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Abstract

MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20,
FceRIb, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-
spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FceRIb and HTm4 have been found to
function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in
T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly
expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including
thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral
vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast,
knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation
by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with
upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle
progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a
modulator in the negative-feedback regulatory loop of activated T cells
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Introduction

MS4a4B is a novel member of the MS4A gene family

(membrane-spanning 4-domain family, subfamily A, MS4As)

which is characterized by their structural features, with four

membrane-spanning domains, two extracellular domains and two

cytoplasmic regions [1]. The MS4A family includes CD20,

FceRIb, HTm4 and at least 26 novel members [2,3]. Chromo-

some mapping shows that the genes for human CD20, FceRIb,

HTm4 and 12 recently identified MS4A members are located in

chromosome 11q12-q13 [4,5], which is associated with increased

susceptibility to allergy and atopic asthma. The genes for mouse

CD20 and FceRIb are located in chromosome 19 [6,7]. The gene

clustering and the chromosomal localization of the MS4A family

may suggest their immunological relevance. So far, our knowledge

of the MS4A family is derived mainly from studies on CD20,

HTm4 and FceRIb. CD20 is a nonglycosylated, plasma-

membrane associated protein in B cells [7,8], which disappears

when B cells differentiate into plasma cells [9,10]. Early studies

show that CD20 functions in B cells as a Ca2+ channel or Ca2+

channel regulator [11]. However an increasing body of data

suggests that CD20 is not only involved in calcium signaling but

also more extensively associated with B cell activation, differen-

tiation and apoptosis [12,13]. Moreover, CD20 has been used as

the target of anti-CD20 treatment for B cell lymphoma and

autoimmune diseases, which to date has been considered as the

most successful antibody-based therapeutics [14]. In comparison

with CD20, HTm4 is predominantly expressed on nuclear

membrane in hematopoietic lineages and is functionally associated

with differentiation of hematopoietic cells [15]. Unlike CD20 and

HTm4, FceRIb, as a part of the receptor complex for IgE Fc

fragment, contains an immunoreceptor tyrosine activation motif

(ITAM) in its C-terminal cytoplasmic domain that directly

contributes to IgE binding-mediated cell signalling [16,17,18].

The functions of other members remain largely unclear. Since we

cloned MS4a4B from the thymus of C57BL/6 mice, data from our

studies and others have shown that MS4a4B is highly expressed in

T cells and is closely related to the regulation of CD4+ T cell-

mediated immune responses [1,19,20], suggesting its importance

in adaptive immunity.

Involvement of MS4A proteins in cell proliferation and cell

cycle regulation has been suggested by studies with CD20 and

HTm4 [13,15]. It has been shown that Epstein-Barr viral vector-

driven expression of CD20 in fibroblasts accelerates G1 progres-

sion in a Ca2+-dependent manner [21]. However surface cross-

linking of CD20 with different anti-CD20 monoclonal antibodies

generates the opposite results: cross-linking of CD20 with anti-B1a

antibody inhibits B cell progression into the S/G2+M stages of the

cell cycle [7,22] and drives B cells to undergo apoptosis [4,5] but

binding of anti-CD20 monoclonal antibody 1F5 to CD20 can

activate B cells and initiate cell cycle transition from G0 to G1

phase [23]. In contrast, overexpression of HTm4 in U937 cells
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inhibits the G1-S transition of cell cycle through interaction with

cyclin-dependent kinase-associated (CDK-associated) phospha-

tase-CDK2 (KAP-CDK2) complexes [15,24]. It remains unclear

whether other members of the MS4A family, including MS4a4B,

play roles in cell cycle and cell proliferation. Given that CD20 is

critical for cell proliferation and cell cycle regulation in B cells, and

serves as a target for anti-CD20-based immune therapeutics of B

cell-related diseases [25] we are encouraged to dissect the

biological function of MS4a4B in T cells.

In this report, we demonstrate that although MS4a4B is

expressed at high levels in mature T cells, its expression is silenced

in malignant T cells. We analyzed the impact of MS4a4B on T cell

proliferation by manipulating MS4a4B expression with MS4a4B-

expressing and –silencing approaches. We found that MS4a4B

negatively regulates T cell proliferation by interfering with cell

cycle progression from G0/G1 phase into S-G2/M phases

through inhibition of the Cdk2-Rb pathway, and that silence of

MS4a4B in thymoma is, at least partially, responsible for the

uncontrollable propagation of tumor T cells.

Results

MS4a4B is expressed in mature T cells but not in
malignant T cells

To define the expression of MS4a4B, we detected MS4a4B

protein in mouse cells, including normal T cells, non-T cells, and

malignant T cells, by using anti-MS4a4B antibodies and flow

cytometric analysis. Consistent with our previous findings [1],

MS4a4B was strongly expressed in naı̈ve T cells but was not

expressed in B cells. In addition to T cells, we also examined

expression of MS4a4B in other cells. The results showed that

MS4a4B was also expressed at high levels in NK cells (marked by

NK1.1) and moderately expressed in macrophages (marked by

Mac1) (supplementary Fig. S1A). In bone marrow cells, only the

Mac1+ population expressed low levels of MS4a4B, suggesting

MS4a4B expression in early hematopoietic progenitors (supple-

mentary Fig. S1A). Surprisingly, all malignant T cells, including

thymoma and T hybridoma cell lines that we have examined so

far, lose expression of MS4a4B (Table 1 and supplementary Fig.

S2). Lack of MS4a4B protein in thymoma cells led us to postulate

that MS4a4B may be required for appropriate functioning of

mature T cells and the absence of this protein may be, at least in

part, responsible for the uncontrollable growth of thymoma.

Western blotting with surface-biotin labeling of primary T cells

and histological studies with confocal microscopy of MS4a4B-

expressing retrovirus-infected EL4 thymoma cells showed that

MS4a4B was indeed expressed on cell surface (Fig. 1A and B),

suggesting that MS4a4B may potentially interact with other cell

membrane proteins in T cell regulation. Interestingly, expression

of MS4a4B is regulated not only during thymocyte development

[1] but also during primary T cell activation (Fig. 1C). Although

MS4a4B was constitutively expressed in primary naı̈ve T cells,

levels of its expression were markedly increased upon stimulation

by mitogen concanavalin A (Con A). However, expression of

MS4a4B was gradiently decreased by 72 hour of activation. It is of

note that the down-regulation of MS4a4B was closely associated

with reduction of surface CD3 expression in T cells (Fig. 1D),

which led us to speculate whether this CD3low/MS4a4Blow

population might represent the cells undergoing apoptosis. We

further examined apoptosis of this population by Annexin V assay.

The CD3low/MS4a4Blow population showed markedly high levels

of apoptotic cells (Fig. 1E). Thus, temporal expression of MS4a4B

in activated T cells and silence of the MS4a4B gene in malignant

T cells led us to hypothesize that MS4a4B may play a regulatory

role in propagation of T cells.

Inhibitory role of MS4a4B in T cell proliferation
T cell proliferation is a critical process for T cell-mediated

immunity, which is reciprocally regulated at multiple levels by

numerous activators and inhibitors [26,27,28]. Its regulation,

however, is still not clearly understood. Studies on CD20 suggest

that MS4A proteins may regulate cell proliferation [13,23]. To

determine the role of MS4a4B in T cell proliferation, we

constructed a MS4a4B-expressing retroviral vector, which co-

expresses GFP as a selection marker. We used the MS4a4B-

retroviral vector to manipulate expression of MS4a4B in primary

T cells, which were subsequently labeled with PHK-26, a red

fluorescent dye, and analyzed T cell proliferation upon CD3/

CD28 stimulation by flow cytometry. Over-expression of MS4a4B

by retroviral vector indeed inhibited proliferation of primary T

cells (Fig. 2A). Since primary T cells constitutively expressed high

levels of MS4a4B, we next used EL4 cells (MS4a4B2), a widely

used thymoma cell line [29,30,31], to confirm the inhibitory effect

of MS4a4B on T cell proliferation. We constructed a lentiviral

vector (LV) to express MS4a4B and a GFP marker in EL4 cells.

We sorted GFP+ cells and generated a stable MS4a4B-expressing

EL4 cell line. To test proliferation of EL4 cells, the infected EL4

cells were labeled with PHK-26 and cell proliferation was analyzed

Table 1. Expression of MS4a4B in mouse T cells and non-T cells.

Primary T cell T cell line Malignant T cellb Non-T cell

Cell MS4a4B Cell MS4a4B Cell MS4a4B Cell MS4a4B

CD4+ +++a T32 +++ EL4 2 B cell 2

CD8+ +++ AE7 +++ TIB47 2 NK +++

NKT +++ 5CC7 +++ CRL1778 2 Bone marrow +

HT2 2 2993 2 Macrophage +

CTLL 2 T-180 2

58a 2

a28 2

aMS4a4B expression was determined by flow cytometric analysis with anti-MS4a4B intracellular staining. Negative is indicated as ‘‘2’’; positive is indicated by expression
levels based on fluorescent intensity as low (‘‘+’’), middle (‘‘++’’) and high (‘‘+++’’).

bEL4, TIB47, CRL1778, 2993 and T180 are thymoma cell lines; 58a and a28 cells are T hybridoma.
doi:10.1371/journal.pone.0013780.t001

MS4a4B Regulates T Cells
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Figure 1. MS4a4B is expressed on cell surface and is potentially associated with activation of T cells. A, To determine whether MS4a4B
is expressed on cell surface, mouse spleen cells were surface-labeled with EZ-Link Sulfo-NHS-SS-Biotin according to the manufacturer’s protocol
(Pierce). Unlabeled spleen cells were used as control. Cells were lysed by lysis buffer containing 1% NP-40. Cell lysate was immunoprecipitated by
anti-MS4a4B-coupled protein A-beads and was separated on 12% SDS-PAGE, followed by blotting with streptavidin-HRP. MS4a4B was confirmed by
re-blotting with anti-MS4a4B antibody. B, EL4 cells, infected with either MS4a4B-expressing lentivirus (LV) vector or mock LV vector, were stained
with rabbit anti-MS4a4B antibody followed by labeling with anti-rabbit-IgG-Cy3 conjugate. Expression and localization of MS4a4B were observed by
confocal microscopy. Magnification, 640. C, Spleen cells were cultured for 24, 48 and 72 hrs in the presence or absence of Con A (5 mg/ml). Spleen
cells before culture were used as control (0 hr). Cells were first stained with anti-CD3-PE, and then intracellular stained with biotinylated anti-MS4a4B

MS4a4B Regulates T Cells
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by flow cytometry. As predicted, forced expression of MS4a4B

inhibited EL4 thymoma cell proliferation (Fig. 2B).

Small interfering RNA (siRNA)-mediated gene silencing has been

shown to be a powerful approach for studying protein function [32].

Since forced expression of MS4a4B over physiologic levels in cells

may lead to artificial data interpretation in some cases, we next

proceeded to knockdown MS4a4B expression. To confirm the

inhibitory role of MS4a4B in T cell propagation, we used

synthesized siRNAs to silence expression of MS4a4B in T32 cells,

a T helper cell line derived from normal primary T cells, which

normally expresses high levels of MS4a4B protein [1]. Three siRNA

duplexes were designed to target cDNA regions encoding the N-

terminal region, the first extracellular domain, and the C-terminal

intracellular domain of MS4a4B respectively (supplementary Fig.

S3A and B). Knockdown of MS4a4B by selected MS4a4B-siRNAs

markedly reduced expression of MS4a4B at both RNA transcrip-

tion and protein levels (Fig. 2C, 2D and Supplementary Fig. S3C).

In comparison with RNA expression, siRNA-induced reduction of

MS4a4B protein was somewhat delayed, perhaps due to the longer

half-life of protein. To determine the impact of MS4a4B-

knockdown on cell proliferation, T32 cells pre-labeled with PHK-

26 were transfected with FAM-labeled either MS4a4B-specific

siRNA (siMS4a4B2) or negative control siRNA. Proliferation of the

transfected cells in culture was assessed by flow cytometry.

Consistent with the findings from over-expression studies, knock-

down of MS4a4B accelerated proliferation of T32 cells (Fig. 2E).

Similar results were observed in primary T cells from C57BL/6

mice when MS4a4B expression was knocked down by siRNA

approaches (Fig. 2F), suggesting that MS4a4B plays an inhibitory

role in T cell propagation. This appears not to be in line with our

previous observation in which overexpression of MS4a4B enhanced

IL-2 levels in activated T cells. It remains to be elucidated whether

MS4a4B plays a role in survival of differentiated Th1 cells, which

led to a prolonged IL-2 production in these cells. To test how

MS4a4B expression impacts IL-2 responsiveness of T cells, we

added serially diluted IL-2 in culture of T32 cells transduced with

either shMS4a4B lentiviruses (for MS4a4B knockdown) or shLuc

lentiviral vector as control and analyzed proliferation of these cells.

The results showed that knockdown of MS4a4B accelerated IL-2-

induced proliferation of T32 cells (Fig. 2G).

To confirm if MS4a4B does serve as a negative modulator for T

cell proliferation in vivo, EL4 cells infected with either MS4a4B-

expressing-lentivirus or mock control lentiviral vector were infused

into C57BL/6 recipients. EL4 cell propagation was assessed by

analyzing the percentage of infused EL4 cells in blood and spleen

with flow cytometry three days after cell transfer. As indicated by

the percentage of GFP-positive cells, MS4a4B-expression reduced

the propagation of EL4 cells in both peripheral blood (Fig. 3A and

B) and spleens (Fig. 3C and D). To exclude the possibility that

MS4a4B-infected EL4 cells may dominantly migrate into organs

other than spleen, we also examined brain, thymus, heart, lung,

liver, kidney and intestine. The results showed that there were no

infused EL4 cells (GFP+) detected in those organs except heart and

liver, in which the level of MS4a4B-infected EL4 cells was also

slightly lower than that of LV-infected EL4 cells (data not shown).

To further verify the inhibitory role of MS4a4B in solid thymoma

model, 16106 MS4a4B-expressing lentivirus (or control vector)-

infected EL4 cells were inoculated subcutaneously in the right

flank of 8–10 week-old C57BL/6 mice. Tumor growth was

monitored daily after inoculation. Results showed that forced

expression of MS4a4B in EL4 cells significantly reduced tumor

growth in vivo (P,0.001) (Fig. 3E). This is unlikely due to host

specific cellular responses to MS4a4B protein given that spleen

cells from EL4-inoculated hosts did not respond to EL4 cells

expressing MS4a4B when they were cocultured with EL4-

MS4a4B cells in vitro (data not shown).

MS4a4B regulates T cell proliferation by interfering cell
cycle progression

It has been documented that CD20 regulates B cell proliferation

by impacting cell cycle progression in these cells [22,33]. HTm4

was found to prevent cell cycle progression from G0/G1 phase

into S-G2/M phase in hematopoeotic cells [15,24]. To get some

insight into how MS4a4B modulates T cell proliferation, we tested

if MS4a4B protein regulates cell cycle progression by using

MS4a4B-lentivirus-infected EL4 cells. EL4 cells stably infected by

MS4a4B-lentivirus (or mock lentiviral vector as control) were

synchronized by two cycle treatment with 2.5 mM thymidine and

serum starvation. Synchronized cells then were stimulated with

complete medium containing 15% FCS. Cell samples were

collected at serial time points after stimulation and cell cycle was

analyzed by flow cytometry with propidium iodide staining. After

8 hours of stimulation, 68.5% of control cells entered S-G2/M

phase. In contrast, the percentage of cells that entered S-G2/M

phase was markedly reduced in MS4a4B-expressing vector-

infected EL4 cells (Fig. 4A). These results suggest that MS4a4B

protein inhibits cell proliferation by preventing cell cycle

progression from G0/G1 phase into S-G2/M phases.

To further confirm the role of MS4a4B in cell cycle regulation

by knockdown approaches, we constructed a lentiviral vector

expressing short hairpin RNA (shRNA) for MS4a4B (MS4a4B-

shRNA), which was designed based on the targeting sequence

(siMS4a4B2) selected by siRNA knockdown experiments described

above. Knockdown by MS4a4B-shRNA vector markedly reduced

MS4a4B mRNA (supplementary Fig. S4) and protein expression

(Fig. 4B and C). To determine the impact of MS4a4B-knockdown

on cell cycle, shRNA-targeting vector-infected T32 cells were

isolated by flow cytometric cell sorting to achieve .99% of GFP

expression. The purified T32 cells were synchronized as described

for EL4 cells above. The cells then were stimulated by complete

medium containing 15% FCS. Cell samples from culture were

analyzed for cell cycle by propidium iodide staining and flow

cytometric analysis. Consistent with the observation from over-

expression experiments, knockdown of MS4a4B protein promoted

cell cycle progression from G0/G1 phase into S-G2/M phase

(Fig. 4D), indicating that reduction of MS4a4B protein released

cells from MS4a4B-mediated suppression of cell cycle.

MS4a4B-mediated cell cycle inhibition is correlated with
enhanced expression of cell cycle inhibitors and reduced
Cdk2 activity

Cell cycle progression is driven by the temporal induction and

activation of cyclin-dependent kinases (CDKs) [34]. Activation of

CDKs requires the formation of CDK-cyclin complexes and is

antibody (blue line) or biotinylated Ig control (red line), followed by labeling with streptavidin-Red 670. For flow cytometric analysis, cells were first
gated on CD3, and then were analyzed for MS4a4B expression. D, Spleen cells pre- or 48 hr post Con A stimulation were co-immunostained with
anti-CD3 and anti-MS4a4B antibody. Cells were analyzed by flow cytometry. Note the CD3low/MS4a4Blow population. E, Spleen cells were stimulated
with Con A for 48 hr and were co-stained with Annexin V, anti-CD3 and anti-MS4a4B antibodies. CD3low/MS4a4Blow and CD3high/MS4a4Bhigh

populations were gated for assessment of apoptosis indicated by Annexin V binding.
doi:10.1371/journal.pone.0013780.g001

MS4a4B Regulates T Cells

PLoS ONE | www.plosone.org 4 November 2010 | Volume 5 | Issue 11 | e13780



Figure 2. MS4a4B negatively regulates T cell proliferation. A, Retrovirus-driven over-expression of MS4a4B inhibits proliferation of primary T
cells. Primary CD4+ T cells isolated from spleen with anti-CD4 magnetic beads were stimulated by anti-CD3/ anti-CD28 antibodies and then were
infected with MS4a4B-retroviral vector or mock vector. After infection, cells were labeled with PKH-26 Red Fluorescent linker kit. Proliferation of the
tested cells was analyzed by flow cytometry (FL2). Data shown are representative of three repeat experiments. B, Forced expression of MS4a4B by LV-
vector reduced proliferation of EL4 cells. Purified EL4 cells with stable lentiviral infection were labeled with PKH-26 Red and then cultured in complete
RPMI 1640 medium. Cells were collected on the days indicated. Cell proliferation was assessed by flow cytometry. Data shown are representative of
three repeat experiments. The numbers in histograms are mean fluorescence intensity (MFI) 6 SD. ***, p,0.001. C, Knockdown of MS4a4B by siRNA.
T32 cells were transfected with either FAM-labeled negative control siRNA or FAM-labeled MS4a4B-specific siRNAs (siMS4a4B1 and siMS4a4B2). Cells

MS4a4B Regulates T Cells
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negatively regulated by two groups of CDK inhibitory proteins: Ink4

family (p16, p15, p18 and p19) and Cip/Kip family (p21, p27 and

p57) [35]. Binding of Ink4 inhibitors to CDK4 or CDK6 prevents

CDK interaction with cyclin D in G1 phase, which interferes with

cell cycle progression from G0 to S phase. CDK inhibitors of the

Cip/Kip family more broadly inhibit activity of cyclin-CDK

complexes involving CDK2 and cyclin D, E and A, which causes

G1 arrest and suppression of cell cycle progression beyond G1 phase.

To dissect the underlying mechanism of MS4a4B-mediated

regulation of cell cycle, we analyzed gene expression that regulates

cell cycle transition by real-time PCR array. We found that

expression of several inhibitory genes was enhanced in MS4a4B-

lentivirus-infected EL4 cells, including Ink4 family protein (p16),

Cip/Kip family proteins (p21 and p27) and E2f4, the latter having

been found to repress gene transcription by interfering with the

binding of E2f1, E2f2 and E2f3 to promoters [36]. On the other

hand, expression of positive cell cycle regulators, e.g. Cyclin A1,

Cyclin B1 and E2f2, was decreased (Fig. 5A and B). Another

enhanced inhibitory molecule is Apbb1 (Amyloid beta (A4)

precursor protein-binding, family B, member 1), also named

Fe65, which is an adaptor protein localized in the nucleus.

Overexpression of Fe65 in mouse fibroblasts has been shown to

block cell growth by inhibiting the activation of a key S phase

gene, the thymidylate synthase (TS) gene [37]. Notably, MS4a4B

expression enhanced the production of the calcium/calmodulin-

dependent protein kinase (CaM kinase) IIa, also known as

Camk2a, whose kinase activity is dependent upon its activation

by calmodulin (CaM). CaM is one of the key proteins that

transduces a signal in response to increases in intracellular Ca2+.

Whether MS4a4B protein is involved in regulation of Ca2+

signaling still remains to be determined. We observed no change in

p53 at RNA transcription levels, suggesting that p53 is not

involved in MS4a4B-mediated inhibition of cell cycle.

Since overexpression of MS4a4B was correlated with reduced

levels of cyclin A1, which has been documented to interact with

Cdk2, we next examined Cdk2 kinase activity in MS4a4B-

lentivirus-infected EL4 cells by Ckd2 kinase assay. We found that

overexpression of MS4a4B markedly attenuated Cdk2 kinase

activity (Fig. 5C). We further examined whether inhibition of

Cdk2 activity subsequently resulted in higher levels of hypopho-

sphorylated retinoblastoma protein (Rb), a crucial suppressor

protein for gene transcription, and cell cycle progression. Indeed,

levels of hopophosphorylated Rb were markedly elevated, which

was accompanied by decreased levels of hyperphosphorylated Rb,

in MS4a4B-lentivirus-infected EL4 cells in comparison with

MS4a4B2-EL4 cells (Fig. 5D and 5E).

Discussion

It has been shown previously that MS4a4B is selectively

expressed in Th1 cells [1,20] and regulatory T cells (Treg) [19].

In primary T cells, MS4a4B is associated with Th1-cytokine

production and its expression is repressed by Stat6-signaling [20].

In Treg cells, interaction of MS4a4B with GITR augments GITR

signaling and T cell IL-2 production [19]. In this study, we

demonstrated, for the first time, that MS4a4B plays an inhibitory

role in T cell proliferation. Although MS4a4B is highly expressed

in mature primary T cells, it is absent in malignant T cells.

Interestingly, MS4a4B expression is upregulated during activation

of primary T cells and overexpression of MS4a4B by viral vectors

downregulates T cell proliferation, suggesting that MS4a4B may

serve as ‘‘survival modulator’’ to protect activated cells from

overgrowth. On the other hand, silence of MS4a4B in thymoma

and T hybridoma cells may partially explain the uncontrollable

growth of malignant T cells. Absence of MS4a4B expression in

thymoma cells is likely due to active suppression of MS4a4B gene

transcription by unknown factors derived from tumor cells rather

than mutation of the MS4a4B gene itself since T hybridoma cells

also lose MS4a4B expression (Table 1), in which MS4a4B gene

should be compensated by the alleles from normal T cells. Of note,

MS4a4B is also expressed at low levels in bone marrow cells. It is

unclear whether this proportion of bone marrow cells represents

the hematopoietic progenitors that have the potential to migrate

into the thymus and are committed to T cell lineage.

CD20 and HTm4 have been shown to regulate proliferation of

activated B cells and hematopoietic cells respectively by interfering

with cell cycle progression [15,22]. Although the mechanisms

underlying CD20 or HTm4-mediated regulations are not fully

understood, available evidences support that they are using

different mechanisms. CD20 is thought to be a regulator of

transmembrane Ca2+ conductance which indirectly impacts cell

cycle progression and proliferation of B cells [11,38]. Antibody

binding to a CD20 epitope (B1) hence inhibits cell cycle

progression of B cells [22]. HTm4 has been found to bind to

cyclin-dependent kinase-associated (CDK-associated) phospha-

tase-CDK2 (KAP-CDK2) complexes by its C-terminal region

and to stimulate the phosphatase activity of KAP, which

subsequently causes cell cycle arrest at the G0/G1 phase. Cell

membrane localization of MS4a4B protein in T cells is similar to

that of CD20 in B cells but differs from that of HTm4, which is

mainly localized on nuclear membrane [15]. It remains to be

determined whether MS4a4B can serve as a calcium channel, or

as a regulatory protein for cell receptor (as CD20 does in B cells

[11,39]). In comparison with CD20, both MS4a4B and CD20

regulate cell cycle and cell proliferation. However, the effect of

MS4a4B on cell cycle and cell proliferation in T cells seems

different from that of CD20 in B cells since expression of

recombinant CD20 was shown to accelerate cell cycle progression

[21]. This difference may explain why B lymphoma cells conserve

expression of CD20 while tumor T cells eliminate MS4a4B

expression. In contrast, the inhibitory role of MS4a4B on cell cycle

and cell proliferation is similar to that of HTm4 in hematopoietic

cells, in which overexpression of HTm4 causes cell cycle arrest at

were collected on day 3 after transfection. Transcription of MS4a4B mRNA was analyzed by RT-PCR. D, Cell samples collected from culture on day 4
were subjected to MS4a4B protein detection by flow cytometry with anti-MS4a4B antibody. Data are presented as fluorescence intensity of FL-2 in
FAM-positive population. Blue line: siMS4a4B2-transfected cells; red line: control siRNA-transfected cells. E and F, Knockdown of MS4a4B expression
accelerated proliferation of T32 cells (E) and primary T cells (F). T32 cells or anti-CD3/anti-CD28-stimulated CD4+ primary T cells were labeled with
PKH-26 Red and were transfected with FAM-labeled negative control siRNA or FAM-labeled siMS4a4B2. The labeled cells were stimulated with
complete medium containing 20 U/ml IL-2. Cells were collected from culture at the time indicated for determination of proliferation rate by flow
cytometric analysis. Data are presented as representative of three repeat experiments. Tinted grey peak: unlabeled cells; blue line: siMS4a4B2-
transfected cells; red line: control siRNA-transfected cells. The numbers in histograms are MFI 6 SD. *, p,0.05; **, p,0.01; ***, p,0.001. G,
knockdown of MS4a4B accelerated IL-2-induced proliferation of T32 cells. T32 cells were infected with either shMS4a4B- or shLuc-lentiviral vector.
Infected cells (16105) were cultured in 96 well plate for 24 hr in the presence of serially diluted IL-2, followed by incubation with 1mCi 3H-thymidine
for an additional 16 hr. Cell proliferation was assayed by 3H-thymidine incorporation. A representative of two independent experiments is shown.
*, p,0.05; **, p,0.01.
doi:10.1371/journal.pone.0013780.g002
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the G0/G1 phase [15]. These data suggest that function of MS4A

proteins may vary in different type of cells despite the homology in

amino acid sequences and the similarity in structure among the

MS4A gene family.

Data from our studies thus far show that MS4a4B inhibits cell

cycle progression of T cells possibly by modulating levels of cell

cycle regulatory elements. In primary T cells, CD4+ T cell line and

thymoma cells, as confirmed by both overexpression and

Figure 3. Expression of MS4a4B by lentiviral vector inhibits propagation of thymoma cells in vivo. EL4 thymoma cells were infected by
MS4a4B-LV or mock LV control. The infected cells (GFP+) were purified by flow cytometric cell sorting (purity: .99%). 1.56107 sorted cells were
infused into C57BL/6J recipients by i.v injection. Mice were sacrificed on day 3 after cell transfer. EL4 thomoma cells (GFP+) in blood and spleen were
assessed by flow cytometry. Data shown are representative of three repeat experiments. A, Representative flow histograms for each group of blood
samples. The number shown is percentage of GFP+ cells in lymphocyte gate. B, Percentage 6 SD of GFP+ cells in blood samples from mice injected
with either MS4a4B-LV-infected or mock LV-infected EL4 cells (N = 5). C, Representative flow histograms for each group of spleen samples. The
number shown is the percentage of GFP+ cells in lymphocyte gate. D, Percentage 6 SD of GFP+ cells in spleens from mice injected with either
MS4a4B-LV-infected or mock LV-infected EL4 cells (N = 5). E, MS4a4B inhibits solid thymoma growth in vivo. 16106 EL4 cells were injected
subcutaneously in the right flank of mice. Size of tumor was measured daily after inoculation. Results are presented as mean 6 SD of mm2 (N = 8).
Data shown are representative of two independent repeat experiments.
doi:10.1371/journal.pone.0013780.g003
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Figure 4. Expression of MS4a4B in T cells modulates cell cycle progression. A, MS4a4B-LV or mock LV-infected EL4 thymoma cells were
synchronized by treatments with 2.5 mM thymidine and serum starvation. The synchronized cells were adjusted into 56105/ml and were stimulated
with complete medium containing 15% FCS. For cell cycle analysis, cells were harvested from culture at the time indicated. DNA content in cells was
determined by propidium iodide staining and flow cytometric analysis. Results are shown as histogram from each sample with numbers indicating
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knockdown approaches, MS4a4B is correlated with increase of cell

cycle inhibitors, e.g., p16Ink4a, p21Cip1 and p27Kip1, and decrease of

cyclin A and B. Furthermore, overexpression of MS4a4B caused

reduction of Cdk2 activity and promoted dephosphorylation of Rb.

Cdk2 is a crucial molecule that drives cell cycle transition from G0/

G1 to S-G2/M phases [40]. Downregulation of Cdk2 activity will

therefore result in dephosphorylation of Rb, subsequently leading to

inhibition of gene transcription and cell cycle arrest. To date, we

have no data to show whether MS4a4B inhibits Cdk2 activity by

interacting with other regulatory molecules, e.g., KAP, as HTm4

does. However, evidences from our studies support the hypothesis

that MS4a4B more likely causes reduction of Cdk2 activity by

percentage of S-G2/M phase cells. Data presented are representative of three repeat experiments. B, Infection of T32 cells by shMS4a4B-expressing
LV vector decreased MS4a4B protein expression. T32 cells stably infected with shMS4a4B-LV or shLuc-LV control were sorted by flow cytometry.
MS4a4B expression in the sorted T32 cells was assessed by flow cytometry with anti-MS4a4B staining. Data are shown as representative histograms
from analysis with Flowjo. C, shMS4a4B-LV or shLuc-LV control-infected T32 were co-stained with DAPI and anti-MS4a4B antibody, followed by
labeling with anti-rabbit IgG-Cy3 conjugate. Knockdown of MS4a4B protein in T32 cells by shMS4a4B-LV was examined by confocal microscopy
(Magnification, 640). D, Knockdown of MS4a4B expression in T32 cells by shMS4a4B-LV inhibited cell cycle progression. shMS4a4B-LV or shLuc-LV
control-infected T32 cells were synchronized as described in ‘‘A’’. Synchronized cells were stimulated by 15% FCS RPMI medium containing 20 U/ml
IL-2. Cell samples were harvested from culture at the time indicated. Cell cycle was analyzed by propidium iodide staining. Data are shown as the
representative histogram of three repeat experiments. The numbers in histogram are the percentage of cells in S-G2/M phase.
doi:10.1371/journal.pone.0013780.g004

Figure 5. Expression of cell cycle-regulatory genes in MS4a4B-LV-infected EL4 cells. A, Total RNA was isolated from MS4a4B-LV vector- or
mock LV vector-infected EL4 cells. Expression of 84 key regulatory genes on cell cycle progression was determined with real time PCR array analysis kit
(Cat#: PAMM-020, SABiosciences, Gaithersburg, MD). Data were analyzed with on-line analysis software according to the manufacturer’s instructions and
presented as scatter plot with fold change of genes. Red dot: genes increased by $4 fold; blue dot: genes decreased by $4 fold. B, Genes with fold
change $4 were shown as column figure. C, MS4a4B (or control) vector-infected EL4 cells were synchronized and stimulated with 15% FCS for 8 hours.
Cell lysates (100 mg) were immunoprecipitated with anti-Cdk2-protein A beads. Cdk2-cyclin activity was assayed as described in ‘‘Methods’’. The same
samples (25 mg) were used for western blot with anti-b-actin antibody to ensure identical loading. Relative intensity (sample vs. LV control) is shown in
the lower panel. *, p,0.05. D, Cell lysates described in ‘‘C’’ were separated on 10% SDS gel followed by western blotting with appropriate antibodies as
indicated. E. Relative intensity of blots in ‘‘D’’ (sample vs. internal control (b-actin)) was determined by densitometry. *, p,0.05.
doi:10.1371/journal.pone.0013780.g005
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impacting upstream of the signaling pathway since overexpression

of MS4a4B in EL4 cells also increases Camk2a production. It has

been documented that activation of Camk2a may regulate cell cycle

in either a negative or positive manner under different circum-

stances [41,42]. In case of MS4a4B expression in EL4 cells,

MS4a4B protein may facilitate the Ca2+/CaM signaling pathway

by impacting intracellular Ca2+ activity and cause upregulation of

Camk2a, which promotes the transcription of Ink4 and Cip/Kip

family Cdk inhibitors. Although machinery interplays in these

processes still remain to be elucidated in detail, our data suggest that

MS4a4B may modulate cell cycle transition by upregulation of cell

cycle inhibitors and down-regulation of cell cycle activators possibly

through the Ca2+/CaM signaling pathway.

Cell proliferation and differentiation are two closely related but

independent processes [43]. T cell activation and proliferation are

essential for T cell differentiation [44]. Proliferating T cells usually

have several fates under certain circumstances: toward terminal

differentiation, or exit from cell cycle for resting and survival, or

undergo apoptosis. It has been documented that TcR-stimulatory

signals trigger T cell proliferation but preactivated T cells may

undergo activation-induced cell death (AICD) in response to the

same signals [45]. In our study, we found that MS4a4B expression

was upregulated in activated T cells and decrease of MS4a4B was

associated with apoptosis of T cells (Figure 1C and 1E). Given that

MS4a4B can inhibit T cell proliferation, this raises the possibility

that in addition to its anti-proliferative role, MS4a4B expression

may prolong survival of activated T cells by preventing T cells from

apoptosis. Currently, we have no evidence to show whether down-

regulation of MS4a4B in apoptotic T cells is a cause or consequence

of T cell apoptosis. If MS4a4B does have an anti-apoptotic effect

and provide survival signals for activated T cells, that may explain

why overexpression of MS4a4B in T cells enhanced IL-2 levels

during T cell activation as we observed in our previous studies [1].

In conclusion, our study provides evidence that MS4a4B

modulates T cell proliferation as a negative regulator by inhibiting

cell cycle transition from G0/G1 phase into S-G2/M phase.

Given that MS4a4B expression in primary T cells is upregulated

after T cell activation, MS4a4B likely contributes to negative feed-

back regulatory pathways, which will self-limit over-propagation of

activated T cells. In other words, it may facilitate activated T cells

for long-term survival. This may account for its high levels of

expression in mature T cells conserved by evolution. On the other

hand, it may partially explain the uncontrollable growth of

malignant T cells, e.g. thymoma. Since mature T cells express high

levels of MS4a4B while malignant T cells lose its expression,

MS4a4B may also serve as a biomarker to distinguish normal

mature T cells from tumor T cells. Considering the structural and

functional similarity between MS4a4B and CD20, as well as

HTm4, this regulatory role of MS4a4B and other members of the

MS4A gene family in cell proliferation could be fundamental for

cellular biology in general. In addition, taking into count the

importance of CD20 as a target of antibody-based immune

therapeutics for B cell-mediated diseases, MS4a4B may represent

a potential target on T cells for similar antibody-based

therapeutics of T cell-mediated immune diseases.

Materials and Methods

Ethics Statement
All experiments were performed in accordance with National

Institutes of Health and Thomas Jefferson University guidelines.

The study involving vertebrate animals was approved by the

Thomas Jefferson University Institutional Animal Care and Use

Committee (IACUC, Protocol #833A).

Mice and cells
C57BL/6J mice, 8 to 10 weeks old, male (The Jackson

Laboratory), were used for in vivo study and as donors for primary

cells. EL4 and HEK 293T cells were from American Type Culture

Collection (Manassas, VA). T cell clone T32 was obtained from D.

Scott (University of Maryland School of Medicine). All cells were

cultured with RPMI 1640 complete medium containing 10% of

fetal calf serum (FCS) except for HEK 293T cells, which were

cultured with DMEM complete medium containing 10% FCS.

Antibodies and immune staining
Antibodies used for immunostaining mouse cells were obtained

from BD-Biosciences (San Diego, CA). Antibodies against C-

terminal of MS4a4B were generated as described previously [1] and

were biotinylated with SureLINK Chromophoric Biotin Labeling

Kit (KPL, Gaithersburg, MD). MS4a4B intracellular staining was

performed as described previously [1]. Flow cytometry was

performed using a FACSCalibur (BD-Biosciences). Data were

analyzed with FlowJo software (Tree Star, Ashland, OR).

Western blot analysis
Cells were lysed in lysis buffer (Cell Signaling) supplemented

with protease inhibitor (Complete Mini, EDTA-free; Roche

Applied Science). Cell lysates were separated by 10% SDS-PAGE

and transferred onto Immun-Blot PVDF membrane (Bio-Rad

Laboratories). Membranes were blotted with primary antibodies

followed by incubation with HRP-conjugated secondary antibod-

ies. The blots were developed by ECL reagents and exposed on

HyperFilmTM (Amersham). The following antibodies were used

for western blotting: Cdk2 (H-298) and b-Actin (AC-15) (Santa

Cruz Biotechnology); Rb (N-terminal) (BioLegend); Rb (Ab-807,

Signalway Antibodies); Phospho-Rb (Ser807/811) (Cell Signaling)

and anti-MS4a4B (C-terminal) antibody [1].

Immunohistological staining and confocal microscopy
T cells were seeded on poly-L-lysine–coated chamber slides in

culture medium. For immune staining, cells were fixed with 4%

paraformaldehyde plus 0.5% glutaraldehyde and then were

permeabilized with 0.5 ml of 0.2% Triton X-100. After blocking

with 10% horse serum, slides were incubated with primary

antibody at 4uC overnight, followed by staining with Cy3-labeled

anti-rabbit IgG conjugate (Jackson ImmunoResearch Lab). The

stained slides were covered with mounting medium (Vector

Laboratories). Results were visualized by confocal microscopy

(Zeiss LSM 510).

Viral vectors for MS4a4B-overexpression
MS4a4B-GFP-MIGR retroviral vector was constructed as

described previously [1]. MS4a4B-lentivirus vector was prepared

by inserting MS4a4B-encoding sequence into a bicistronic

lentiviral vector containing GFP marker [46]. The lentiviral

vector particles were produced in HEK 293T packaging cells by

using the three-plasmid transient transfection system [47].

Transfection and MS4a4B knockdown by siRNA
Three siRNA candidates were selected by using online siRNA

design software to target different regions of the MS4a4B gene

(supplementary Fig. S3). The synthesized siRNA duplexes were

labeled with FAM at 59-end of sense oligonucleotide of the duplex.

FAM-labeled Silencer Negative Control #1 siRNA was purchased

from Ambion, Applied Biosystems (Cat#:AM4611). Cell transfec-

tion was performed using Lipofectamine 2000 per the manufac-

turer’s protocol (Invitrogen). Knockdown efficiency was assessed
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by flow cytometry with anti-MS4a4B antibodies and by RT-PCR

with MS4a4B-specific primers [1].

Construction of MS4a4B-shRNA and Luc-shRNA-lentiviral
vectors

Based on the knockdown efficiency of synthesized siMS4a4B

duplexes, we selected encoding sequence 630–649 of MS4a4B

(NCBI GenBank NM_021718) as target and shRNA for luciferase

(Luc) as irrelevant control. MS4a4B-shRNA and Luc-shRNA

fragments were synthesized by Sigma. shRNA-knockdown lenti-

viral vectors were constructed with a Gateway-based cloning

system (Invitrogen). Briefly, selected shRNA fragments were

inserted into pEN-mH1c entry vector (ATCC ID10326369) at

AflII/XhoI sites. Pol III-shRNA cassette from pEN-mH1c vector

was in turn subcloned into pDSL-hpUGIH plasmid by LR

recombination reaction to generate shRNA expression lentiviral

vectors (supplementary Fig. S4). For virus packaging, HEK 293T

cells were transfected with pDSL-hpUGIH plasmid containing

shRNA expression cassette by using the three-plasmid transient

transfection system [47].

Viral infection of T cells
Primary T cell infection was performed as described previously

[1]. Viral infection of T cell line and thymoma cells was performed

as described for primary T cells except that there was no

prestimulation.

Cell labeling and proliferation assay
T cell lines or primary T cells primed with either MS4a4B over-

expression approach or MS4a4B-knockdown approach were

labeled with PHK-26 red fluorescent dye (Sigma) according to the

manufacturer’s instruction. Cell proliferation was measured by flow

cytometry. To assess proliferation of MS4a4B-virus or control

vector-infected EL4 cells in vivo, 1.56107 cells were infused into

C57BL/6J recipient mice. Blood and spleen samples were harvested

from mice on day 3 after cell transfer. Percentage of EL4 cells was

determined by flow cytometry according to GFP expression.

Cell cycle analysis
EL4 cells stably infected by either MS4a4B-expressing lentivi-

ruses or mock vector were isolated by flow cytometric cell sorting

(GFP expression .99%). Cells were then synchronized by two

cycle treatments with 2.5 mM thymidine for 20 h (in complete

medium containing 10% FCS for the first treatment and 0.5%

FCS for the second treatment) with a 10-hour interval. Cells were

collected from culture at serial time points. Cell cycle was analyzed

by propidium iodide staining [48].

Cdk2 kinase assay
Cell lysates (100 mg) were immunoprecipitated with anti-CDK2-

protein A beads. Immunoprecipitated protein was incubated at

30uC for 30 min with 2 mCi c-P32-ATP and Histone H1 (Roche

Diagnostics) as a substrate in kinase buffer (50 mM Hepes pH7.0,

10 mM MgCl2, 10 mM DTT) containing 30 mM ATP. The

reaction was stopped by adding 2X sample buffer and boiled for

3 min before separation on a 12% SDS-PAGE. The gel was dried

and exposed to X-ray film.

Statistical analysis
Statistical analysis was performed using a two-tailed t-test except

EL4 solid tumor model, for which two-way ANOVA test was used

to determine statistical difference between groups. A value of

p,0.05 is considered statistically significant.

Supporting Information

Figure S1 Expression of MS4a4B in NK cells, macrophages and

bone marrow cells. A, Spleen cells from C57BL/6J mice were

surface-stained with anti-Mac1-FITC and anti-NK1.1-PE, followed

by intracellular staining with biotinylated-anti-MS4a4B antibody

(blue line) or biotinylated-Ig control (red line), which were

subsequently labeled by streptavidin-Red 670 conjugate. For flow

cytometric analysis, cells were first gated by Mac1 and NK1.1.

Mac1+NK1.1- cells (macrophage-enriched population) and

Mac1+NK1.1+ cells (Mac1+ NK cells) were then analyzed

respectively for MS4a4B expression. The representative of three

repeat experiments is shown. B, Bone marrow cells from C57BL/6J

mice were surface-stained with anti-Mac1-FITC, followed by

intracellular staining with anti-MS4a4B antibody (blue line) or Ig

control (red line) as described in ‘‘A’’. For flow cytometric analysis,

cells were first gated by Mac1. Mac1+ and Mac1- cells were then

analyzed respectively for MS4a4B expression. The representative of

three repeat experiments is shown.

Found at: doi:10.1371/journal.pone.0013780.s001 (0.66 MB TIF)

Figure S2 MS4a4B expression is absent in malignant T cells.

Thymoma cells (A), T hybridoma cells (B) and T32 cell line (C), as

positive control) were stained by intracellular staining with biotiny-

lated-rabbit anti-MS4a4B antibody (or biotinylated-rabbit IgG as

control), followed by labeling with Streptavidin-PerCP-Cy5.5 conju-

gate. Data are presented as dot plot with percentage of MS4a4B+
cells. On representative of three independent experiments is shown.

Found at: doi:10.1371/journal.pone.0013780.s002 (0.82 MB TIF)

Figure S3 Targeting MS4a4B by synthesized siRNA duplexes.

A, Targeting location in MS4a4B encoding cDNA (NCBI

GenBank NM_021718). B, Sequences of FAM-labeled siM-

S4a4Bs. C, MS4a4B expression in siRNA-transfected T32 cells.

T32 cells were transfected with siMS4a4B or negative control

siRNA. Cells were harvested from culture on day 4 after

transfection. MS4a4B expression in transfected cells was deter-

mined by flow cytometry with anti-MS4a4B antibody. Red line:

negative control siRNA-transfected cells (MS4a4B:75.4%); blue

line: siMS4a4B-transfected cells.

Found at: doi:10.1371/journal.pone.0013780.s003 (0.59 MB TIF)

Figure S4 Construction of shRNA-expressing lentiviral vectors. A,

Structure of targeting lentiviral vector. B, Predicted shRNA

transcripts. C, Knockdown of MS4a4B expression by shMS4a4B2

lentiviral vector. MS4a4B-RNA expression in either shMS4a4B- or

shLuc-lentivirus-infected T32 cells was determined by RT-PCR with

MS4a4B-specific primers or HPRT primers as internal control. PCR

products were separated on 1% agarose gel. D, Bands in ‘‘C’’ were

analyzed by densitometry. Results are presented as density of each

sample with percentage of knockdown on columns.

Found at: doi:10.1371/journal.pone.0013780.s004 (0.58 MB TIF)
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