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Abstract

Demographic parameters such as birth and death rates determine the persistence of populations. Understanding the
mechanisms that influence these rates is essential to developing effective management strategies. Alloparental behavior, or
the care of non-filial young, has been documented in many species and has been shown to influence offspring survival.
However, the role of alloparental behavior in maintaining population viability has not been previously studied. Here, we
provide the first evidence for adoption in California sea lions and show that adoption potentially works to maintain a high
survival rate of young and may ultimately contribute to population persistence. Alloparental behavior should have a
positive effect on the population growth rate when the sum of the effects on fitness for the alloparent and beneficiary is
positive.
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Introduction

Alloparental behavior, the care of non-filial young, has been

widely documented in mammal and bird species [1–3]. While the

benefits to young (e.g. increased survival) are apparent [3] and

understanding the mechanisms that determine demographic rates

(i.e. survival and reproduction) is essential for effective conserva-

tion and management [4–6], the influence of alloparental care on

demographic rates has remained largely overlooked in the ecology

and conservation literature.

In California sea lions (Zalophus californianus), females are able to

recognize and discriminate non-filial young, and pups show strong

preference for their mother [7,8]. Thus, incidents of non-filial

nursing in this species are expected to be rare [7–9] and likely

represent adoption of orphaned pups by females who have

miscarried or lost pups [1,2]. Because pups depend on their

mother for survival during their first year [7,8], orphaned pups

would die if not adopted by lactating females. Thus, these

adoption events have the potential to reduce pup mortality rates,

contributing to population persistence. In this paper, we provide

the first evidence for adoption in California sea lions. We then

examine the role of alloparental behavior in maintaining survival

of young and discuss consequences for population viability.

Methods

Ethics statement
All procedures were approved by the Arizona State University

Animal Care and Use Committee (07-918R).

Sample collection
Pups were captured at approximately 4 days to 8 weeks of age in

June and July of 2005–2008 at San Jorge and Los Islotes Islands in

the Gulf of California (Figure 1). During capture sessions

morphological measurements were taken, pups were marked with

unique haircuts, and toe clips were taken for genetic analysis.

Additionally, pups captured in July were given flipper tags for

long-term identification. Female biopsies were taken using a

crossbow and bolts fitted with biopsy tips (Quality Manufacturing,

Inc.) attached to a fishing line [10]. To ensure sampling of female-

pup pairs, biopsies were obtained from females only when they

were nursing a marked pup. All biopsies were handled with

sterilized tweezers and stored in 2.0 ml vials containing 90%

ethanol.

Genetic analyses
DNA was isolated from tissue samples and amplified at 14

microsatellite loci (Table S1) using the QIAGEN multiplex PCR

kit (QIAGEN, Inc.). Fragment analysis was conducted on an ABI

3730 DNA Analyzer (Applied Biosystems, Inc.) and loci were

scored by hand using the program GeneMapper v4.0. The

program CERVUS [11] was used to identify mismatched female-

pup genotypes. Mismatches between female and pup genotypes

represent loci for which neither of the two possible alleles present

in the female genotype were present in the pup genotype.

Repeated genotyping of 10% of the samples showed that the

genotyping error rate was low (0.0014%). Additionally, we

repeated PCR and fragment analysis on mismatched female-pup

pairs to minimize false conclusions due to genotyping error.

Mismatches at only 1 locus (n = 2) were not considered as evidence

of non-filial nursing because of possible genotyping error or

mutation [12]. Errors in identifying samples during the extraction

process would potentially result in female-pup mismatches at

multiple loci. To address this, the genotypes of mismatched

females were compared to the pool of pup genotypes and vice

versa. There were no cases where mismatched females or pups

matched any other individual at all loci.

Genetic relatedness between female-pup pairs was calculated

with the Microsoft Excel Macro ‘GROUPRELATE’ [13]. Using this

program, group relatedness is estimated by averaging values for

PLoS ONE | www.plosone.org 1 November 2010 | Volume 5 | Issue 11 | e13873



pairwise relatedness [14] between all individuals in a group. Thus,

to obtain a relatedness value (r-value) for each female-pup pair, we

defined each group as consisting of one female-pup pair. Pairwise

relatedness was calculated for both filial and non-filial female-pup

pairs as determined by CERVUS results. Using the same

individuals from filial and non-filial female-pup pairs, we analyzed

relatedness between randomly assigned female-pup pairs; the

resulting r-values served as a baseline with which to compare r-

values from non-filial female pup pairs.

Population viability analysis
To examine the potential consequences of adoption for

population viability, we estimated the discrete rate of annual

population growth (l) based on a Leslie matrix model with

fecundity and survival estimates for 19 age classes at Los Islotes

Island [6]. We assumed that adopted pups would otherwise not

survive to the next age class and that there is no difference in

lifetime survival and reproductive output between adopted and

filial young. With the simplistic assumption of exponential

population growth, we modeled three scenarios of adoption in

the population. First, we assumed that the current vital rates (i.e.

no change in pup survival or female fecundity) represent a scenario

where adoption occurs at no cost to the alloparent. Second, we

considered a scenario where adoption represents a cost to the

alloparent. We assumed that an adopting female in year t would

not reproduce in year t+1, which leads to a reduction in fecundity.

We first calculated the adopting rate of females by dividing the

fraction of the population adopted among the females in age

classes 5–19 (sexually mature females), we then reduced fecundity

in age classes .5 by the adopting rate. Third, we modeled

population growth in the absence of these adoption events by

reducing 1st year survival by the adoption rate. We considered a

range of adoption rates with a maximum adoption rate of 15%

based on our genotyping results. To illustrate the effects of small

changes in l on long-term abundance, we solved for the equation

Nt = N0 lt where t = 50 and N0 = 439 (representing the most

recent estimate of abundance for Los Islotes Island [15]).

Results

Non-filial nursing in California sea lions
We documented mismatches at $2 loci for 6 out of 109 sampled

female-pup pairs from San Jorge Island, and 9 out of 51 pairs from

Los Islotes Island. Additionally, we documented adoption events

for two female-pup pairs at San Jorge Island. In both cases,

females exhibited distinctive scar patterns, allowing us to track

both the female and pup over time. In the first case, the female-

pup pair was first identified (and sampled) in August 2007. In

October of 2008, the same female was observed nursing the pup

tagged in 2007 while simultaneously nursing a new pup from

2008. In the second case, a marked female was observed calling for

her pup and receiving no response for three days in June 2008. In

July and August of the same year, she was observed nursing a

marked pup on multiple occasions (Figure 2). We subsequently

obtained a biopsy from this female based on our suspicions that

she may have adopted the pup. This represents the only instance

of non-random sampling, and was not included in the six cases of

non-filial nursing from San Jorge Island or used in subsequent

analyses. For each case we found mismatches between the mother

and pup genotypes at 5 and 3 of the 14 loci, respectively. Our

observations represent the first documented cases of adoption in

California sea lions.

Because there are significant differences in background allele

frequencies between San Jorge and Los Islotes Islands [16], we

calculated r-values for female-pup pairs separately at each island.

All identified non-filial female-pup pairs and 80 filial female-pup

pairs (40 from each island) were used in relatedness analysis. R-

Figure 1. Map of the study sites. Study sites included breeding
colonies on San Jorge Island (north) and Los Islotes Island (south), in the
Gulf of California, Mexico.
doi:10.1371/journal.pone.0013873.g001

Figure 2. An adult female and her adopted pup. Female nursing a
non-filial pup marked with the haircut ‘A1’. Unique scars on this female,
particularly the absence of both hind flippers, allowed researchers to
identify her and her pup throughout the field season.
doi:10.1371/journal.pone.0013873.g002

Adoption in Sea Lions
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values between filial female-pup pairs were significantly higher

than zero with a mean r<0.5, as is expected in first order relatives

[14]. Mean r-values did not significantly differ from zero in both

the randomly assigned and the non-filial female-pup pairs

(Figure 3).

Implications for estimates of population growth rate
We estimated l= 1.125 for Los Islotes Island based on vital

rates reported in Gerber [6]. To examine the potential role of

adoption in the context of population viability, we modeled three

scenarios of adoption in the population. First, we assumed that the

current vital rates reflect adoption occurring at no cost to the

alloparent (l= 1.125). Second, when adoption was modeled at a

cost to the alloparent, pup survival remained constant and female

fecundity was reduced by 0.5%–7.2% for adoption rates of 1%–

15%, respectively. This resulted in l= 1.117–1.124 (Figure 4a),

demonstrating that, even with a fitness cost, adoption can have a

positive effect on population growth. Third, to consider population

growth in the absence of these adoption events by reducing 1st year

survival by the adoption rate, we found l= 1.107–1.124 for

adoption rates of 1%–15% (Figure 4a). Even these small

reductions in l have the potential to decrease long-term

population size (Figure 4b).

Discussion

Adoption in California sea lions
In this study, we found that adoption occurs in natural

populations of California sea lions by combining genotypic and

behavioral data from two female-pup pairs. Repeated observa-

tions of these individuals confirmed that, although non-filial, each

relationship mirrored that of conventional female-pup pairs. A

more extensive analysis of genetic maternity suggested that

adoptive female-pup pairs accounted for less than 6% of the

female-pup pairs on San Jorge Island. This is consistent with

studies of other otariids (fur seals and sea lions), including the

Steller sea lion [17], New Zealand sea lion [18], and Antarctic fur

seal [12]. Surprisingly, over 17% of the female-pup pairs on Los

Islotes Island were non-filial, which represents the highest rate of

non-filial nursing ever reported for any otariid. The difference in

the frequency of adoption between islands may have resulted

from differences in disturbance, environment, and/or demogra-

phy [1,3,19]. Further research is needed to determine which, if

any, of these factors influence the rate of adoption in California

sea lions.

Because most females do not bear identifying marks, incidents

where a pup nursed from multiple females or where a female

nursed two or more pups on separate occasions would have gone

undetected. Thus, it is possible that mismatches do not always

represent actual adoption events. Instead mismatches could result

from pups stealing milk from unrelated females, or reciprocal

nursing (i.e. females willingly nurse each other’s pups) [3,17]. This

is often the case in phocids (true seals), which have poorly

developed methods for mother-pup recognition resulting in high

rates of non-filial nursing [2,7,9]. However, incidents of milk

stealing are rare in otariids due to highly developed mechanisms

for mother-pup recognition and an exclusive mother-pup bond

[7–9,17,20,21]. Furthermore, in otariids, female aggression toward

milk-stealers makes such events brief and easily identifiable by

researchers [7,17,21].

Reciprocal nursing is generally restricted to cases where nearly

all females participate [3,22] and is thus highly unlikely given the

low rate of alloparenting in otariids [7,8]. Reciprocity could be

maintained at low frequencies if females selectively nurse

offspring of close relatives and gain inclusive fitness benefits [3].

Thus, non-filial nursing via kin selection seems plausible among

otariids given their ability of individual recognition. However, our

analysis of relatedness between filial and non-filial female-pup

pairs showed no evidence of kin selection. The similarity in

relatedness estimates between non-filial and randomly assigned

female-pup pairs also indicates that female-pup mismatches were

not due to genotyping errors [12]. Thus, we maintain that

adoption is the most likely cause for female-pup mismatches

within our dataset.

Figure 3. Genetic relatedness between female-pup pairs. Mean pairwise relatedness (r-values) between filial, non-filial, and randomly
generated female-pup pairs on Los Islotes and San Jorge rookeries. Relatedness between non-filial female-pup pairs is no different than expected at
random. Error bars represent 1 standard deviation from the mean.
doi:10.1371/journal.pone.0013873.g003
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Population-level effects of alloparenting
Discussion of the population-level effects of an altruistic trait

such as alloparenting frequently centers on the topic of Multilevel

Selection Theory which explains the evolution of such traits via

their advantage to the group [23,24]. We stress that we are not

approaching the connection between alloparental behavior and

population viability as advocates for the support of this, or any,

theory on the persistence of altruistic traits in a population.

Rather, our goal is to better understand the ecological impacts

associated with alloparental behavior as they apply to the fields of

population and conservation biology.

Under the right circumstances, alloparenting may help maintain

population size and persistence. We show that adoption in a

California sea lion colony has the potential to influence long-term

population growth and that these population-level benefits can be

seen even when adoption is infrequent (Figure 4). A positive

response of population growth to alloparental behavior is intuitive

under the assumption that there are no associated reproductive

costs. Support for this assumption is found in evidence that

suggests the energetic costs of alloparenting may be negligible

[3,22,25] or that the alloparent may benefit from the relationship,

e.g. young females gain maternal experience leading to increased

survival for future, filial offspring [2,3,19]. However, the costs and

benefits of alloparental behavior are complex, poorly understood,

and highly variable [1–3]. An enormous amount of effort, time,

and expense would be necessary for more precise estimates of how

adoption affects individual fitness in sea lions. Consequently, to

incorporate a cost to adoption in our model, we were restricted to

a purely hypothetical scenario. For the purpose of brevity we chose

to illustrate an effect of cost using one such scenario, although we

acknowledge that there are many other possible scenarios.

We predict that alloparental behavior will have a positive effect

on l when the sum of its effects on lifetime reproductive output for

the alloparent and beneficiary is positive. This will occur when

alloparental behavior i) provides a neutral or positive effect on the

reproductive output of the alloparent or ii) provides a net increase

in the reproductive output of the beneficiary that is greater than

the net decrease of reproductive output incurred by the alloparent.

This assumes that there is no difference between the fitness of

offspring produced by the alloparent and offspring produced by

the beneficiary. Our results are broadly relevant for all forms of

alloparental care and across taxa.

Supporting Information

Table S1 The number of observed alleles and expected

heterozygosity (HE) for each locus.

Found at: doi:10.1371/journal.pone.0013873.s001 (0.04 MB

DOC)
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