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Abstract

Background: Epigenetic modifications regulate key transitions in cell fate during development of the central nervous
system (CNS). During cortical development the initial population of proliferative neuroepithelial precursor cells give rise to
neurons and then glia in a strict temporal order. Neurogenesis and gliogenesis are accompanied by a switch from
symmetric to asymmetric divisions of the neural precursor cells generating another precursor and a differentiated progeny.
To investigate whether specific post-translational histone modifications define specific stages of neural precursor
differentiation during cortical development I focussed on the appearance of two different types of histone arginine
methylation, the dimethyl symmetric H4R3 (H4R3me2s) and dimethyl asymmetric H4R3 (H4R3me2a) in the developing
mouse cortex.

Methodology/Principal Findings: An immunohistochemical study of the developing cortex at different developmental
stages was performed to detect the distribution of H4R3me2s and H4R3me2a modifications. I analysed the distribution of
these modifications in: 1) undifferentiated neural precursors, 2) post-mitotic neurons and 3) developing oligodendrocyte
precursors (OLPs) using lineage-specific and histone modification-specific antibodies to co-label the cells. I found that the
proliferative neuroepithelium during the stage of mainly symmetric expansive divisions is characterised by the prevalence
of H4R3me2s modification and almost no detectable H4R3me2a modification. However, at a later stage, when the cortical
layers with post-mitotic neurons have begun forming, both H4R3me2a and H4R3me2s modifications are detected in the
post-mitotic neurons and in the developing OLPs.

Conclusions/Significance: I propose that the H4R3me2s modification forms part of the ‘‘histone code’’ of undifferentiated
neural precursors. The later appearance of the H4R3me2a modifications specifies the onset of neurogenesis and gliogenesis
and the commitment of the NSCs to differentiate. Thus, the sequential appearance of the two different H4R3 methylation
marks may define a particular cellular state of the NSCs during their development and differentiation demonstrating the role
of histone arginine methylation in cortical development.
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Introduction

Generation of a functional nervous system is a result of a highly

specific developmental programme of events. During cortical

development a founding population of neuroepithelial cells, the

neural stem cells (NSCs), gives rise to all cellular types of the

cortex: neurons, astrocytes and oligodendrocytes [1]. The

generation of these cell types follows a strict temporal order, with

neurogenesis preceding gliogenesis [2,3,4]. Importantly, with the

progress of differentiation within the CNS, the differentiation

potential of the NSCs becomes more restricted, providing the basis

for the temporal regulation of differentiation within the developing

cortex [1].

To a large extent the strict temporal order of differentiation

observed during cortical development is regulated by epigenetic

mechanisms which re-programme the genomes for lineage-specific

‘‘transcriptomes’’ by regulating chromatin structure [5]. The most

prominent epigenetic modifications associated with developmental

regulation of gene expression include methylation of DNA at the

CpG dinucleotides by DNA methyltransferases and the post-

translation modifications of histones [5,6]. Histones can be

acetylated on lysine or methylated on lysine or arginine residues

[5,7]. Such modifications modulate the compaction of chromatin

and its general accessibility to transcriptional machinery. In

general, lineage-specific transcription factors recruit the appropri-

ate chromatin modifiers to induce changes in the chromatin

accessibility and in this way orchestrate the appropriate ‘‘tran-

scriptomes’’. While an enormous effort has gone into uncovering

the contributions of the lineage-specific transcription factors to the

development of different cell lineages, much less is known about

the contribution of specific global modifications which may specify

particular cellular states as the NSCs transit through the temporal

stages of their differentiation. Such modifications of histones

provide a potential storage mechanism for heritable information

which can be transmitted through mitotic divisions and subse-

quently ‘‘read’’ and interpreted by effector proteins. Specific
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inherited histone modifications and the reading effectors could

induce the specific spatial and temporal gene expression by

regulating accessibility of the DNA to transcriptional machinery

during development and differentiation [8].

Previous work in murine oocytes during their maturation and

pre-implantation development identified a series of stable and

dynamic ‘‘epigenetic marks’’ associated with different develop-

mental stages [6]. These included histone H3 lysine 9 methylation

(H3K9me), H3 lysine 4 methylation (H3K4me) and histone H4/

H2A serine 1 phosphorylation (H4/H2AS1ph) which were stable

throughout the developmental stages investigated [6]. The

dynamic and reversible ones included hyperacetylated histone

H4 (H4ac), histone H3 arginine 17 methylation (H3R17me) and

histone H4 arginine 3 methylation (H4R3me) [6].

To begin defining some of the global changes in post-

translational histone modifications which accompany neural

differentiation, I undertook an analysis of the distribution of two

specific histone arginine modifications, histone H4 arginine 3

symmetric and asymmetric dimethylation. Arginine modifica-

tions are mediated by two classes of protein arginine methyl-

transferases (PRMTs), class I and II. Class I PRMTs place two

methyl groups on the one nitrogen atom of the arginine

guanidino group, generating an asymmetric dimethyl modifica-

tion. Class II PRMTs, on the other hand, place two methyl

groups on the two nitrogen atoms of the guanidino group

generating symmetric dimethylation [9]. Interestingly, the two

different types of histone arginine modifications, the symmetric

and the asymmetric ones, tend to be associated more with

transcriptional repression or activation, respectively, although

this is not always the case [9]. There is also evidence that type I

PRMTs which induce asymmetrical dimethylation of arginines

are associated with cellular differentiation [10,11]. However, the

contribution of type II class of PRMTs is less clear, but there are

reports which suggest that symmetrical dimethylation of

arginines is associated with the less differentiated cellular state

[12,13].

To test the possibility that different types of histone arginine

methylation are associated with different states of differentiation

during cortical development, I focussed on the distribution of

H4R3me2s (symmetric) and H4R3me2a (asymmetric) modifica-

tions within the developing cortex. In this report I shed some light

on the dynamic distribution of the two histone arginine methyl

marks during cortical differentiation. I highlight the observation

that H4R3me2s is highly prevalent in the proliferating NSCs

during their expansion phase and prior to the onset of

differentiation and is thus likely to be associated with the ‘‘stem-

like’’ cellular state of the NSCs. I also show that the H4R3me2a

modification appears in post-mitotic neurons and early differen-

tiating OLPs along with the H4R3me2s. I propose that this

sequential activation of the different global epigenetic marks

during neural development specifies the transition from the ‘‘stem-

like’’ state of the NSCs initially, marked by H4R3me2s prevalence,

to the commitment to differentiation during neurogenesis and later

gliogenesis, marked by the presence of both H4R3me2s and

H4R3me2a modifications.

Results

Distribution of symmetric and asymmetric dimethyl
histone H4 modifications in the early neuroepithelium

Previous investigations of the distribution of H4R3me marks

during early murine development indicated that this modification

is highly dynamic at the early developmental stages and is affected

by egg cytoplasmic factors [6]. However, it was not clear whether

the histone arginine modifications investigated were symmetric or

asymmetric. Thus, I sought to establish the distribution of

H4R3me2s and H4R3me2a modifications in the developing

murine cortex during the early stage of cortical development in

Figure 1. H4R3me2s, but not H4R3me2a are found in the early neural precursors at E10.5. A) Cortical neuroepithelium of E10.5 mouse
embryos showing that no H4R3me2a marks are detectable in the Nestin-expressing precursor cells. B) Cortical neuroepithelium of E10.5 mouse
embryos showing high levels of H4R3me2s in the Nestin-expressing precursor cells. The three left-most images are 10 magnifications, and the right-
most image is a 406magnification of the same tissue. Scale bars are indicated on the panels. P – pial, V- ventricular surfaces of the cortex.
doi:10.1371/journal.pone.0013807.g001

H4R3 Methylation in the Cortex
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order to determine whether they may constitute a part of the

histone code specifying the different stages of neural precursor

differentiation. Mouse embryos were isolated at day 10.5 of

gestation (E10.5). At this stage the neuroepithelium consists mainly

of a proliferating undifferentiated population of neural precursor

cells [14]. Neurogenesis starts at around E12 in the murine cortex

and is accompanied by a series of asymmetric divisions of neural

precursor cells generating a post-mitotic neuron and another

neural precursor [2]. In order to determine the distribution of

H4R3me2s and H4R3me2a modifications within the developing

neuroepithelium I performed immunostaining with histone

modification-specific antibodies and an anti-Nestin antibody to

detect undifferentiated neural precursors. At this stage most of the

cells of the neuroepithelium exhibit Nestin immunoreactivity and

make up the largest fraction of the developing cortex, thus

allowing the identification of uncommitted neural precursors. An

abundance of H4R3me2s was detected at E10.5 across the whole

width of the neuroepithelium within the Nestin+ precursor cells

(Fig. 1B). The neuroepithelial cells undergo the so-called

interkinetic nuclear migration whereby the nuclei of these cells

migrate up and down the apical-basal axis during the cell cycle

[15]. During G1 the nucleus migrates from apical to basal surface,

remaining at the basal side during S phase and migrating back to

the apical surface during G2 phase with mitosis occurring at the

apical (ventricular) surface [15]. While not all neuroepithelial cells

exhibit H4R3me2s immunoreactivity, its distribution across the

whole width of the epithelium makes it difficult to definitively state

that the presence of H4R3me2s is regulated in a cell cycle stage-

specific manner. Rather, this particular histone modification seems

to be associated with the proliferative, undifferentiated cellular

state of the neural precursor cells. Intriguingly, almost no

H4R3me2a was detected at this stage (Fig. 1A) suggesting that

this modification is not part of the proliferative programme of the

neural precursors.

Distribution of H4R3me2s and H4R3me2a in the cortex
after the onset of neurogenesis

To further characterise the distribution of the H4R3me2s and

H4R3me2a modifications during neural development, I stained

cortices from E15.5 with the antibodies against these histone

modifications and an anti-NeuN antibody to identify post-mitotic

neurons. At E15.5 a very clear layering of the cerebral cortex is

visible, containing ventricular and a newly formed subventricular

zones, as well as the subplate and the cortical plate populated by

post-mitotic neurons [16]. Staining of the telencephalon at E15.5

with an anti-H4R3me2s antibody revealed an interesting pattern

Figure 2. H4R3me2s is found in the neurons and in the ventricular zone of the cortex at E15.5. A) An overview of the distribution of
H4R3me2s modification in the cortex at E15.5 showing a high degree of co-localisation with NeuN-expressing postmitotic neurons. B) and C) Higher
magnifications of the same sections as in A) at the pial (B) and ventricular (C) surfaces showing the co-localisation of H4R3me2s with the post-mitotic
neuronal marker NeuN (B) and in the neural precursors found at the ventricular zone at this stage (C). Image in panel A is 106and in panels B and C
406magnifications. Relevant scale bars are indicated. Abbreviation are as follows: CP – cortical plate, IZ – intermediate zone, SP – subplate, SVZ –
subventricular zone, VZ – ventricular zone. P – pial, V- ventricular surfaces.
doi:10.1371/journal.pone.0013807.g002
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of distribution. The ventricular and subventricular zones showed

very high levels of this histone modification (Fig. 2A and C) as

expected from the observations of proliferating neural precursors

at E10.5. However, in addition to the prevalence of H4R3me2s in

the ventricular zone, high levels of this modification were detected

in the post-mitotic neurons expressing NeuN marker within the

cortical plate and subplate (Fig. 2A and B). Intermediate zone was

practically devoid of nuclei marked by the expression of

H4R3me2s. Therefore, the symmetric dimethylation of histone

H4 on arginine 3 is not confined to proliferating neuroepithelial

cells, but is also present in the post-mitotic projection neurons of

the cortex after the onset of neurogenesis.

Investigation of the distribution of the H4R3me2a in the cortex

at E15.5 revealed that it is found in the post-mitotic neurons of the

cortical plate and the subplate and weakly in the ventricular/

subventricular zones (Fig. 3A and B). The pattern of distribution

was similar to the one observed with H4R3me2s. Thus, during the

neurogenic phase a combination of these two modifications defines

the epigenetic state of post-mitotic neurons, but interestingly also

the precursor cells found in the ventricular zone, suggesting that

the later stage neural precursors are somewhat different from their

early counterparts in their epigenetic profile.

In order to further characterise the association of H4R3me2a

with the proliferative or post-mitotic state of the neural cells,

cortices isolated from E15.5 embryos were co-immunolabelled

with antibodies against H4R3me2a and Ki67, a marker of

proliferating cells. As shown in Fig. 4A and B, the post-mitotic

neurons of the cortical plate and subplate show very high levels of

H4R3me2a, with very low levels being detected in the ventricular

and the subventricular zones. Ki67 is found primarily in the

ventricular and subventricular zones of the cortex (Fig. 4A and B).

The distribution of H4R3me2a and Ki67 is virtually mutually

exclusive, although some cell can be detected which are marked by

low levels of Ki67 and H4R3me2a immunoreactivity. Thus,

H4R3me2a is mainly associated with post-mitotic neurons and

only weakly with neural precursors, possibly marking those

precursor cells which are ready to commit to differentiation.

Distribution of H4R3me2s and H4R3me2a modifications
in oligodendrocyte precursors

NSCs give rise to glial cells at a later stage of embryonic cortical

development and continuing into post-natal period [4]. To

investigate whether the two histone H4 arginine modifications

Figure 3. H4R3me2a is found in the neurons and in the ventricular zone of the cortex at E15.5. A) An overview of the distribution of
H4R3me2a modification in the cortex at E15.5 showing a high degree of co-localisation with NeuN-expressing postmitotic neurons. B) and C) Higher
magnifications of the same sections as in A) at the pial (B) and ventricular (C) surfaces showing the co-localisation of H4R3me2a with the post-mitotic
neuronal marker NeuN (B) and in the neural precursors found at the ventricular zone at this stage (C). Image in panel A is 106and in panels B and C
406magnifications; the relevant scale bars are indicated. Abbreviation are as follows: CP – cortical plate, IZ – intermediate zone, SP – subplate, SVZ –
subventricular zone, VZ – ventricular zone. P – pial, V- ventricular surfaces.
doi:10.1371/journal.pone.0013807.g003
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are also present in the developing oligodendrocyte progenitors

(OLPs) I performed immunolabelling of murine cortices from

E15.5. At this stage the early committed OLPs can be detected by

staining with an anti-PDGFR-a antibody [17,18,19,20]. The

OLPs are initially specified as proliferative, migratory precursor

cells and do not become post-mitotic shortly after their

specification as the neurons do [17]. The initial appearance of

the OLPs is distinctly radial and many of these cells co-label with a

radial glial marker RC2 [21], suggesting that these cells might

form by direct transformation of radial glia [21,22,23]. Therefore,

OLPs at their initial stages may represent a highly plastic

population of cells still capable of transforming into other cellular

types. In this respect it is of interest to understand the epigenetic

regulation of their re-programming during development of the

cortex.

PDFGR-a expressing OLPs are scattered throughout the cortex

at E15.5. The staining of cortices isolated at E15.5 with antibodies

against H4R3me2s modifications revealed that PDGFR-a ex-

pressing OLPs are heterogeneous with respect to the presence of

this histone modification (Fig. 5A–C). Some cells contain this

modification, but others do not. It is not clear whether this

heterogeneity reflects OLPs at different stages of their differenti-

ation, or whether different subtypes of OLPs are marked by the

difference in this histone modification [17].

Staining of PDGFR-a-expressing OLPs with an antibody

against H4R3me2a modification revealed that the OLPs are also

heterogeneous with respect to this histone modification, some

staining positive and others negative for its presence (Fig. 6A–C).

As is the case with H4R3me2s, it is not clear whether the different

distribution of the H4R3me2a modification represents different

stages of differentiation and commitment of the OLPs or just

marks a distinct subclass of these precursors. In this respect, OLPs

appear to be different from both the early neural precursors (at

E10.5) and the post-mitotic projection neurons detected at E15.5

in the cortex. The early precursors appear to be specified by the

presence of H4R3me2s modification and the absence of

H4R3me2a modification. The projection neurons of the cortex

are marked by the presence of both, symmetric and asymmetric

H4R3me2 modifications. The OLPs represent yet another class of

precursor cells which are heterogeneous with respect to the

presence of H4R3me2s and H4R3me2a. However, we cannot at

the present time determine whether both modifications can be

found within the same OLP cell as there are no antibodies which

would allow co-staining of these cells with both of them

simultaneously.

Discussion

This study was carried out to test the possibility that two distinct

post-translation modifications of histone H4 on arginine 3 residue

undergo reprogramming during cortical development and differ-

entiation. The results of the study support the notion that

sequential activation of these two modifications specifies the

transition from the ‘‘stem-like’’ neural precursor state to a more

differentiated cellular state. Thus, the symmetric H4R3me2 is

associated with the undifferentiated neural precursors, whereas the

combination of H4R3me2s and H4R3me2a forms a signature of

the post-mitotic neurons and some differentiating OLPs.

Post-translation histone modifications and the various combi-

nations thereof have been proposed to ‘‘write’’ the ‘‘histone code’’

Figure 4. H4R3me2a does not co-localise with proliferating neural precursors of the ventricular zone. A) An overview of H4R3me2a
modifications in the cortex at E15.5 showing no co-staining with the proliferating cell marker Ki67. B) Higher magnification of the same section
showing mutually exclusive localisations of Ki67-expressing proliferating precursors and H4R3me2a. Image in panel A is 106 and in panel B 406
magnifications. The relevant scale bars are indicated. Abbreviation are as follows: CP – cortical plate, IZ – intermediate zone, SP – subplate, SVZ –
subventricular zone, VZ – ventricular zone. P – pial, V – ventricular surfaces.
doi:10.1371/journal.pone.0013807.g004
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creating extensive diversity through such combinatorial sets of

modifications for the recruitment of distinct regulatory proteins

and complexes [24]. As such, particular sets of histone modifica-

tions can actually represent specific epigenetic signatures of

differentiating cells during development. In this report, I have

focussed on the distribution of two distinct and very poorly

characterised histone modifications, H4R3me2s and H4R3me2a,

during cortical development and differentiation. Arginine meth-

ylation is a prevalent post-translation modification which regulates

many physiological processes. Importantly, there is evidence that

histone arginine methylation or at least specific types of it is

associated with differentiation [10,11,25]. Intriguingly, all of these

examples involve the PRMTs of type I subclass which mediate

asymmetrical dimethylation of arginines. On the other hand, type

II arginine methyltransferase, PRMT5, has been implicated in the

repression of genes leading to differentiation of different cell types

at early stages of development. In primordial germ cells (PGC),

PRMT5 represses a target gene necessary for PGC differentiation

[12]. In primary erythroid progenitors, PRMT5 mediates

repression of developmentally regulated b-globin locus [13]. The

involvement of type I and type II PRMTs is not always clear cut

with respect to their roles in the maintenance of ‘‘stem-like’’ or the

more differentiated cellular state. Possibly, in some cell types the

sequential activation of the two different PRMT subclasses may

specify the progressive restriction of multipotency and a transition

from a ‘‘stem-like’’ to a more differentiated and developmentally

restricted cellular state. Importantly, in cortical development, the

type I PRMT, PRMT1, is likely to be involved in the commitment

of the neural precursors to become a post-mitotic neuron since a

protein which stimulates the activity of PRMT1, BTG2/TIS21, is

expressed exclusively in neural precursor cells which are

committed to become post-mitotic neurons [25]. Furthermore,

there is evidence that the nerve growth factor (NGF)-induced

differentiation of PC12 cells increases the amount of total arginine

methylated proteins and that this process is mediated by PRMT1

as well [26,27].

It is interesting that both the major PRMTs of type I and type

II, i.e., PRMT1 and PRMT5, respectively, can methylate the

same residue on histone H4, but leading to opposing transcrip-

tional outcomes [9]. Whilst it is not clear whether both enzymes

are active at the same regulatory regions of genes, it is intriguing to

speculate that levels of gene transcription can be ‘‘fine-tuned’’ by

the combined actions of PRMT1 and 5, for example at the same

regulatory sequences. Such fine-tuning of gene transcription might

be instrumental in directing the differentiation events during

cortical development. It will be very important to identify the

signalling pathways which regulate the activity of the PRMTs

which are responsible for H4R3me2a and H4R3me2s deposition

Figure 5. H4R3me2s modification is found in some OLPs expressing PDGFR-a. A) An overview of H4R3me2s modifications in the cortex at
E15.5 showing some co-localisation with PDGFR-a expressing OLPs. B) and C) Higher magnification of the same sections showing H4R3me2s positive
PDGFR-a OLPs present near the ventricular (B) and pial (C) surfaces of the cortex at E15.5. To the right are magnified images of the highlighted OLP
cells showing H4R3me2s immunoreactivity. Image in panel A is 106and in panel B 406magnifications. The relevant scale bars are indicated. P – pial,
V – ventricular surfaces. Arrows indicate OLPs which are marked by the presence of H4R3me2s modifications.
doi:10.1371/journal.pone.0013807.g005
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during cortical development as well as find out exactly which

PRMTs are responsible for these modifications and how these

enzymes are targeted to the specific gene regulatory elements [28].

Furthermore, it will be important to identify the ‘‘transcriptomes’’

regulated by these modifications in the developing cortex and

more specifically in the different neural cell lineages as they

progress through their developmental programmes.

Materials and Methods

Ethics statement
All animal experiments were approved by the University

College London local ethical committee and conformed to the

UK Animals (Scientific Procedures) Act 1986. Project license

number PPL 70/6697.

Embryo Immunofluorescence
E10.5 and E15.5 embryos were collected from CD1 mice,

rinsed in PBS and fixed in 4% paraformaldehyde (PFA) at 4uC for

1–2 hours. Embryos were then cryoprotected in 30% sucrose-PBS

and subsequently mounted in O.C.T. (Tissue-Tek) on dry ice.

Mounted embryos were sectioned at 10 mm using a Leica cryostat

and used for immunofluorescence after air-drying for at least

1 hour. Sections with the tissue were permeabilised with cold

100% methanol for 3 minutes at 220uC, rinsed three times in PBS

and blocked for 1 hour at room temperature (RT) using the

following blocking solution: PBS/0.1% TritonX-100, 10% normal

goat serum. Primary antibodies were added in the blocking

solution overnight at 4uC. Sections were washed three times in

PBS at RT and incubated with fluorescently labelled secondary

antibodies and Hoechst for 1 hour at RT. Subsequently, the

sections were rinsed in PBS three times and quickly in water and

mounted using DAKO mounting medium.

Antibodies Used
I used the following primary antibodies in this study: anti-

H4R3me2s (Abcam, rabbit polyclonal, 1:1000), anti-H4R3me2a

(Active Motif, rabbit polyclonal, 1:1000), anti-NeuN (Chemicon

Temecular, CA, mouse monoclonal, 1:500), anti-PDGFRa (BD

Sciences, rat polycolonal, 1:400), anti-Nestin (Santa Cruz, mouse

monoclonal, 1:400). The following secondary antibodies were

used: goat anti-mouse Alexa 488 (1:1000), goat anti-rabbit Alexa

568 (1:1000), goat anti-rat Alexa 488 (1:500). All secondary

antibodies were purchased from Invitrogen. Fluorescent images

were taken with a Leica Microsystems CMS confocal microscope

using either 106 or 406 (oil) objective lenses. For each panel,

attenuation, contrast, brightness and pinhole aperture remained

constant. Approximately 10 optical sections were analysed per

section with only one optical section being shown. Therefore, only

the nuclei within the section are shown. Embryos were collected

Figure 6. H4R3me2a modification is found in some OLPs expressing PDGFR-a. A) An overview of H4R3me2a modifications in the cortex at
E15.5 showing some co-localisation with PDGFR-a expressing OLPs. B) and C) Higher magnification of the same sections showing H4R3me2a positive
PDGFR-a OLPs present near the pial (B) and ventricular (C) surfaces of the cortex at E15.5. To the right of panel (B) is a magnified image of the
highlighted OLP cell showing H4R3me2s immunoreactivity. Image in panel A is 106and in panel B 406magnifications. The relevant scale bars are
indicated. P – pial, V – ventricular surfaces. Arrows indicate OLPs which are marked by H4R3me2a modifications.
doi:10.1371/journal.pone.0013807.g006

H4R3 Methylation in the Cortex

PLoS ONE | www.plosone.org 7 November 2010 | Volume 5 | Issue 11 | e13807



from different pregnant mice and the results presented were highly

reproducible.
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