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Abstract

Most extremely preterm newborns exhibit cerebral atrophy/growth disturbances and white matter signal abnormalities on
MRI at term-equivalent age. MRI brain volumes could serve as biomarkers for evaluating the effects of neonatal intensive
care and predicting neurodevelopmental outcomes. This requires detailed, accurate, and reliable brain MRI segmentation
methods. We describe our efforts to develop such methods in high risk newborns using a combination of manual and
automated segmentation tools. After intensive efforts to accurately define structural boundaries, two trained raters
independently performed manual segmentation of nine subcortical structures using axial T2-weighted MRI scans from 20
randomly selected extremely preterm infants. All scans were re-segmented by both raters to assess reliability. High intra-
rater reliability was achieved, as assessed by repeatability and intra-class correlation coefficients (ICC range: 0.97 to 0.99) for
all manually segmented regions. Inter-rater reliability was slightly lower (ICC range: 0.93 to 0.99). A semi-automated
segmentation approach was developed that combined the parametric strengths of the Hidden Markov Random Field
Expectation Maximization algorithm with non-parametric Parzen window classifier resulting in accurate white matter, gray
matter, and CSF segmentation. Final manual correction of misclassification errors improved accuracy (similarity index range:
0.87 to 0.89) and facilitated objective quantification of white matter signal abnormalities. The semi-automated and manual
methods were seamlessly integrated to generate full brain segmentation within two hours. This comprehensive approach
can facilitate the evaluation of large cohorts to rigorously evaluate the utility of regional brain volumes as biomarkers of
neonatal care and surrogate endpoints for neurodevelopmental outcomes.
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Introduction

More than 50% of extremely low birth weight (ELBW,

BW#1000g) preterm survivors face long-term disabilities such as

cerebral palsy, sensory deficits, intellectual impairments, and

attention/behavioral problems that significantly impair their

quality of life [1–3]. Cerebral atrophy/growth disturbances and

white matter signal abnormalities (WMSA) are commonly

observed following very preterm birth and neonatal intensive care

[4–8]. These abnormalities, especially when severe, are readily

identifiable on conventional T1 or T2 weighted (w) MRI as early

as 36 to 40 weeks post-menstrual age [9,10]. However, qualitative

MRI assessments are subjective and prone to measurement errors.

Absolute quantification of MRI brain volumes may overcome this

limitation for improving neurodevelopmental outcome prediction

[11,12,13] and qualify as a surrogate endpoint for clinical trials in

high risk newborns [13,14]. To achieve this goal, segmentation

methodology needs to be accurate, reliable, and fast. Several

investigators have achieved this goal for adult brain MRI

segmentation. Most methods classify each voxel in the MRI based

on intensity information, spatial information, or a combination of

both [15]. Statistical techniques such as expectation-maximization

algorithm [16,17], hidden Markov random field [18], k-nearest

neighbor classification [19,20], and Parzen-window classification

[21] have been previously used to correctly identify tissue classes.

These novel approaches have facilitated comprehensive and

accurate segmentation of adult brain MRI.

In contrast with adults, neonatal brain MRI exhibits lower

image contrast due to incomplete myelination, lower signal-to-

noise ratio as a result of shorter scan times, and lower spatial

resolution due to smaller head size. Segmentation difficulties are

further amplified in extremely preterm infants, who exhibit high

rates of brain injuries and delayed development. Therefore,

automated segmentation of smaller brain structures has been

unable to replace manual segmentation methods. Manual

approaches, while more accurate, require further improvements
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in reliability and efficiency for routine use [13,22,23]. Particularly,

higher segmentation reliability than we previously reported is

required for amygdalae, hippocampi, thalamic, and caudate nuclei

[13] and reduction in total segmentation time from several days to a

few hours is needed to facilitate larger studies [22]. Recently there has

been encouraging progress in neonatal cerebral tissue segmentation

using probabilistic atlases that exploit anatomical knowledge [24–27]

and by using regional expectation-maximization algorithm to

account for spatial variation of tissue intensity [28]. These approaches

have achieved very good to excellent accuracy when compared to

expert manual tissue segmentations of cerebrospinal fluid (CSF), gray

matter (GM), and white matter (WM). Use of a Parzen window

classifier, a nonparametric method that does not assume any intensity

distribution may additionally improve accuracy for automated

newborn tissue segmentation as achieved with adult MRI [21].

Our aims for this study were four-fold: 1) to develop an accurate

neonatal tissue segmentation program that requires minimal operator

intervention by adapting the methods of Sajja et al. [21]; 2) to

improve the efficiency and reliability of our previously described

detailed subcortical manual segmentation methods [13,23]; 3) to

seamlessly integrate these complementary approaches; and 4) to

evaluate the accuracy, reliability, and efficiency of the combined

comprehensive semi-automated approach.

Methods

Ethics Statement
The Children’s Hospital and University of Texas Medical

School at Houston joint Institutional Review Board approved the

study. No parental informed consent was required because the

study only analyzed de-identified existing patient data.

Subjects
A random sample of 30 infants were selected from a

consecutively imaged cohort of all ELBW infants that were born

and admitted to the NICU of Children’s Memorial Hermann

Hospital between June 2005 to January 2007 and survived to MRI

examination prior to discharge or 38 weeks postmenstrual age

(PMA). None of the infants had any major congenital anomalies.

Ten ELBW infants (3 males/7 females) were randomly selected for

comparison of semi-automated with manual segmentation; their

median (95% CL) gestational age was 27 (23–29) weeks, birth

weight was 777.5 (530.0–949.0) grams, and PMA at MRI scan was

38.1 (36.4–40.1) weeks. An additional 20 infants (11 males/9

females) were randomly selected to assess manual segmentation

reliability; their mean (SD) gestational age was 26.3 (2.3) weeks,

birth weight was 722.8 (152.0) grams, and median PMA at MRI

scan was 38.0 (range: 35.7 to 43.4) weeks.

MRI
All ELBW survivors from our NICU were clinically screened for

brain injury at 38 weeks PMA or earlier if discharge was sooner, using

a standardized conventional MRI protocol on a 1.5 Tesla GE-LX

scanner. Sequence parameters for the axial PD/T2w scans used for

volumetry were: TE 15/175 ms; TR 10000 ms; ETL 16; FOV

18618 cm; matrix 5126512; slice thickness 2mm; no gap; voxel

height 0.36; width 0.36; depth 1.98 mm. All infants were transported

to the MRI scanner by an experienced neonatal transport nurse after

feeding, swaddling, and placement of silicone ear plugs. Less than 10%

of ELBW infants were administered sedation for excessive movement.

Manual structural segmentation
Axial PD/T2 images were transferred to a Windows worksta-

tion for post-processing and imported into Analyze 8.1 software

(Biomedical Imaging Resource, Mayo Clinic, Rochester, MN) for

structural segmentation and volume rendering. Due to the poor

gray - white matter contrast in the developing brain, subcortical

structural segmentation in infants was performed manually. Our

previously published methods [23,13] were modified to improve

reliability by greater standardization of structural boundary

landmarks, guided by detailed knowledge of regional anatomy.

The primary anatomical references used were the Haines

neuroanatomy atlas [29], Bayer and Altman atlas of human

central nervous system development [30] and two online human

atlases [31,32]. Manually guided boundaries were created in the

axial plane and reformatted in the sagittal and coronal planes as

needed for difficult structures such as the hippocampus. Distinc-

tion between left and right hemisphere structures was not made.

The following nine structures were manually segmented, proceed-

ing from inferior to superior axial T2w slices: brain stem,

cerebellum, amygdalae, hippocampi, corpus callosum, accumbens,

caudate, thalamus, and lenticular nuclei.

The brain stem was segmented first starting with the most inferior

slice. It was distinguished by its dark intensity surrounded by bright

CSF, central location, and anterior placement to the cerebellum

and fourth ventricle. Its rostral margins are below the level of the

posterior commissure; anterior and lateral border was defined by

the darker subthalmic nuclei, medial by the third ventricle, and

posterior boundary by the inferior colliculus. The cerebellum was

readily distinguishable from the anteriorly placed brain stem and

fourth ventricle by its spatial location and signal intensity

differences. The inferior boundary of the amygdalae was defined

as the dark almond shaped structure that appears anterior to the

frontal horns of the lateral ventricles [33–35]. Its superior margins

were immediately below the thalamus at the level of the mammillary

bodies [36]. The hippocampi inferior border was visible as a dark C-

shaped structure posterior and medial to the lateral ventricles and

appearing on the same level as the amygdalae. Its anterior border

was the amygdala, lateral border the lateral ventricle, medial

landmark the subarachnoid fluid, and posterior border the

parahippocampal gyrus [34,35,37,38]. The hippocampal superior

boundary was determined by the presence of the splenium of the

corpus callosum and atrium of the lateral ventricle [39]. The

splenium of the corpus callosum’s inferior border was medial to and

at the level of the superior part of the hippocampus. The inferior

boundary of the genu of the corpus callosum first appeared at the

level of the inferior portion of the lateral ventricle; it was easily

distinguished from surrounding tissues by its dark intensity and

position above the lateral ventricles. The superior boundary ends

when the left and right hemispheres separate.

The inferior border of the nucleus accumbens was at the level of

the third ventricle and below the lateral ventricles. Its posterolat-

eral boundary was formed by the anterior limb of the internal

capsule and the top of the third ventricle. When the internal

capsule was not clearly visible, we extended a horizontal line from

the anterior border of the third ventricle to form the posterior

border; the remaining borders were readily distinguishable from

the surrounding lower intensity white matter. We attempted to

isolate the internal capsule but were unable to segment it reliably.

Therefore we included this small volume as part of the subcortical

structures. The inferior boundary of caudate nucleus starts directly

above the accumbens, at the level of the anterior horn of lateral

ventricle or subventricular zone [40,41]. The head of the caudate

was bound medially by the frontal horn of the lateral ventricle,

laterally by the anterior limb of the internal capsule and

posteriorly by the genu of the internal capsule. The caudate

superior boundary was above the thalamus and lateral to the

confluence of the anterior and posterior horns of the lateral
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ventricles [42]. The thalamus inferior boundary was defined by

the dark centrally located mamillary bodies. Its mid-body was

bound by the brain stem posteriorly, posterior limb of the internal

capsule laterally, and third ventricle medially. The superior

boundary was at the level of the rostral internal capsule; above

this, any central gray matter was segmented as caudate nucleus.

The lenticular nucleus, comprised of the putamen and globus

pallidus, was the only central structure remaining following

segmentation of the other subcortical nuclei. It was bound

medially by the internal capsule and laterally by the external

capsule. A representative example of manually segmented

structures is presented in Figure 1.

Semi-automated tissue segmentation
Image pre-processing. Due to lower contrast between CSF/

cortex and surrounding extrameningeal tissues (including skull,

muscle, and eye structures) compared with adult MRI,

extrameningeal tissue stripping (skull stripping) was done semi-

automatically in Analyze software with human guidance. Starting

from a rater-defined seed point in the bright subarachnoid CSF on

one axial T2w slice, the Auto Trace tool was used to threshold the

CSF from all the extrameningeal tissues using a region-growing

algorithm and copying the setting to the subsequent slices using minor

editing as needed. This step took less than 10 minutes per MRI scan.

The skull-stripped images were saved and imported into a

workstation for further processing using our in-house developed

software under the Interactive Data Language (IDL, Research

Systems Inc., Boulder, CO) environment. Anisotropic diffusion

filter was applied to reduce the noise without blurring the image

[43]. Because the feature maps based on PD/T2w images used for

initial classification were generated from a set of training data

points, it is essential to normalize intensity distribution of input

image volume to that of the training data set. In most cases, this

was done automatically by histogram normalization [44] However

in one case, automatic histogram normalization was not

satisfactory, resulting from excessive motion artifacts. Manual

adjustment of the intensity distribution corrected this problem.

Automated classification of GM, WM and CSF. We

modified the automated segmentation methods of Sajja et al.

originally developed for adults with multiple sclerosis [21]. Use of

FLAIR images in adults permitted distinction between ventricular

CSF (hypointense) and periventricular WM lesions (hyperintense).

No such distinction was possible in neonates using FLAIR (both

regions appear hypointense). We therefore eliminated the use of

FLAIR images and did not attempt to automatically segment

WMSA. Based on a training data set of 10 manually segmented

ELBW infants’ brain MRI scans, a two-dimensional tissue feature

map was constructed in the PD-T2 space using Parzen Window

classifier with a Gaussian kernel, ~pp(x) [21,45,46]:

~pp(x)~
1

n

Xn

i~1

1

(hn

ffiffiffiffiffiffi
2p
p

)2
exp ({

DDx{ji DD
2

2h2
n

) ð1Þ

Here the n sample points in the training data set is denoted by

ji, iM{1, …., n}. Calculation of the parameter, hn is discussed in

detail in our previous publication [21]. Initial classification of GM,

WM, and CSF was obtained by classifying each voxel from the

input MRI based on its position in the feature map. Then a

parametric method, the Hidden Markov Random Field Expecta-

tion Maximization algorithm (HMRF-EM), was used to optimize

the boundaries between the three tissue clusters in the PD-T2

space. HMRF-EM incorporates contextual information into

segmentation through Markov Random Field theory. It is

commonly used in research [17,18,21,25,28] and MRI software

(such as FSL and Freesurfer) to capture the spatial homogeneity of

tissue classes by favoring assignment of a voxel to the same class of

its neighbors. HMRF-EM also corrects for low spatial frequency

bias field (or intensity inhomogeneity) as part of segmentation

process using EM algorithm. A d-dimensional HMRF model with

a Gaussian distribution can be specified as:

p(yi DxNi
,W)~

X
l[L

g(yi;Wl)p(lDxNi
) ð2Þ

where g(yi;W)~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2p)d DSD
q exp ({

1

2
(yi{m)tS{1,(yi{m)) with

W~fm,Sg.
L represents the set of all class labels, yi is a feature vector in

d-dimensional space and xNi
is the neighborhood configuration of xi

determined from the local characteristics of Markov random fields.

Estimation of the model parameters is described elsewhere [18]. Due

to partial volume effects, CSF around the brain surface was often

misclassified as WM. After the EM step, misclassified WM regions

within 2–3 voxels from the brain surface were relabeled as CSF using

morphological erosion operation with a 2D kernel measuring 363

voxels. This fully automated process took approximately 15 minutes

per scan (estimated on an Intel 2.4GHz Core-2 Duo CPU).

Merging manual structural segmentation and semi-
automated tissue segmentation

The manually generated subcortical segmentation map was

imported into IDL and pasted onto the completed automated tissue

map. This combined output was then imported into Analyze. To

further improve segmentation accuracy, rater one (YZ) inspected

the combined map and corrected for any significant tissue

classification errors. This rater was trained in neuroanatomy during

medical school and in her current job and has been performing

detailed manual segmentations for 3 years. The majority of

classification errors were mainly observed in the periventricular

white matter regions where signal intensities approached that of

CSF, resulting in WM being misclassified as CSF (Figure 2). All such

misclassified regions were relabeled as WMSA because they always

overlapped with areas of T2w abnormalities previously referred to

as diffuse excessive high signal intensity [4,47]. Partial volume

effects at the GM-CSF interface also occasionally resulted in

misclassification of a few voxels as WM (Figure 2). When significant,

these errors were also corrected. It took approximately 25 minutes

per MRI scan for manual inspection and correction of the

automated tissue segmentation errors. A summary of all the

processing steps is provided in Figure 3.

Evaluating reliability and accuracy
Within-subject standard deviation (SD), repeatability, and intra-

class correlation coefficients (ICC) were used to characterize intra-

and inter-rater reliability in manual structural segmentation. The

within-subject SD is defined as the common SD of repeated

measurements and calculated by obtaining the square root of the

mean within-subject variance [48]. Repeatability is defined as 2.77

times the within-subject SD. For the same subject, the difference

between two measurements is expected to be less than 2.776
within-subject SD for 95% of pairs of observations [48]. Following

a rigorous training period, a single trained rater (YZ) manually

segmented 20 T2w MRI scans to generate reference volumes for

the eight subcortical structures and cerebellum. To assess intra-

and inter-rater reliability, all 20 cases were independently

segmented again by the same rater and also by a second trained
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rater (CNG), a minimum of two to four weeks apart, while masked

to the initial segmentation results. The one exception was re-

segmentation of the cerebellum by the second rater, which was

performed in a subset of 10 rather than all 20 cases. Separate

random sample of 10 MRI scans were selected for tissue

segmentations of cerebral GM, cerebral WM, and CSF (ventric-

ular and subarachnoid). All 10 scans were manually segmented by

the first rater. These results served as our reference ‘‘gold

standard’’ volumes that were used to assess the accuracy of the

IDL semi-automated tissue segmentation program. All 10 cases

were independently re-segmented by both raters a minimum of

two to four weeks later to assess intra- and inter-rater reliability.

We also tested the intra-rater reliability of relabeling WM/CSF

misclassification errors as WMSA (N = 10). Both raters were

extensively trained and their results independently evaluated by an

investigator (NAP) with more than six years experience in

performing detailed manual segmentations.

To evaluate automated and semi-automated tissue segmenta-

tion against the reference manual parcellation, we used a test data

set of 10 MRI (fully independent data set from the training data set

used for generating the feature map). Accuracy was assessed using

four indices: Dice similarity index (SI) [49], correct estimation

index (CEI), over estimation index (OEI), and under estimation

index (UEI) [50]. SI measures agreement between the reference

Figure 1. Manually segmented representative axial T2w slices (# 16–31 of 44 total slices) beginning inferiorly with the amygdalae
(cream color), hippocampi (green), brain stem (turquoise), cerebellum (copper) (A–C) and progressing superiorly with thalamic
(orange), lenticular (pink), accumbens (blue), and caudate nuclei (lavender) and corpus callosum (yellow) (D–O). Final 3-dimensional
axial and sagittal oblique models of all nine segmented structures (P and Q).
doi:10.1371/journal.pone.0013874.g001
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manual (Ref) and semi-automated segmentation result (Auto) by

calculating the number of voxels that intersect or overlap (\)

relative to the total number of segmented voxels in both files and is

therefore sensitive to differences in size and location [50]. The

factor of 2 ensures an SI value of 1 for perfectly matched

segmentations. It is the proportion of correctly classified voxels and

used as the primary measure of segmentation performance:

SI~
2|(Ref\Auto)

RefzAuto
ð3aÞ

Another way of defining SI includes explicit determination of

true positives (TP), false positives (FP) and false negatives (FN):

SI~
2|TP

2|TPzFPzFN
ð3bÞ

CEI measures the ratio of correctly classified voxels relative to

the reference:

CEI~
Ref\Auto

Ref
ð4aÞ

OEI measures the ratio of false positive classified voxels relative

to the reference while UEI measures the ratio of false negative

classified tissues relative to the reference:

OEI~
Ref\Auto

Ref
ð4bÞ

UEI~
Ref\Auto

Ref
ð4cÞ

Figure 3. Commercially available Analyze (white boxes) and in-house developed (IDL environment; gray boxes) segmentation
programs were integrated seamlessly to permit various preprocessing and segmentation steps. The combined manual structural and
automated tissue maps were merged in IDL and exported to Analyze for final manual correction and volume calculations.
doi:10.1371/journal.pone.0013874.g003

Figure 2. Mid-axial T2w slice on the left highlighting periven-
tricular regions of white matter signal abnormalities (short
purple arrows) that the automated segmentation program
consistently misclassified as CSF (light blue regions on
segmented image on the right). Occasionally subarachnoid CSF
was misclassified as WM (long red arrows).
doi:10.1371/journal.pone.0013874.g002
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CEI, OEI, and UEI provide additional insight into the

performance of the segmentation algorithm.

Statistical analysis
Intra-class correlation coefficient estimates are based on mean

squares obtained by applying analysis of variance models to the

data using SPSS (Standard Windows Version 10.0.7; Chicago, IL).

Within-subject SD, repeatability, SI, CEI, OEI, and UEI as

described above, were calculated using IDL and Microsoft Excel

(2007 version; Redmond, WA).

Results

Table 1 presents the mean volumes with 95% confidence limits

(CL) for the eight subcortical structures and cerebellum segmented

manually twice by the first rater in 20 ELBW infants. Of these, 13

infants were clinically diagnosed with mild to moderate abnor-

malities, one with severe, and six with no abnormalities on

conventional MRI by a neuroradiologist. Table 2 presents three

measures of intra-rater segmentation reliability for the first rater.

All regions were segmented with high degree of repeatability/

reliability, including cerebral GM, cerebral WM, and CSF tissues

that served as our reference measurements for assessments of semi-

automated segmentation accuracy. Table 3 summarizes inter-rater

reliabilities between the first and second raters. While inter-rater

ICC values were comparable to intra-rater ICC, repeatability was

lower for some regions, particularly for cerebral GM, cerebral

WM, and CSF. The standard deviations of tissue and structural

volumes were unrelated to their magnitude. White matter signal

abnormalities were relabeled with high reliability (ICC 0.999

[95% CI: 0.999 to 1.000]; mean volume: 5524.2 mm3; within-

subject SD: 42.7 mm3; repeatability: 118.3 mm3).

Of the 10 new ELBW infants’ MRI scans used to determine

tissue segmentation accuracy, seven were diagnosed with mild to

moderate abnormalities, one with severe, and two had no reported

abnormalities. The mean tissue volumes with 95% CL as

determined by the three segmentation approaches are presented

in Table 4. Volumes determined by the automated program

exhibited minimal differences from manually segmented volumes.

The semi-automated approach that permits final correction,

further reduced volume differences to 0.2% to 1.5%.

Figure 4 depicts four measures of accuracy for the automated

and the semi-automated segmentation methods. The fully

automated approach achieved SI coefficients between 0.84 and

0.88 and correct classification between 0.82 and 0.89 when

compared to the reference manual tissue segmentation results.

This was a considerable improvement over the first generation of

this program that overestimated GM (data not shown). The semi-
Table 1. Mean volumes and 95% confidence limits (CL) of
manually segmented structures in 20 high risk ELBW infants
studied at 38 weeks PMA.

Structures
Mean Volume
95% CL (mm3)

Cerebellum 15800.9
(14215.5, 17386.4)

Brain stem 5603.9
(5322.6, 5885.3)

Amygdalae 485.1
(445.6, 524.6)

Hippocampi 1211.8
(1125.6, 1298.0)

Accumbens 389.2
(349.3, 429.1)

Caudate nuclei 2597.0
(2391.4, 2802.7)

Lenticular nuclei 5253.1
(4931.3, 5574.9)

Thalamus 7248.7
(6986.0, 7511.5)

Corpus callosum 803.0
(719.7, 886.2)

doi:10.1371/journal.pone.0013874.t001

Table 2. Intra-rater reliability of manually segmented cerebral
structures and tissues volumes.

Within-subject
SD (mm3)

Repeatability
(mm3)

Intra-class corre-
lation coefficient
(95% CI)

Cerebellum 261.9 725.4 0.998 (0.994, 0.999)

Brain stem 82.7 229.0 0.990 (0.975, 0.996)

Amygdalae 20.8 57.6 0.970 (0.925, 0.988)

Hippocampi 37.6 104.1 0.981 (0.952, 0.992)

Accumbens nuclei 17.4 48.3 0.984 (0.960, 0.994)

Caudate nuclei 97.1 269.0 0.975 (0.937, 0.990)

Lenticular nuclei 133.9 370.9 0.985 (0.962, 0.994)

Thalamus 134.7 373.0 0.970 (0.925, 0.998)

Corpus callosum 25.0 69.3 0.990 (0.974, 0.996)

Cerebral gray
matter

2674.6 7408.5 0.997 (0.988, 0.999)

Cerebral white
matter

2633.9 7295.9 0.995 (0.979, 0.999)

Cerebrospinal fluid 1249.4 3460.9 0.997 (0.988, 0.999)

doi:10.1371/journal.pone.0013874.t002

Table 3. Inter-rater reliability of manually segmented cerebral
structures and tissues volumes.

Within-subject
SD (mm3)

Repeatability
(mm3)

Intra-class corre-
lation coefficient
(95% CI)

Cerebellum 393.1 1089.0 0.996 (0.983, 0.999)

Brain stem 154.5 427.8 0.974 (0.934, 0.990)

Amygdalae 51.7 143.2 0.942 (0.854, 0.977)

Hippocampi 81.7 226.4 0.970 (0.924, 0.988)

Accumbens nuclei 23.2 64.1 0.984 (0.939, 0.996)

Caudate nuclei 163.0 451.4 0.975 (0.907, 0.993)

Lenticular nuclei 246.8 683.5 0.993 (0.975, 0.998)

Thalamus 166.7 461.8 0.992 (0.972, 0.998)

Corpus callosum 73.7 204.1 0.963 (0.908, 0.986)

Cerebral gray
matter

7453.6 20646.3 0.933 (0.732, 0.984)

Cerebral white
matter

8402.6 23275.2 0.977 (0.905, 0.994)

Cerebrospinal fluid 1927.3 5338.7 0.998 (0.990, 0.999)

doi:10.1371/journal.pone.0013874.t003
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automated method that includes some manual correction, further

improved the SI by about 1–4%, particularly for CSF and WM.

Correction of WM/CSF misclassification was primarily required

around tissue boundaries (partial volume effects) and in infants

with WMSA.

Using this unified semi-automated approach, each MRI scan

took just under two hours to segment into the 13 defined structures

and tissue classes. On average, it took the first rater 60 minutes for

manual segmentation of the nine structures, 10 minutes for pre-

processing for automated segmentation, 15 minutes for automated

segmentation of the tissue classes (PC time only), and 25 minutes

for final manual correction. Figure 5 displays results from our

unified segmentation approach at various stages of processing. The

end result, a combination of manual and automated segmenta-

tions, generates volumes of nine structures and four tissue classes.

Discussion

We present a comprehensive and efficient approach to regional

brain volume measurements in high risk newborns using reliable

manual and accurate semi-automated segmentation methods. This

builds on our previously reported methods for detailed structural

and tissue segmentation that relied heavily on manual segmenta-

tion rendering it less reliable and efficient [13,23]. These results

support our primary aim of developing an accurate, reliable,

comprehensive, and efficient approach to MRI brain volume

segmentation suitable for further use in large randomized trials or

population based studies. Such studies may validate initial reports

of the utility of early MRI derived regional volumes as biomarkers

of perinatal brain injury [6] and surrogate measures of

neurodevelopmental outcomes [11,12,51]. Total or regional

volumes also appear promising in accurately assessing short-term

efficacy and toxicity to neonatal interventions [13,14,23,52]. The

current use of pre-discharge cranial ultrasound for these purposes,

while efficient and less expensive, lacks sensitivity and reliability

[53–57]. Accurate and objective quantitative assessments such as

regional brain volumes should overcome these limitations.

Furthermore, such quantitative outcomes, especially when mea-

sured precisely, can, dramatically reduce study sample size needs

and facilitate timely assessment of neuroprotective interventions

[58]. However, adequately powered qualification studies that

evaluate the correlation of regional cerebral volumes with specific

neonatal diseases and neurodevelopmental outcomes are required

to determine their value as biomarkers and surrogate endpoints

[51].

The difficulty of performing fully automated segmentation of

the newborn brain has been previously described [19,24,26,28].

Initial efforts in newborns achieved limited accuracy as compared

to manual tissue segmentation [19,24,59]. Therefore, we had

focused our early efforts on developing highly reliable manual

Table 4. Mean tissue volumes and 95% CL (mm3) using
automated, semi-automated, and the reference manually
segmented approaches in 10 high risk ELBW infants studied at
38 weeks PMA.

Automated
segmentation

Semi-automated
segmentation

Manual
segmentation

Cerebral gray
matter

94279
(87426, 10132)

92973
(85758, 100188)

91918
(83725, 100111)

Cerebral white
matter

113326
(102874, 123778)

111753
(100731, 122775)

113444
(102990, 123899)

Cerebrospinal
fluid

62233
(53266, 71199)

65239
(52872, 77605)

65095
(53187, 77003)

Total tissue 269838
(247491, 292185)

269965
(249104, 290825)

270457
(249840, 291075)

doi:10.1371/journal.pone.0013874.t004

Figure 4. Mean and standard deviations of automated (left) and semi-automated (right) segmentation accuracy and bias measures,
including similarity index (SI), correct estimation index (CEI), over estimation index (OEI), and under estimation index (UEI) for
cerebral gray matter (light gray), cerebral white matter (black), and CSF (gray).
doi:10.1371/journal.pone.0013874.g004
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Figure 5. A single mid-axial slice exemplifies results at various stages of processing, beginning with unsegmented conventional
axial T2 (A) and proton density weighted images (B), automated three tissue segmentation of cerebral GM (gray), cerebral WM
(white), and CSF (light blue) (C), manual structural segmentation output (D), combined automated and manual map without
correction (E), and final map following manual correction, including relabeling of WM hyperintensities as WMSA (purple) (F).
A 3-dimensional rendering at the same midbrain level displays the relationship of all 13 segmented regions (G).
doi:10.1371/journal.pone.0013874.g005
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segmentations. This culminated in a detailed approach to manual

tissue and structural segmentation with high intra-rater ICC,

despite the use of previously collected clinical anatomic MRI scans

[13,23]. With this current project we aimed to further improve the

reliability by using prospectively standardized MRI scans and

more rigorously defined anatomic landmarks. This produced

higher intra-rater correlations (all ICCs.0.97) than our prior

methods and achieved excellent repeatability. As compared to

intra-rater repeatability, there was greater inter-rater variability

for manually segmented structures (,2 fold) and tissue classes (up

to 3 fold). This lends support for developing and utilizing an

automated tissue segmentation program. Visual distinction of

smaller cerebral structures is more difficult in newborn MRI scans

due to the lower contrast, smaller volumes, and lower signal to

noise ratio than in older children. This likely accounts for the

paucity of such manual segmentation studies in newborns [22,60–

62]. Two studies reported manual segmentation of the hippocampi

[60,62] and one segmented thalamic and lenticular nuclei [61].

Nishida et al. [22] employed a semi-automated technique to

additionally segment the cerebellum, brain stem, and amygdalae

but not subcortical GM structures, using a convenience sample of

6 to 8 newborns. The number of regions they segmented was

comparable to our approach but required prohibitively long

processing times (7 days). Compared to our study, these four

studies [22,60,61,62] reported similar or slightly lower intra-rater

ICC values. However, they did not report intra-rater repeatability

or any measures of inter-rater reliability. Bland and Altman have

demonstrated that evaluating ICC alone can be misleading and

argued for the use of within-subject SD and repeatability as more

robust measures of reliability [48,63]. This is exemplified in our

study by discrepant intra-rater and inter-rater repeatability for

amygdalae and corpus callosum segmentations, despite similarly

high ICC values. Repeatability is defined as the 95% interval for

change between two or more repeat measurements. It is more

clinically meaningful because a measurement difference that

exceeds this value is unlikely to result from measurement error

and more reflective of a true clinical change.

Manual segmentations of cerebral GM, cerebral WM, and CSF

tissues are more time-consuming and less reliable than subcortical

structural segmentations. Therefore, we adapted the adult brain

automated segmentation program of Sajja et al. [21] for use in

newborns. This innovative approach combines the HMRF-EM

parametric approach with the nonparametric Parzen window

classifier facilitating robust classification of tissues with a well-

defined Gaussian distribution (WM and GM) and those exhibiting

skewed distributions (CSF and WMSA). Despite the use of a

neonatal training set, initial efforts using this unified approach

were met with modest success only. It tended to overestimate the

GM and underestimate WM. By implementing flexible intensity

normalization, we corrected this bias in class estimation, allowing

boundary correction on a per case basis. This resulted in tissue

volumes that were comparable to manual volumetry and higher

GM and comparable WM and CSF classification accuracy than

previous neonatal methods that reported accuracy [26–28].

Weisenfeld and Warfield [27] used an atlas based spatial prior

approach to additionally segment subcortical GM and myelinated

WM with excellent accuracy. Anbeek et al. [26] employed the k-

nearest neighbor non-parametric classifier on a 5-dimension

feature space that includes 3 spatial dimensions and achieved

equally high CSF and subcortical GM accuracy. Similar to other

published studies in newborns, they used a convenience sample of

more mature low-risk preterm infants without brain abnormalities

on MRI or ultrasound. Furthermore, images were likely free of

motion artifact, a common problem in newborns, that was

overcome by the use of sedation/paralysis or exclusion of such

cases. As such, segmentation accuracy may decline in studies of

high risk newborns, our target population of interest. Most

programs also require the additional acquisition of 3D T1w or

inversion recovery sequences that are not routinely obtained

during diagnostic MRI. Their use also requires image registration,

increasing the likelihood of misclassification errors. Addition of 3D

T1w or inversion recovery sequences did not improve the

segmentation accuracy of our approach. The sole use of T2/PD

sequences, routinely included in clinical studies, permits ready

translation of the proposed approach to large cohort studies or

randomized trials. The addition of manual volumetry of

vulnerable structures yields a final approach that combines the

best of automatic segmentation (speed and reproducibility) with

manual parcellation (accuracy). With sufficient training, different

raters can reliably learn this standardized approach. With

approximately 60 minutes of operator time, we were able to

segment eight vulnerable subcortical structures and the cerebel-

lum. After another 60 minutes to complete the semi-automated

tissue segmentation, full brain segmentation can be accomplished

in two hours, a duration that compares favorably to other

published methods (1.25 hours [27] to 7 days [22]) and is

acceptable for use in large studies.

A few limitations of the proposed methodology deserve

consideration. The fully automated segmentation algorithm

underestimated CSF by 20%, likely from partial volume

averaging, usually resulting in misclassification as WM. While

the unified approach permits correction of these errors at the final

manual editing stage, efficiency and reliability were slightly

reduced. An approach using Markov random field priors to

automatically reduce these errors, as reported by Xue et al. [28],

may overcome this limitation. Use of manual structural segmen-

tation, while more accurate and still highly reliable, is tedious,

time-consuming, and less reproducible than automated methods.

Automating this process therefore is an ongoing goal of our work.

An additional challenge has been the misclassification of

periventricular WM diffuse high signal intensities as CSF owing

to its signal intensity overlap with CSF. Because all such

misclassification errors occurred in regions that exhibit WMSA,

we viewed this limitation as an opportunity and manually

relabeled these regions as WMSA. Although this was done

relatively objectively, the utility of this approach will remain

unknown until such volumes are related to impairments, as we are

currently performing. This abnormality has been hypothesized to

be a diffuse form of WM injury [8,47] and associated with lower

developmental quotient [10]. However, qualitative assessment of

WMSA is highly subjective with low rates of intra- and inter-rater

reliability [64]. We observed and reliably quantified WMSA in

90% of our study infants.

Several cohort studies of varying size and duration have

examined the correlation of regional newborn brain volumes at

term with later neurodevelopmental disabilities [6,11,60,62,

65,66,67]. A large majority of these investigators found correla-

tions with motor, cognitive, or sensory deficits measured at 1 to 2

years of age. Lind et al. also reported correlations between total

brain and cerebellar volume at term with executive function and

motor skills at 5 years of age [68]. Additionally, multiple studies

have reported significant correlations between regional brain

volumes in adolescent preterm survivors and behavioral, psycho-

logical, and cognitive outcomes. These findings reveal the close

link between brain atrophy/growth failure and neurodevelop-

mental impairments and their high incidence following preterm

birth and neonatal intensive care. Furthermore, several perinatal

risk factors, particularly lower gestational age, intraventricular
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hemorrhage, white matter injury, and use of postnatal dexameth-

asone significantly correlate with adverse brain volumes at term

[6,23,52,62,66]. Total brain tissue volume on MRI is also tightly

correlated with head circumference [69]. The use of complemen-

tary advanced quantitative MRI tools such as diffusion tensor

imaging or magnetic resonance spectroscopy may further enhance

diagnosis and prediction. Such diagnostic tools may improve

parental discharge counseling and permit targeted selection of

high risk infants for early intervention studies. School-age

neurobehavioral assessments and studies that examine the

independent utility of volumetric MRI over conventional MRI

and clinical risk factors are however needed to determine the

unique value of measuring brain volumes for outcome prediction

and risk stratification.

In conclusion, we have developed a reliable, accurate, and

efficient semi-automated MRI segmentation approach for detailed

brain volume measurements in high risk newborns. This method

will facilitate the evaluation of large cohorts to rigorously evaluate

the utility of regional brain volumes as biomarkers of neonatal care

and surrogate endpoints for neurodevelopmental outcomes.
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