO:0007271 0.01574 0.0090 0.1955 0.1226 0.1780 0.005 synaptic transmission, cholinergic

GO:0033344 0.02684 0.0108 0.2972 0.0002 0.2094 0.020 cholesterol efflux

GO:0045940 0.00750 0.0464 0.3305 0.0262 0.6062 0.008 positive regulation of steroid metabolic
process

‘‘Joint p’’ is the probability of observing by chance at least one category among the entire set of categories tested with joint enrichment (defined as the product of
enrichment p-values from the two GWAS) at least as extreme as that observed in the real data. This corrects for the multiple non-independent GO categories being
tested. GSEA is gene set enrichment analysis.
doi:10.1371/journal.pone.0013950.t004
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in an enriched GO category are true susceptibility genes for the

phenotype under consideration, rather that that category itself is

likely to be relevant to aetiology since it contains an excess of

nominally associated SNPs. In this context, while the Harold [7]

and Lambert [8] GWAS show a remarkable overlap in processes

identified by ALIGATOR [16], the signal within each category

did not necessarily reflect the same set of SNPs or genes. Tables 5

and 6 show that linkage disequilibrium between the most

significant SNPs from each gene in the two GWAS varies from

1 (the same SNP) to none. In a pathway analysis this is perhaps

unsurprising as there are several explanations for this observation.

First, although we observe an excess of associated SNPs at all

significance levels (Table 1), not all SNPs that surpass nominal

significance can be expected to represent true associations.

Second, in a set of genes that influence disease aetiology through

a common biological pathway, it is likely that a number of SNPs

will be associated with disease risk and affected individuals need

not have the same combination of risk alleles. Individuals may

have susceptibility alleles in different genes in a pathway or

multiple rare susceptibility alleles may occur in a single gene; the

latter will tend to be poorly tagged in GWAS. As a consequence

even fairly large studies will have modest power to detect (or

replicate between studies) any one signal, as compared with the

power of tests based on the whole pathway. It is therefore

noteworthy that the only non-immune and non-lipid related

process detected in both studies was cholinergic synaptic

transmission (Table 4); boosting cholinergic transmission is the

target of one of the few available therapies for AD [26].

This analysis has limitations. We used categories curated in GO

and KEGG databases and phenotypes annotated in the MGI

database and will not have detected signal in functional processes

not represented or well annotated by those systems. We chose to

use GO and KEGG to define pathways since they are publicly

available in a format that enables systematic testing of all pathways

simultaneously in a statistically rigorous manner. The large

number of GO categories increases the chance of alignment with

the unknown disease biology underlying the GWAS results and the

smaller number of results provided by the KEGG analysis

supports this conclusion. The power to detect enrichment is

highest for well-defined processes, and is greatly reduced if

Table 5. Genes with a SNP with p,0.001 in cholesterol and lipid-related processes that are significantly enriched in both GWAS.

Gene
Symbol

Chr location
(Mb)

No. of SNPs
(Harold)

Best p-value
(Harold)

No. of SNPs
(Lambert)

Best p-value
(Lambert)

Best SNP
(Harold)

Best SNP
(Lambert) r2 (Harold)

APOE 19 (50) 5 ,1.00E-10 5 ,1.00E-10 rs8106922 rs8106922 1

APOC1 19 (50) 3 ,1.00E-10 3 ,1.00E-10 rs8106922 rs8106922 1

CLU 8 (28) 15 1.40E-09 14 5.19E-08 rs11136000 rs11136000 1

APOC2 19 (50) 4 3.43E-08 4 2.78E-03 rs5167 rs3760627 0.373

APOC4 19 (50) 4 3.43E-08 4 2.78E-03 rs5167 rs3760627 0.373

ABCA7 19 (1) 19 1.56E-05 17 4.24E-03 rs3764650 rs3764650 1

ABCA1 9 (107) 164 5.31E-05 169 1.30E-02 rs12686004 rs12336969 0.006

ABCA12 2 (216) 60 7.88E-05 62 1.43E-01 rs2225064 rs10206315 0.0002

LIPC 15 (57) 69 1.39E-04 64 6.34E-03 rs17269348 rs1077834 0.001

ATP8A1 4 (42) 64 1.82E-04 61 1.25E-01 rs3811769 rs9291220 0.105

ATP8B4 15 (48) 91 1.89E-04 86 1.69E-03 rs8041340 rs2009833 0.105

MALL 2 (110) 6 2.46E-04 3 4.37E-01 rs12998618 rs11240790 0.725

ATP8A2 13 (25) 154 1.06E-03 153 2.46E-04 rs3117849 rs10492697 0.001

OSBPL7 17 (43) 19 2.85E-04 19 3.07E-02 rs11079797 rs11652164 0.047

SCARB1 12 (124) 24 3.00E-04 25 6.94E-02 rs4765622 rs6488950 0.042

VPS4B 18 (59) 16 3.30E-04 15 1.89E-03 rs8094406 rs8091623 0.144

ABCG1 21 (42) 99 1.51E-03 95 4.64E-04 rs4148084 rs1044317 0.015

LIPG 18 (43) 19 5.20E-04 19 8.97E-03 rs12604221 rs2000813 0.046

OSBPL9 1 (59) 13 5.66E-04 12 3.81E-01 rs856614 rs1770791 0.005

PCTP 17 (51) 18 1.60E-02 19 6.01E-04 rs2960060 rs8079126 0.000

SLC27A4 9 (130) 7 8.19E-02 7 6.20E-04 rs3003600 rs7019382 0.028

NPC1 18 (19) 15 4.60E-02 15 6.25E-04 rs1808579 rs12970899 0.172

APOA1 11 (116) 6 7.62E-04 5 2.22E-01 rs12718464 rs509712 0.0002

APOC3 11 (116) 4 7.62E-04 3 2.68E-01 rs12718464 rs10047459 0.335

APOA4 11 (116) 4 7.62E-04 3 3.00E-01 rs12718464 rs1263167 0.0001

AGTR1 3 (149) 51 8.83E-04 50 1.32E-02 rs7647223 rs4681444 0.006

SOAT1 1 (177) 25 2.79E-02 25 9.94E-04 rs2492778 rs4652366 0.015

Genes included are those that have a SNP with p,0.001 in the Harold GWAS, and are in the lipid-related processes significantly enriched in both GWAS (Table 4). APOC1,
APOC2 and APOC4 are not included in the enrichment analysis (Tables 3 and 4) since they are in LD with APOE. APOA1 and APOA4 share the same best SNP and are
therefore counted as the same gene in the enrichment analyses. Two genes, CLU and APOA4, are found in both cholesterol and immune-related GO processes. The
category-wide set-based analysis allows for such dependence between genes. Genes contributing to the enrichment signal from Harold et al. are in bold, genes
contributing to the signal from Lambert et al. are in italic and genes contributing to the signal in both are in bold italic.
doi:10.1371/journal.pone.0013950.t005
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biologically important gene products are incorrectly or incom-

pletely classified, or omitted. The quality of annotation in GO is

variable, since some of it is inferred electronically, although there

is some evidence that the majority of such annotations are correct

[27]. However, enrichment analysis of an independent set of

experimentally determined annotations, the MGI mouse pheno-

types, highlighted the same biological processes, thus validating the

GO results. The same analysis method applied to other diseases

[16] found relevant biological pathways which were different to

those presented here. Thus, the significance of these results is not

Table 6. Genes with a SNP with p,0.001 in immune-related processes that are significantly enriched in both GWAS.

Gene Symbol
Chr location
(Mb)

No. of SNPs
(Harold)

Best p-value
(Harold)

No. of SNPs
(Lambert)

Best p-value
(Lambert)

Best SNP
(Harold)

Best SNP
(Lambert) r2 (Harold)

BCL3 19 (50) 6 ,1.00E-10 6 1.90E-09 rs2927438 rs2965101 0.136

CLU 8 (28) 15 1.40E-09 14 5.19E-08 rs11136000 rs11136000 1

CR1 1 (206) 29 8.32E-06 29 1.03E-06 rs1408077 rs3818361 0.978

IL1RAP 3 (192) 50 1.26E-05 49 9.41E-03 rs4571225 rs6800609 0.004

MS4A2 11 (60) 11 5.74E-05 10 4.52E-02 rs540170 rs543695 0.447

DEFB118 20 (29) 5 2.73E-01 5 5.85E-05 rs6058963 rs17248462 0.021

LILRA2 19 (60) 8 2.81E-02 9 8.13E-05 rs11672845 rs2555691 0.003

LILRA1 19 (60) 8 1.14E-01 9 8.13E-05 rs10411879 rs2555691 0.026

CHUK 10 (102) 8 6.46E-03 7 9.00E-05 rs3818411 rs10883452 0.153

HLA-DRB1 6 (33) 18 1.55E-04 12 1.29E-04 rs660895 rs9269329 0.075

CR2 1 (206) 21 5.22E-04 21 2.10E-04 rs4317805 rs4310446 0.259

CLNK 4 (10) 62 2.72E-04 55 8.72E-02 rs2041216 rs10488945 0.193

LILRB4 19 (60) 22 1.87E-02 21 2.82E-04 rs1654668 rs1925241 0.050

CHST4 16 (70) 13 4.70E-02 12 3.02E-04 rs4149498 rs310334 0.185

BTLA 3 (113) 12 3.67E-04 11 6.85E-02 rs2171513 rs2705534 0.259

HLA-DRA 6 (33) 50 3.92E-04 45 4.63E-04 rs2395175 rs3135344 0.097

IL18RAP 2 (102) 15 3.94E-04 15 1.61E-02 rs2141781 rs2272128 0.275

CPLX2 5 (175) 48 3.18E-02 45 4.39E-04 rs17762082 rs2218891 0.149

SERPINB4 18 (59) 5 5.05E-04 5 6.44E-01 rs645623 rs3853683 0.028

IL18R1 2 (102) 16 5.42E-04 16 1.74E-02 rs4851004 rs13015714 0.629

P2RY14 3 (152) 14 5.47E-04 13 1.16E-01 rs10513391 rs9289834 0.080

IL17A 6 (52) 21 1.32E-02 21 5.55E-04 rs16882154 rs9395766 0.116

TAP2 6 (33) 97 5.64E-04 83 6.50E-03 rs1894406 rs4148870 0.001

HLA-DOB 6 (33) 75 5.64E-04 64 2.03E-03 rs1894406 rs7767167 0.002

CFI 4 (111) 18 5.85E-04 18 1.01E-01 rs2346841 rs4610335 0.011

EXO1 1 (240) 16 6.52E-04 19 9.65E-02 rs1776161 rs1776148 0.001

HLA-DPA1 6 (33) 45 6.03E-02 41 6.57E-04 rs11965964 rs2105929 0.008

PAG1 8 (82) 57 2.41E-03 56 7.20E-04 rs1445558 rs11778741 0.011

CD300A 17 (70) 14 7.23E-04 13 2.20E-01 rs4788839 rs1048367 0.106

CXCL12 10 (44) 18 7.41E-04 17 7.51E-03 rs2861442 rs2861442 1

C9 5 (39) 28 7.53E-04 27 3.38E-02 rs3776519 rs3733801 0.006

GALNT2 1 (228) 83 7.60E-04 79 1.02E-02 rs11122300 rs1474925 0.001

APOA4 11 (116) 4 7.62E-04 3 3.00E-01 rs12718464 rs1263167 0.001

ICOSLG 21 (44) 21 8.36E-04 19 2.21E-01 rs7278004 rs7283760 0.387

IRF8 16 (84) 39 7.22E-03 38 8.94E-04 rs11117425 rs419030 0.171

IL1RL1 2 (102) 22 9.02E-04 22 1.74E-02 rs10192157 rs13015714 0.181

HLA-DQA1 6 (33) 24 9.32E-04 14 6.62E-03 rs17533090 rs9272105 0.187

HLA-DOA 6 (33) 68 5.18E-03 67 9.73E-04 rs189984 rs9277015 0.027

C1S 12 (7) 6 9.73E-04 6 4.55E-03 rs7311672 rs11064498 0.652

Genes included are those that have a SNP with p,0.001 in the Harold GWAS, and are in the immune-related processes significantly enriched in both GWAS (Table 4).
BCL3 is not included in the enrichment analysis (Tables 3 and 4) since it is in LD with APOE. Two genes, CLU and APOA4, are found in both cholesterol and immune-
related GO processes. CR1 and CR2 are at the same locus, as are IL18RAP, IL18R1 and IL1RL1 (see Table 3). Although they do not share the same best SNP, they may be
tagging the same signal. The same applies to HLA-DRB1, HLA-DRA, HLA-DOB, TAP2 and HLA-DQA1, which are all in the MHC region. The category-wide set-based analysis
allows for such dependence between genes. Genes contributing to the enrichment signal from Harold et al. are in bold, genes contributing to the signal from Lambert
et al. are in italic and genes contributing to the signal in both are in bold italic.
doi:10.1371/journal.pone.0013950.t006
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simply due to the immune system and lipid metabolism being

relatively well annotated. Furthermore, the ALIGATOR results

were validated by applying GSEA and set-based analyses to the

most significantly enriched pathways. These analyses produced

similar results to ALIGATOR, giving confidence that the results

obtained by ALIGATOR are genuine. This is supported by a

direct analysis of SNPs in lipid-pathway genes in AD [28] which

showed that more SNPs in lipid pathway genes than expected

showed association with AD.

There are relatively few pathways highlighted by the KEGG

analysis and this is likely due to the KEGG pathways including a

more restricted range of biological processes than GO: while there

are KEGG pathways relating to cholesterol and bile acid

biosynthesis there are no pathways relating directly to lipid efflux

from and transport between cells. Lambert et al. [24] detected an

enrichment with the Alzheimer’s disease KEGG pathway in a

GSEA analysis. However, this enrichment is likely to have driven

by the strong APOE association. We found significant enrichment

of this pathway in the Lambert data when APOE was included,

but not when it was removed. The KEGG pathways also tend to

be large and the KEGG database does not have the hierarchical

structure of the GO database that allows more specific functions to

be defined. KEGG pathways with apparently similar names do not

always contain similar genes to their corresponding GO categories.

For example, KEGG pathway hsa4610 (complement and

coagulation cascades) and GO:0006958 (complement activation,

classical pathway) both relate to the complement cascade.

However, hsa4610 also contains several genes that are not part

of the complement cascade, making it larger than GO:0006958

(67 genes to 28) and reducing its significance in the enrichment

analysis, since none of the extra genes have a SNP with p,0.001.

Cholesterol metabolism and innate immune processes have

previously been implicated in AD pathogenesis [29,30]. Epidemi-

ological studies show that high cholesterol levels in mid-life are

correlated with later dementia, and statins, which lower cholesterol

levels, may have a protective effect against the development of

dementia [31]. There have been trials and epidemiological surveys

of the effects of anti-inflammatory treatment in AD which indicate

that, although non-steroidal anti-inflammatories may have an

effect on disease susceptibility, the drugs investigated so far are not

a treatment for manifest disease [32]. Better targeted drugs to the

parts of the immune system involved in AD susceptibility may offer

new therapeutic avenues for research.

Although APOE was identified as a susceptibility factor for AD

over 15 years ago [33], it is still not clear how the e4 variant

contributes to disease risk. The brain requires de novo cholesterol

synthesis. This occurs in astrocytes and microglia, the cholesterol

then being loaded into APOE lipoprotein particles and transport-

ed to the main cholesterol users, neurons and oligodendrocytes

[34]. So while the impact of APOE is clearly of importance in AD,

our data indicate that other participants in sterol metabolic

processes also impact upon susceptibility. It is notable that some of

these genes are not expressed in the brain, for instance LIPC,

APOA1, SCARB1 and LIPG, but are important in the systemic

control of sterol metabolism in the liver and blood. Some of these

gene products may well be useful in providing clues for possible

systemic biomarkers of disease progress.

APOE has been implicated in Ab clearance. The lipidation state

of APOE is critical to its ability to transport Ab across the BBB,

APOE4 being associated with the least efficient transport [35]. Ab
in the blood is transported in cholesterol-rich HDL particles,

which have ApoA1 or ApoE as associated lipoproteins, before

elimination by the liver [36]. Our data suggest that the role of

APOE in cholesterol metabolism is important in AD, and may

implicate the systemic clearance of Ab-HDL through the liver, in

which APOE is certainly involved, as a primary modulator of AD

susceptibility [36,37]. CLU, encoding APOJ, is associated with

cholesterol transport and has been demonstrated to promote

export of Ab over the BBB [38] and thus may modulate Ab
clearance from the brain in concert with APOE.

Apart from the APOE locus, CLU, which encodes the

complement activation inhibitor clusterin and CR1 which encodes

complement receptor 1 both contain genome-wide significant

signals and are involved in the innate immune response [7,8]. The

set of immune-related genes remained significantly associated (set-

based p-value 0.006) after the removal of CLU. Complement

components have been detected in AD amyloid plaques [37] and

fibrillar APP activates complement pathways. The phagocytotic

action of both microglia and blood-derived macrophages has been

implicated in Ab clearance [38]. However, until now, these

observations have been considered to be consequences of disease

pathology because activation of microglia, the resident immune

cells of the brain, can result from neurodegeneration [39].

Our data suggest that the primary causes of LOAD include

genetic variation in cholesterol metabolism and the innate immune

system. They also indicate that common variation in genes directly

related to Ab metabolism does not underlie individual differences

in susceptibility to LOAD. Nevertheless these findings do not

exclude a central role for the amyloid cascade [5] in pathogenesis,

and indeed, both processes highlighted by our analysis have been

implicated in Ab clearance in the brain [40] though further work is

required to determine whether the risk these processes confer is

mediated solely or in part through Ab and whether they impact on

risk via other mechanisms. Importantly both processes represent

modifiable risk factors that might be addressed by drugs already in

our armoury.

Supporting Information

Table S1 Gene ontology categories identified by ALIGATOR

analysis of the AD GWA data of Harold and colleagues (7). The

589 genes identified as having GWAS SNP signals p,0.001 were

used: APOE was included in the gene list. In this analysis one SNP

was not allowed to add more than one gene to any gene ontology

category. ‘‘Study-wide p-value’’ is the probability of obtaining by

chance at least one GO category with a category-specific

enrichment p-value at least as significant as that observed.

Found at: doi:10.1371/journal.pone.0013950.s001 (0.11 MB

PDF)

Table S2 Gene ontology categories identified by ALIGATOR

analysis of the AD GWA data of Lambert and colleagues. The 423

genes identified as having GWAS SNP signals p,0.001 from

Lambert et al. (8)were used: APOE was included in the gene list.

In this analysis one SNP was not allowed to add more than one

gene to any gene ontology category. ‘‘Study-wide p-value’’ is the

probability of obtaining by chance at least one GO category with a

category-specific enrichment p-value at least as significant as that

observed.

Found at: doi:10.1371/journal.pone.0013950.s002 (0.08 MB

PDF)

Table S3 List of KEGG categories significantly (p,0.05)

enriched in both GWAS. ‘‘Joint p’’ is the probability of observing

by chance at least one category among the entire set of categories

tested with joint enrichment (defined as the product of enrichment

p-values from the two GWAS) at least as extreme as that observed

in the real data. This corrects for the multiple non-independent

GO categories being tested.
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Found at: doi:10.1371/journal.pone.0013950.s003 (0.00 MB

PDF)

Table S4 All genes in the KEGG immune-related categories in

Table S3. ‘‘Best p (corrected)’’ is the significance of the best single-

SNP p-value corrected for testing multiple SNPs in a gene

(allowing for LD between SNPs). ‘‘Set based p’’ refers to a test of

whether the average single-SNP chi-squared (allelic) association

statistic is significantly high (again allowing for LD between SNPs).

Found at: doi:10.1371/journal.pone.0013950.s004 (0.01 MB

PDF)

Table S5 MGI mouse phenotypes identified by ALIGATOR

analysis of the AD GWA data of Harold and colleagues. The 589

genes identified as having GWAS SNP signals p,0?001 were used:

APOE was included in the gene list. In this analysis one SNP was

not allowed to add more than one gene to any phenotype. ‘‘Study-

wide p-value’’ is the probability of obtaining by chance at least one

mouse phenotype with a phenotype-specific enrichment p-value at

least as significant as that observed.

Found at: doi:10.1371/journal.pone.0013950.s005 (0.08 MB

PDF)

Table S6 All genes in the cholesterol and lipid categories in

Table 5. ‘‘Best p (corrected)’’ is the significance of the best single-

SNP p-value corrected for testing multiple SNPs in a gene

(allowing for LD between SNPs). ‘‘Set based p’’ refers to a test of

whether the average single-SNP chi-squared (allelic) association

statistic is significantly high (again allowing for LD between SNPs).

Found at: doi:10.1371/journal.pone.0013950.s006 (0.08 MB

PDF)

Table S7 All genes in the immune-related categories in Table 6.

‘‘Best p (corrected)’’ is the significance of the best single-SNP p-

value corrected for testing multiple SNPs in a gene (allowing for

LD between SNPs). ‘‘Set based p’’ refers to a test of whether the

average single-SNP chi-squared (allelic) association statistic is

significantly high (again allowing for LD between SNPs).

Found at: doi:10.1371/journal.pone.0013950.s007 (0.04 MB

PDF)
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