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Abstract

Background: Current technologies have lead to the availability of multiple genomic data types in sufficient quantity and
quality to serve as a basis for automatic global network inference. Accordingly, there are currently a large variety of network
inference methods that learn regulatory networks to varying degrees of detail. These methods have different strengths and
weaknesses and thus can be complementary. However, combining different methods in a mutually reinforcing manner
remains a challenge.

Methodology: We investigate how three scalable methods can be combined into a useful network inference pipeline. The
first is a novel t-test–based method that relies on a comprehensive steady-state knock-out dataset to rank regulatory
interactions. The remaining two are previously published mutual information and ordinary differential equation based
methods (tlCLR and Inferelator 1.0, respectively) that use both time-series and steady-state data to rank regulatory
interactions; the latter has the added advantage of also inferring dynamic models of gene regulation which can be used to
predict the system’s response to new perturbations.

Conclusion/Significance: Our t-test based method proved powerful at ranking regulatory interactions, tying for first out of
19 methods in the DREAM4 100-gene in-silico network inference challenge. We demonstrate complementarity between this
method and the two methods that take advantage of time-series data by combining the three into a pipeline whose ability
to rank regulatory interactions is markedly improved compared to either method alone. Moreover, the pipeline is able to
accurately predict the response of the system to new conditions (in this case new double knock-out genetic perturbations).
Our evaluation of the performance of multiple methods for network inference suggests avenues for future methods
development and provides simple considerations for genomic experimental design. Our code is publicly available at http://
err.bio.nyu.edu/inferelator/.
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Introduction

Predicting how a cell will respond, at the molecular level, to

environmental and genetic perturbations is a key problem in

systems biology. Molecular regulatory systems-level responses are

governed by several regulatory mechanisms including the

underlying transcriptional regulatory network (RN). Recently,

there has been an increase in the number of genome-wide datasets

appropriate for large scale network inference, which has driven a

large interest in methods for learning regulatory networks from

these datasets. In general, the question of inferring a transcrip-

tional RN can be posed in the following way: given a set of

regulators (transcription factors - TFs) and a set of targets (genes),

what are the regulatory relationships between the elements in

these two sets? These relationships can be directed (e.g. gene A

regulates gene B) or undirected (e.g. there is a regulatory

relationship between gene A and gene B), and can have

parameters describing the strength, confidence and/or kinetics

of the regulatory interaction (depending on the method used). RN

inference techniques use three main types of genome-wide data: 1)

steady-state transcriptional profiling of the response to perturba-

tions (e.g. gene knock-out or exposure to a drug,), 2) collections of

time series observations following relevant perturbations, and 3)

measurements of TF-DNA binding. Different types of RN

inference methods produce RNs that vary in detail and

comprehension. One critical distinction is the scalability of any

given method. Typically, methods that learn less detailed

regulatory models scale to larger systems and data sizes than

methods that learn more complex models. Another critical

difference between methods is whether causal (directed) edges or
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undirected relationships are learned. Several current methods aim

to learn dynamical parameters, such as TF-target activation rates

and rates of degradation of gene products. Ideally, a computa-

tional biologist should choose the most detailed method that the

data will support, as more detailed models can suggest more

focused biological hypothesis and be used to model a system’s

behavior in ways that simple network models cannot. Given this

constant need to balance the specific features of any given

biological dataset with the capabilities of multiple RN inference

algorithms, testing of RN inference methods using a variety of

datasets is a critical field-wide activity. Several recent methods aim

to do so by generating biologically meaningful datasets with a

known underlying topology [1–4].

To this end, the Dialogue for Reverse Engineering Assessments

and Methods (DREAM) [5] provides a set of networks which can

be used to develop and test RN inference methods. The networks

presented by DREAM make some simplifications of the networks

found in a cell, and the corresponding datasets are ideal in their

completeness. The control of cellular processes occurs on at least

four distinct levels including DNA, transcript, protein, and

metabolite. Measuring only transcript levels ignores the fact that

cellular interactions happen on the level of proteins, and are

mediated in many cases by metabolites. Accordingly, an ideal

dataset for RN inference would contain time-series measurements

of multiple levels of regulation (RNA, protein, protein-modifica-

tions, etc.) with the sampling rate on the order of the fastest

reaction. Additionally, the cellular response to genetic perturba-

tion (e.g. gene knock-out) would also be available. Although

advances are currently being made in the cost and accuracy of

genome-wide proteomics, metabolomics, and protein binding

(ChIP-chip, ChIP-seq) [6,7] measurements, the most mature and

cost efficient technologies remain those that measure genome-wide

transcription-level responses. Experimental and financial con-

straints typically prohibit obtaining these measurements in a finely

time-resolved manner. The DREAM challenge removes many of

these constraints and presents participants with an idealized

expression dataset for which the true topology (gold-standard) is

known. This presents a unique opportunity to develop RN

inference methods and immediately test their performance by

comparison with the gold-standard.

It should be noted that biological systems present several

advantages not relevant to the DREAM4 challenge. These

advantages (not discussed here) are leveraged by integrative

methods for learning modularity prior to inference [8–12],

methods that use structured priors derived from compilations of

validated biological regulatory interactions [13–16], and ap-

proaches to characterize binding sites [17,18]. A thorough review

of current network inference methods is beyond the scope of this

introduction but can be found in [19–24]. Here we briefly review

only the classes of methods that we utilized in our hybrid

approach: mutual information (MI) based methods, ordinary

differential equation (ODE) based methods, and resampling

methods.

Several methods for detecting significant regulatory associations

are based on similarity metrics derived from information theory,

such as MI. [25]. The MI between two signals (in this case the

expression of a TF and its target) is calculated by subtracting the

joint entropy of each signal from the sum of their entropies. It is

similar to correlation (the higher the magnitude, the stronger the

relationship), but is more generally applicable as it does not assume

a linear relationship between the two signals, nor does it assume

continuity. At their core, methods that rely on MI generally infer

undirected interactions, as the MI between two variables is a

symmetric quantity [26–29], however modifications can be made

that allow for the inference of direction [30,31]. Here, we use an

MI-based method, time-lagged Context Likelihood of Relatedness

(tlCLR) [31], which is based on Context Likelihood of Relatedness

(CLR) [29], to learn initial topology that is further optimized and

parametrized by Inferelator 1.0 [32]. tlCLR extends CLR by

making use of the temporal information contained in time series

observations to estimate the directionality of a significant

regulatory interaction. This method is described in [31] and is

reviewed in the methods section. tlCLR cannot be used to predict

the response of the system to previously unseen perturbations as it

does not infer any dynamical parameters. A different approach is

needed to calculate these dynamical parameters. In the context of

our full RN inference pipeline, which includes fitting of dynamical

parameters, tlCLR is used as a feature selection algorithm that

identifies a set of likely regulators for each target based on time-

lagged, corrected MI.

Ordinary differential equation based methods for RN inference

attempt to learn not only the topology of the network (i.e. ‘‘who

regulates who’’), but also the dynamical parameters associated

with each regulatory interaction. Regulatory network models

resulting from these methods can be used to predict the system-

wide response to previously unseen conditions, future time-points,

and the effects of removing system components. A drawback of

these methods is that they generally require time-series data and

more complete datasets than many alternative methods. ODE

methods model the rate of change in the expression of a gene as a

function of TFs (and other relevant effects) in the system. ODE

based methods differ in their underlying functional forms, how the

ODE system of equations is solved (coupled or uncoupled

solution), and how prior knowledge and sparsity constraints are

imposed on the overall inference procedure. For example, several

methods have been proposed that use complex functional forms

[33], and solve a coupled system [33,34], while other methods

[32,35–38] solve a simplified linear system of ODEs. The

Inferelator 1.0 [32], is an RN inference method which learns the

network as a system of linear ODEs, where the rate of change for

each gene is modeled as a function of the known regulators in the

system. Inferelator 1.0 uses a finite difference approximation to

estimate the change in the response over a given time interval, and

uses an efficient implementation of l1-constrained linear regres-

sion, LARS [39], to enforce model sparsity. The Inferelator 1.0

has previously been used to learn a large portion of the

Halobacterium salinarium transcriptional regulatory network, and

was able to predict mRNA levels of 85% of the genes in the

genome over new experimental conditions [40]. Additionally,

feature selection by tlCLR followed by optimization and

parameterization via Inferelator 1.0 was a top performing method

for the DREAM3 network challenge [31]. One drawback of the

original formulation of these scalable MI and ODE based methods

is that they rely on point estimates for many network parameters

and thus are not ideal for estimating the error in the inferred

parameters [41]. One possible solution is to use a resampling

approach [42,43] to generate an ensemble of predicted networks

from which the confidence interval for any parameter can be

estimated.

Resampling refers to a broad class of statistical methods that are

often used to assess confidence bounds on sample statistics by

empirically generating distributions [42]. Recently, several groups

have used resampling approaches in a biological context. In this

setting resampling methods are an attractive means of determining

confidence bounds on model parameters (such as the strength and

directionality of a putative regulatory interaction) for two main

reasons: 1) resampling methods are non parametric and thus

applicable in cases where complex or ill-understood regulatory

Resampling Network Inference
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relationships might confound assumptions about the correct error

distribution, and 2) resampling methods do not, in our case,

decrease algorithm scalability. Resampling methods have been

applied in several contexts to estimate error in a variety of

genomics data-analysis contexts. Kerr et al. [44] used a resampling

approach to assess confidence bounds of clusters from ANOVA

models. Resampling of a gaussian process regression model was

used by Kirk et al. [45] to show the sensitivity of the inferred

network to uncertainty in the underlying data. Friedman et al. [46]

used a resampling approach of a Bayesian network reconstruction

algorithm to assess the confidence of inferred parameters.

Additionally, Marbach et al. [47] showed that a resampling

approach applied to a genetic algorithm for network inference was

a top performering method in the DREAM2 five-gene network

challenge. We show that by using a resampling approach to

generate ensembles of networks with our network inference

pipeline we can improve the accuracy of our topology predictions.

Here we focus on which data types (time-series or steady-state),

and which methods (ODE-based, MI-based, genetic perturbation

based, or combinations thereof) can be expected to perform best at

either reconstructing network topology or predicting the response

of the system to new perturbations. Our analysis suggests several

simple considerations for determining the correct balance between

time-series and steady-state data required for large-scale network

inference, and how to use these distinct data types in a mutually

reinforcing manner.

Methods

The DREAM4 datasets consisted of both time-series and

steady-state data, and participants were challenged to predict: 1)

the topology of the network (as a ranked list of regulatory

interactions), and 2) the response of the network to combinations

of genetic perturbations (double knock-outs). We have participated

in both challenges. For challenge 1 we used a relatively simple t-

test based method, Median Corrected Z-scores (MCZ, pipeline 1,

Figure 1), which tied for 1st place at predicting the topology of the

network. For challenge 2 we used a network inference pipeline

(pipeline 3, Figure 1) that combined MCZ with our previously

published top-performing method for DREAM3 [31] (tlCLR-

Inferelator 1.0, pipeline 2, Figure 1), placing 2nd at predicting the

response of the network to double knock-outs. Pipeline 3

represents our initial attempt at combining pipeline 1 and pipeline

2 in a mutually reinforcing manner. Although pipeline 3 was

complementary to MCZ in that it allowed us to predict the

response of the system to double knock-outs, it was not

complementary at predicting the topology of the network, placing

8th (out of a total of 19 predictions).

After the results for DREAM4 were in, we re-evaluated our

methods with the goal of identifying where improvements can be

made. We aimed to find an alternate way to combine pipeline 1

and 2 in a mutually reinforcing manner with respect to topology

predictions. We show that by combining pipelines 1 and 2 in a

resampling approach (pipeline 4, Figure 1), we were able to

generate topology predictions that outperformed those of either

pipeline. Pipeline 4 also retains the ability to predict the response

of the system to double knock-outs. Additionally, we were able to

improve upon the ability of pipeline 3 to predict the data (the

response of the network to double knock-outs) by reconsidering

how we construct the initial conditions. Originally the initial

conditions were set to the w.t. expression levels for all genes. We

found that alternate initial conditions based on the single gene

knock-outs and informed by the MCZ topology predictions were

able to achieve an order of magnitude greater data prediction

accuracy.

Problem Set Up
The DREAM4 in-silico network reconstruction challenge

consists of five synthetic networks of 100 genes used to generate

five corresponding datasets. The five networks vary in their

topology, chosen to mimic either Escherichia coli or Saccharomyces

cerevisiae, and their dynamical properties, determined by initial

conditions and the kinetic parameters chosen for each of the five

networks [1]. Stochastic differential equations, followed by the

addition of noise proportional to the level of gene expression (as

seen in real microarray datasets), were used to generate expression

data from each topology.

Figure 1. Network inference pipelines tested. We developed and
tested four network inference pipelines composed of the methods
described in Table 1. Pipeline 1, MCZ, uses median corrected z-scores
on the steady state genetic knock-out data (eq. 2). We submitted
topology predictions from this method, tying for 1st place. Pipeline 2,
tlCLR-Inferelator, (eq. 19) uses tlCLR as a feature selection procedure,
followed by further model selection and parameterization by the
Inferelator 1.0. This pipeline was previously published and placed 2nd

for the DREAM3 network inference competition [31]. Pipeline 3, tlCLR-
Inferelator+MCZ, (eq. 20, developed to test the complementarity of the
topology predictions made by pipelines 1 and 2). Pipeline 3 combines
the results form pipelines 1 and 2. Double knock-out predictions from
this pipeline were submitted, placing 2nd (topology predictions from
this pipeline were submitted, placing 8th). Pipeline 4, Resampling+MCZ,
(eq. 22) presents an alternate way to combine predictions made from
complementary methods. In pipeline 4 a resampling approach was
applied to pipeline 2 and the results were combined with pipeline 1 as
described in the methods sections. Topology predictions from pipeline
4 outperformed those of pipeline 3, and double knock-out predictions
were on par with those of pipeline 3.
doi:10.1371/journal.pone.0013397.g001
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Denote the expression levels of the genes by x~(x1, . . . ,xN )T .

We are given four sets of observations: time-series (X ts), wild-type

(X wt), knock-out (X ko), and knockdown (X kd ). To generate the

time-series data a perturbation was introduced into the system for

a period of time, and then removed. Measurements were taken at

evenly spaced time intervals as the system responded to the

perturbation, and as it relaxed. We treated the response of the

system to the perturbation and the relaxation of the system once

the perturbation was removed as separate time-series experiments.

In order to simplify notation and without loss of generality we will

assume that X ts is the result of one such time-series experiment

with K observations, t1,t2, . . . ,tK , (i.e. x(t1),x(t2), . . . x(tK ) are

columns in X ts). X wt is composed of the first observation in each

time series (of which there are ten), and one provided observation

of wild-type expression. To generate the knock-out data the

transcription rate of each gene was set to zero (in turn), the

network was equilibrated, and the steady-state expression for all

genes in the system was measured. Likewise, for the knockdown

data the transcription rate of each gene was set to half of its wild-

type rate, the network equilibrated, and the steady-state expression

levels of all of the genes in the system were measured. For the main

challenge participants were presented with this data, but not the

underlying network topology or kinetic parameters, and asked to

submit a ranked list of regulatory interactions sorted by confidence

(highest-confidence interactions at the top of the list). The topology

predictions were evaluated by area under the precision recall curve

(AUPR) [5]. A perfect prediction would have all true regulatory

interactions (i.e. true positives) ranked higher than false regulatory

interactions (i.e. true negatives), and an AUPR = 1. A random

topology prediction for the DREAM4 networks would have an

AUPR close to zero.

In addition to this main challenge participants also had the

option of taking part in a bonus-round challenge aimed at

assessing a method’s ability to predict system-wide behavior in

response to new genetic perturbations, the double knock-out

challenge. For each network participants were also presented with

twenty double knock-out perturbations (in which the transcription

rate of a pair of genes was set to zero simultaneously), and asked to

predict the steady-state expression of all other genes in response to

the perturbation. The accuracy of the prediction was evaluated by

calculating the mean square error (MSE) between the actual and

predicted expression of the N genes. We now describe the three

component RN methods which comprise our network inference

pipelines: MCZ, tlCLR, and the Inferelator 1.0.

Core Method 1: Median Corrected Z-scores
The underlying model for the expression data in DREAM4 was

generated by stochastic differential equations. Each measurement

can be thought of as the observation of only a few cells, as opposed

to a population of cells. Accordingly, each measurement of wild-

type expression, contained in X wt, is an estimate of the population

wild-type expression derived from only a few samples, making it a

relatively noisy observation. Thus, any single observation will not

accurately describe the population wild-type expression, and

methods that rely on population-wide statistics (such as the t-test)

will suffer. A natural way to correct for this is to increase the

sample size. By taking the mean (or median) of the expression

levels for each gene, xi, over all wild type observations (11 in total)

we can improve our estimate of the population mean. We use the

median since it is more robust to outliers than the mean.

We further improved our estimate of the population wild-type

expression by taking the median of xi not only with respect to the wild-

type observations, X wt, but also with respect to the genetic knock-out

data, X ko. We can do so under the assumption that the networks are

sparse (i.e. each gene is regulated by relatively few regulators). Thus, in

most single knock-out experiments the level of most genes will be an

independent measurement of their wild-type expression. Accordingly,

we consider the wild-type expression of gene xi to be the median of its

expression in X wt and X ko, and denote this median-corrected estimate

of wild-type expression as xwt~(xwt
1 ,xwt

2 , . . . xwt
N ).

Previously, we have observed that the genetic knock-out data,

X ko, is very informative in regards to the topology of the network

[31]. Yip et al. [48] showed that a simple global noise model to filter

out non-significant interactions using genetic knock-out data alone

was able to produce regulatory interaction ranks of high quality,

resulting in the top-performing method for the DREAM3 in-silico

network challenge. However, for DREAM4 the noise for each gene

was a function of the gene’s expression (higher noise for higher

expression), more accurately simulating the noise found in real

microarray measurements. Thus, we used a method that takes into

account a more biologically relevant gene-specific noise model to

rank regulatory interactions. A natural way of identifying if a gene,

xi, is a target of a TF, xj , is by comparing the expression level of xi

when xj is knocked out to the corrected wild-type expression of xi,

xwt
i . We do so using a median corrected Z-score (MCZ):

z(xi Dxj({={))~
xko

i,j {xwt
i

si

ð1Þ

where the notation ({={) indicates a knock-out experiment (i.e.

z(xi Dxj({={)) denotes to the MCZ score of target gene xi given

that xj is knocked out), xko
i,j is the expression of gene xi when xj is

knocked out, and si is the standard deviation of gene xi over all

wild-type and single gene knock-out observations. We use

z(xi Dxj({={)) as a measure of confidence for each regulatory

interaction xj?xi, which we store in:

Z1~

z1
1,1({={) z1

1,2({={) � � � z1
1,N({={)

z1
2,1({={) z1

2,2({={) � � � z1
2,N({={)

..

. ..
.

P
..
.

z1
N,1({={) z1

N,2({={) � � � z1
N,N({={)

0
BBBBBB@

1
CCCCCCA

ð2Þ

MCZ performed very well in reconstructing the topology of the

network (i.e. ranking regulatory interactions based on confidence),

however it cannot be used to learn dynamical models of regulation

(and hence cannot be used to make predictions of the system’s

response to double knock-outs). Additionally, it requires a very

complete dataset (knock-out of each gene, in turn) to rank all

possible regulatory interactions. Moreover, if a regulator is not

highly expressed in the wild type condition then the prediction of

its targets using MCZ is not very reliable (in this dataset expression

and activity seem to be correlated).

Core Method 2: Time Lagged Context Likelihood of
Relatedness

tlCLR is a MI based method that extends the original CLR

algorithm to take advantage of time-series data [29]. tlCLR is

more general than MCZ in that it can explicitly use both steady

state and time series data to make a prediction of network

topology. tlCLR has three main steps: 1) model the temporal

changes in expression as an ODE, 2) calculate the MI between

every pair of genes, 3) apply a background correction (filtering)

step to remove least likely interactions. tlCLR treats all of the

steady state data in the same manner. Thus, we combined the

Resampling Network Inference
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three steady state datasets (X wt,X ko,X kd ) into one N|2Nz11
matrix, X ss (N knock-out experiments, N knock-down experi-

ments, and 11 wild type observations).

Mutual information is a metric of dependency between two

random variables X and Y , which can be defined as [25]

I(X ; Y )~
X
x[X

X
y[Y

p(x,y) log
p(x,y)

p(x)p(y)
ð3Þ

where p(x,y) is the joint probability distribution function of X and

Y , and p(x) and p(y) are the marginal probabilities that X~x and

Y~y, respectively. Note that MI is a symmetric measure. Faith

et al. [29] have previously shown that Context Likelihood of

Relatedness (CLR), a MI based method, performed well at

identifying a large portion of the known E.coli regulatory

associations as well as predicting novel interactions. However,

CLR can only predict undirected regulatory interactions, and must

rely on additional data to determine directionality (e.g. by knowing

that one gene encodes for a TF and the other for an enzyme,

directionality can be resolved). By taking advantage of the temporal

information available from time-series observations, we have shown

that CLR can be extended (in a method we call tlCLR), allowing us

to infer directed regulatory interactions, and improving overall

performance [31]. At the core of tlCLR’s ability to resolve

directionality is its reliance on dynamic-MI instead of static-MI.

The computation of static and dynamic -MI is described below.

As previously suggested [26–29], MI can be used as a measure

of similarity between the expression levels of gene-pairs, I(xi,xj),
where gene-pairs that show a significantly higher MI scores

(compared to other gene-pairs) are more likely to have a regulatory

interaction between them. Since I(xi,xj)~I(xj ,xi) both regulatory

edges (xj?xi and xi?xj ) are equally likely. We refer to the MI

calculated from I(xi,xj) as static-MI, because it does not use the

temporal information available from time-series data (treating

time-series and steady-state data identically).

Step 1: Applying an ODE model to the time-series data
We now describe dynamic-MI, which is motivated by our

previous work on the Inferelator 1.0 [40], an ODE-based method.

We assume that the temporal changes in expression of each gene,

xi, can be approximated by the linear ODE:

dxi(t)

dt
~{aixiz

XN

j~1

bi,jxj(t), i~1, . . . ,N ð4Þ

where aiw0 is the first-order degradation rate of xi and the bi,j ’s

are a set of dynamical parameters to be estimated. The value of bi,j

describes the extent and sign of the regulation of target gene xi by

regulator xj . We store the dynamical parameters in an N|N

matrix, b. Note that b is typically sparse, i.e. most entries are 0
(reflecting the sparsity of transcriptional regulatory networks).

Later, we describe how to calculate the values bi,j by the

Inferelator 1.0. Now we focus on how to use the time-series data in

the context of improving the calculation of MI values between a

gene xi and its potential regulator xj . Using a finite difference

approximation, we can write (4) for time-series experiments as

ti

xi(tkzm){xi(tk)

tkzm{tk

zxi(tk)~ti

XN

j~1

bi,jxj(tk),

i~1, . . . ,N k~1, . . . ,K{m

ð5Þ

where ti~
1

ai

is related to the half-life, t1=2, of xi by

t1=2~ti log (2), and m defines the time intervals we consider

(e.g. m~1 corresponds to time intervals composed of consecutive

time-points). We have set ti to 50 (for all i), which is the time-

interval between measurements, assuming that the sampling

frequency was on the time order of most regulatory reactions.

For DREAM4 we consider two time intervals: those of length 50
(m~1) and those of length 100 (m~2). We chose to stop at a time

interval of 100 because using longer time intervals did not improve

the dynamic predictive performance (as estimated by the

Inferelator 1.0 cross validation step which will be described

below). Note that the time in the DREAM4 datasets was measured

in arbitrary units (i.e. it does not correspond to any of the typical

time units: seconds, minutes, hours, etc.).

The purpose of the next two steps is to separate the terms in (5)

that involve the putative regulators (the explanatory variables)

from the terms in (5) that involve the target (the response variable).

We do so first for time-series data and then for steady-state data.

For every gene pair (xi,xj), we define a time-series response

variable,

yi(tkzm)~ti

xi(tkzm){xi(tk)

tkzm{tk

zxi(tk),

m~1,2 k~1, . . . ,K{m

ð6Þ

We pair this response variable with a corresponding explanatory

variable, xj(tk). Both variables were derived from the left and right

hand sides of (5), respectively.

For steady state experiments, the derivative,
dxi(t)

dt
, in (4) equals

zero, and we can write (4) as

xi(l)~ti

XN

j~1

bi,jxj(l), i~1, . . . ,N l~1, . . . ,2Nz11 ð7Þ

Thus, we define a steady-state response variable,

yi(l)~xi(l), ð8Þ

and a corresponding explanatory variable xj(l), again both derived

from (7). Taking the time-series and steady-state response variables

together, we get the final response vector:

yi~(yi(t2), . . . ,yi(tK ),yi(t3), . . . ,yi(tK ),yi(1), . . . ,yi(2Nz11)) ð9Þ

and the final explanatory variables vector:

xj~(xj(t1), . . . ,xj(tK{1),xj(t1), . . . ,xj(tK{2),xj(1), . . . ,xj(2Nz11)) ð10Þ

Note that for time-series data the explanatory variables are time-

lagged with respect to the response, and that for time intervals

much larger than ti (5) limits to steady state behavior.

To simplify notations, we will define R to be the total number of

elements in yi and xj , and let r iterate over these entries, yi~

(yi(1), . . . ,yi(r), . . . ,yi(R)) and xj~(xj(1), . . . ,xj(r), . . . ,xj(R)),
i.e. r iterates over corresponding response and explanatory

variables. We now explain how we use these response (yi) and

explanatory (xj ) variables to calculate the MI between every pair of

genes.
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Step 2: Calculating the dynamic-MI between genes
As a measure of confidence for a directed regulatory interaction

between a pair of genes (xj?xi) we use, I(yi,xj), where a pair

that shows a high MI score (relative to other pairs) is more

likely to represent a true regulatory interaction. Note that

I(yi,xj)=I(yj ,xi), making one regulatory direction more likely than

the other. We refer to the MI calculated from I(yi,xj) as dynamic-MI,

as it takes advantage of the temporal information available from time-

series data (distinguishing time-series data from steady-state data).

As described above, we calculate I(xi,xj) and I(yi,xj) for every

pair of genes and store the values in the form of two N|N
matrices Mstat and Mdyn, respectively. Note that Mstat is

symmetric while Mdyn is not. We now briefly describe how tlCLR

integrates both static- and dynamic-MI to produce a final

confidence score for each regulatory interaction. For a more

detailed explanation we refer the reader to [31].

Step 3: Background correction
For each regulatory interaction xj?xi we compute two positive

Z-scores (by setting all negative Z-scores to zero): one for the

regulation of xi by xj based on dynamic-MI (i.e. based on Mdyn),

z1(xi,xj)~ max 0,
M

dyn
i,j {

P
j’ M

dyn
i,j’

N
si

0
BBB@

1
CCCA, ð11Þ

where si is the standard deviation of the entries in the i’th row of

Mdyn. And one for the regulation of xi by xj based on both static

and dynamic-MI,

z2(xi,xj)~ max 0,
M

dyn
i,j {

P
i’ M

stat
i’,j

N
sj

0
BB@

1
CCA, ð12Þ

where sj is the standard deviation of the entries in the j’th column

of Mstat. We combine the two scores into a final tlCLR score,

ztlCLR
i,j ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z2

1zz2
2)

q
. Note, that some entries in ZtlCLR are zero, i.e.

ZtlCLR is somewhat sparse. For a more detailed description of

tlCLR we refer the reader to [31].

Core method 3: Inferelator 1.0
We use Inferelator 1.0 to learn a sparse dynamical model of

regulation for each gene xi. As potential regulators of xi we

consider only the P highest confidence (non-zero) regulators. Such

a set of P potential regulators can come from any method that

ranks regulatory interactions. For example rankings from MCZ,

correlation, mutual information, CLR, or tlCLR can all be used to

calculate a set of P highest confidence regulators of xi. Note that

we cannot guarantee that every xi will have P regulators meeting

this criteria, thus we denote by Pi(Pi
ƒP) the number of regulators

that do. Accordingly, for each gene, xi, we denote this subset of

potential regulators as xi. We then learn a sparse dynamical model

of regulation for each xi as a function of xi’s (using Inferelator 1.0).

We assume that the time evolution in the xi’s is governed by

dxi(t)

dt
~{aixiz

XPi

j~1

bi,jx
i
j(t), i~1, . . . ,N ð13Þ

which is exactly (4) with our constraint on the number of

regulators. Least Angle Regression (LARS) [39] is used to

efficiently implement an l1 constraint on b, which minimizes the

following objective function, amounting to a least-square estimate

based on the ODE (13):

E(b)~
XN

i~1

Ei(b) ð14Þ

where

Ei(b)~
XR

r~1

yi(r){
XPi

j~1

bi,jx
i
j(r)

������

������

2

ð15Þ

under an l1-norm penalty on regression coefficients,

XPi

j~1

Dbi,j Dƒsi

XPi

j~1

Dbols
i,j D ð16Þ

where yi(r) and xi
j(r) are corresponding elements in the response

(9) and design vectors (10), bols is the over-fit ordinary least-squares

estimate (i.e. the minimizer of (15) with no penalty), and si is a

number between 0 and 1 referred to as the shrinkage parameter;

setting si~1 corresponds to ordinary least-square regression. To

avoid over fitting, we chose the shrinkage parameter si by ten fold

cross-validation at one standard deviation away from the

minimum error (as described in [32]). Each resultant model (row

of b) is a parameterization of an ODE describing the temporal

evolution of xi. The l1 constraint ensures that Inferelator 1.0

results in a sparse matrix, b, with a small number of entries

Dbi,j Dw0. These entries are dynamical parameters that can be used

to predict the response of the system to new conditions, such as the

removal of genes or future time-points (given initial time points in

a time series).

The three methods just described (MCZ, tlCLR, and the

Inferelator 1.0) comprise the core network inference methods on

which our inference pipelines were built. We now present our four

inference pipelines and how they were used to generate topology

predictions for the DREAM4 competition. For pipeline 1 (MCZ),

a ranked list of regulatory interactions is trivially obtained by using

the values in Z1 (2). For pipilines 2,3,4 the process of combining

multiple methods and generating topology predictions is described

below.

Pipeline 2: combining results from tlCLR and the
Inferelator 1.0

The predictions made by pipeline 2 placed 2nd for the

DREAM3 competition, but were not submitted for the DREAM4

competition. The reason we did not use pipeline 2 for DREAM4 is

that it was outperformed by pipeline 3 on the DREAM3 data. We

present pipeline 2 here to simplify our explanation of pipeline 3

(which is a combination of pipelines 1 and 2). When developing

pipeline 2 we suspected that predictions made from two different

methods (tlCLR, and the Inferelator 1.0) can be complementary.

We have previously shown this to be the case [31]. We combined

tlCLR and Inferelator 1.0 in two ways: 1) we use the ranked list of

regulatory interactions from tlCLR as a feature selection step for

the Inferelator l1 shrinkage approach, and 2) we combined the

ranked list generated by tlCLR with the ranked list generated by

the Inferelator 1.0.
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Using the tlCLR ranking as a feature selection step for the
Inferelator 1.0

The entries of each row, i, of ZtlCLR correspond to a ranking of

the potential regulators for xi. As possible regulators of a gene xi in

the Inferelator 1.0 l1 model selection step (15) we used the Pi most

likely regulators from row i of Z1. In this way we used the ranking

of regulatory interactions predicted by tlCLR as a feature selection

step for the Inferelator 1.0. We then combined the ranked list of

regulatory interactions generated by each of the two methods.

ZtlCLR can be used to rank regulatory interactions based tlCLR.

We note that prior to combining the results of tlCLR with those

from the Inferelator 1.0 we employed a simple filtration step where

we removed all regulatory interactions that had MCZ scores in the

lower 50% of all MCZ scores. We now describe how a ranked list

of regulatory interactions was calculated by the Inferelator 1.0.

Calculating a ranked list of regulatory interactions by the
Inferelator 1.0

The dynamical parameters stored in b (the result of minimizing

(15) subject to (16)) describe the regulation of each target gene as a

function of its regulators (TF’s) in the system, with Dbi,j D
corresponding to the strength of the regulation, and the sign of

bi,j indicating repression or activation. For the DREAM3 in-silico

challenge we ranked regulatory interactions using Dbi,j D as the

measure of confidence for a regulatory interaction (xj?xi) [31].

However, this ranking does not take into account the explanatory

power of each predictor xj in the ODE model for a target xi (e.g.

Dbi,j D may be large even though the model for the regulation of xi is

not a good one). Here, we propose a confidence measure that

incorporates the explanatory power of predictors (i.e. the quality of

the model for xi).

Denote the predicted expression of yi(r) as ŷyi(r), calculated as

ŷyi(r)~ti

PPi

j~1 xi
j(r)bi,j . The error in this approximation of yi was

measured as sum-of-squares,
PR

r~1 (yi(r){ŷyi(r))2, where R is the

number of elements in the response vector, yi. We estimated the

predictive error of our model for yi using mean error obtained

from ten fold cross-validation. In order to place all model errors on

the same scale, we normalized the absolute sum-of-squares error to

derive a measure of relative error,

PR
r~1 (yi(r){ŷyi(r))2

PR
r~1 yi(r)2

. Given this

relative error, we defined the explanatory power of the model for

yi to be given by 1 minus relative error:

ci~1{

PR
r~1 (yi(r){ŷyi(r))2

PR
r~1 yi(r)2

ð17Þ

where ci represents the merit of the model for yi (i.e. how good of

an estimate is ŷyi). We can now calculate the contribution of each

predictor bi,j to the explanatory power of the model for yi, (i.e. the

explanatory power of each regulatory interaction) as a weighted

average

z
c
i,j~

bi,j

bi,0z
PN

j~1 bi,j

ci ð18Þ

where bi,0 is the bias term for the regulatory model of yi. Note that

here we use the fact that all the observations of the regulators xj ’s,

are on the same scale, as they were normalized to have zero mean

and standard deviation of 1 before model selection by Inferlator

1.0 (a common step in a regression framework). We stored these

values in the form of an N|N matrix, Zc, which can be used

regulatory interactions based on Inferelator 1.0 alone. However,

based on our previous results that the predictions made by

different methods may be complementary, we combined the

predictions made by tlCLR (ZtlCLR) with those made by

Inferelator 1.0 (Zc).

Combining topology predictions made by tlCLR with
those made by the Inferelator 1.0

The main challenge in combining these confidence scores is that

they are not guaranteed to be on the same scale. Thus, we

developed a single rank based heuristic (described previously in

[31]) to combine two separate sets of confidence scores. Our

approach is best explained by an example: Let Z2 denote the

resultant matrix from combining the confidence scores contained

in ZtlCLR and Zc, i.e. the results our tlCLR-Inferelator pipeline

(pipeline 2, Figure 1). We first replace the value of the highest-

ranking entry in Zc with the value of the highest-ranking entry

from ZtlCLR. We then replace the value of the second highest-

ranking entry from Zc with the value of the second highest-

ranking entry from ZtlCLR. We continue in such a way until all

non-zero entries in Zc have been replaced by equally ranked

entries in ZtlCLR. This produces two ranked lists of regulatory

interactions that are on the same scale. Once this assignment is

done we can combine the two matrices as follows:

z2
i,j~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z

c
i,j)

2z(ztlCLR
i,j )2

q
: ð19Þ

Note that here Zc refers to the matrix after the assignment of

values from ZtlCLR. Z2 constitutes the results of applying pipeline

2. Pipeline 3 is very similar to pipeline 2. In order to assess how

complementary tlCLR-Inferelator and MCZ were we combined

the confidence scores stored in Zc with those in ZtlCLR (replacing

scores of equal ranks from Z1 into Z2, as above):

z3
i,j~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(z2

i,j)
2z(z1

i,j)
2

q
: ð20Þ

The confidence scores contained in Z3 were generated by a

combination of our three methods, and we will refer to this

integrated method as tlCLR-Inferelator+MCZ (pipeline 3, Fig 1).

Z2 and Z3 can be used as ranked lists to rank regulator

interactions for pipelines 2 and 3, respectively.

Combining genetic and dynamic information in a
resampling approach

We generated an ensemble of networks as follows. Denote by

Y the N|R response matrix, with each row set to

yi~(yi(1), . . . ,yi(R)). Similarly, denote by X the N|R design

matrix, with each row set to xj~(xj(1), . . . ,xj(R)). Let

c~f1, . . . ,Rg be the vector of column indices for both Y and

X . We sample with replacement R times from c, storing the

selected indices in c�~i1,i2, . . . ,ij , . . . ,iR, ij [ f1, . . . ,Rg. We now

consider the permuted data matrices, Y � and X �, comprised of the

c� columns of Y and X respectively. We generate b, Z2, and Z3,

as described before, with the only difference being that we use the

response and explanatory vectors from Y � and X �, respectively,

instead of Y and X . We repeat this procedure B times, with

B~200 for the DREAM4 networks, each time generating b, Z2,

and Z3. We store this ensemble of regulatory network predictions

in:

E~f½b(1),Z3(1)�,½b(2),Z3(2)�, . . . ,½b(B),Z3(B)�g ð21Þ
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where ½b(b),Z3(b)� corresponds to the dynamical parameters and

rankings based on tlCLR-Inferelator+MCZ (pipeline 3, Figure 1) at

resample b~1,2, . . . ,B. Note that throughout this resampling

procedure the ranks generated by MCZ remain constant. We used

this ensemble of network predictions by selecting, for each regulatory

interaction xj?xi (corresponding to entries bi,j and z3
i,j ), the median

dynamical parameters in fb(1),b(2), . . . ,b(B)g and the median

tlCLR-Inferelator+MCZ rank in fZ3(1),Z3(2), . . . Z3(B)g. We

store these median values in bmedian and Z4, respectively. These

matrices have entries:

z4
i,j~median(z3

i,j(1),z3
i,j(2), . . . ,z3

i,j(B)) ð22Þ

bmedian
i,j ~median(bi,j(1),bi,j(2), . . . ,bi,j(B)): ð23Þ

We used Z4 to rank the regulatory interactions, and we refer to this

resampling approach as Resampling+MCZ (pipeline 4, Figure 1).

bmedian is a set of dynamical parameters which can be used to predict

the response of the system to new perturbations (such as the

simultaneous knock-out of two regulators).

Bonus round: Generating the double knock-out
predictions

The challenge of predicting the response of the system to double

knock-outs (double-KO) can be phrased as: given a simultaneous

knock-out of two genes (i.e. xi,xj~0 for some i and j), predict the

steady-state expression of all other genes. In order to predict

steady-state expression levels for each gene we used the steady-

state limit of the core Inferelator 1.0 model [32] (7), which we

rewrite here (in matrix notation) for the case of predicting the

steady state data:

xij({={)~tibx0 ð24Þ

where xij({={) is the level of all genes for the double-KO of genes

xi and xj , and x0~(x0
1, . . . ,x0

N )T is some vector of initial

conditions (satisfying x0
i ,x0

j ~0). Note, that for DREAM4 we

made a simplification, setting ti~50 for all i, i.e. we assume that

all mRNA have the same half-life. The only unknown left to

determine (in order to make a prediction) is the vector of initial

conditions, x0. The rest of this section deals with computing a

good initial condition vector.

A simple way to pick this vector would be to set x0~xwt, with

the exception that x0
i ,x0

j ~0. The results that we submitted for the

DREAM4 bonus-round challenge were calculated using this initial

condition. Note, however, that the system’s response to the

double-KO of genes xi,xj individually was already given to us in

the single-gene knock-out dataset, X ko. Upon revisiting our initial

results, after submission of the predictions, we reasoned that using

the single gene knock-out (single-KO) information to predict

double-KO expression would most likely yield better results, as it

reflects a system state that is closer to the state we are trying to

predict. Indeed, using the single-KO data to determine initial

conditions markedly improved the accuracy of our double knock-

out predictions.

One simple approach to construct initial conditions from the

single gene knock-outs of xi and xj is to simply take their mean.

However, we chose to use a more informed approach by taking

advantage of our previous knowledge regarding likely regulatory

interactions (i.e. the confidence scores from MCZ (stored in Z1).

We do so by computing the following weighted average:

x0
l ~

zko
l,i xko

l,i zzko
l,j xko

l,j

zko
l,i zzko

l,j

l~1, . . . ,N ð25Þ

where x0
l is our estimate for the initial expression level of gene xl ,

xko
l,i and xko

l,j are the observed levels of xl when genes xi and xj

were knocked out, respectively, and zko
l,i or zko

l,j are the confidence

scores (calculated by MCZ) for each regulatory interaction xi?xl

and xj?xl , respectively. In this manner we computed an initial

condition vector, x0, for every double-KO we were asked to

predict. We then used these initial conditions to calculate a

prediction of the expression of all genes in the presence of a

double-KO of xi,xj via (24). We denote this prediction as ~xxij({={).

Note that some models had more predictive merit than others,

as measured by the explanatory power of each model (17). Thus

we weighted the prediction of double knock-outs by the predictive

merit of each model. We computed the final double-KO

predictions as follows:

xij({={)~~xxij({={)czx0(1{c) ð26Þ

where c~(c1,c2, . . . ,cN )T . Note that in (26) the final prediction

xij({={) is weighted by our estimate of the predictive performance

of the models, c calculated in (17), and constrained, using the

initial conditions, by our estimate of the model errors (1{c).

Results

Performance of tested methods: ranking putative
regulatory interactions

The main challenge in the DREAM4 100 gene in-silico

regulatory network competition was to predict the topology of

five networks. Predictions were made in the form of a list of

regulatory interactions ranked in decreasing order by confidence.

We evaluated the performance of four pipelines for learning

regulatory networks, namely: MCZ (pipeline 1, eq. 2), tlCLR-

Inferelator (pipeline 2, eq. 19), tlCLR-Inferelator+MCZ (pipeline

3, eq. 20), and Resampling+MCZ (pipeline 4, eq. 22). We

developed these pipelines with a focus on combining results from

multiple methods in a mutually reinforcing manner. In all four

cases we evaluated the quality of the rankings of all possible

regulatory interactions using the area under precision recall curve

(AUPR), as this was the basis for the evaluation of performance in

DREAM3 and DREAM4.

We submitted the results of MCZ as our ranked list of

regulatory interactions for the DREAM4 challenge. This

method tied for first place (out of 19 teams). In Figure 2 we see

that pipeline 2 exhibits lower performance for most of the

networks. In pipeline 3 we combined the predictions made by

pipeline 1 with those made by pipeline 2. As expected for

methods that are not complementary, the performance of

pipeline 3 is better than that of pipeline 2 but worse than that

of pipeline 1. However, by using a resampling approach, pipeline

4 (eq. 22), to generate an ensemble of likely networks we see a

marked improvement over the performance of any other method

(Figure 2, purple bars). This improvement is most evident in

networks 3–5, which appear to be more difficult to predict for all

of the methods we tested.
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Performance of methods based on genetic knock-out
data decreases with decreasing expression of the
regulators

For the DREAM3 in-silico challenge all methods, including

several similar to the ones we test herein, were found to perform

significantly worse for networks with very high in-degree (targets

regulated by many TFs) and to be relatively insensitive,

performance-wise, to the out-degree of TFs [31,49]. We did

not find this trend in the current challenge (Figure 3A,B).

However, we did find that performance varies considerably

across the five 100 gene networks for all tested methods;

performance was best for the first network and dramatically

worse for the fifth network (Figure 2). We investigated possible

reasons for this, finding that performance is correlated with the

median expression of the regulators. Given a regulatory

interaction, xj?xi, our chance of correctly predicting that

regulatory interaction (based on MCZ) tends to be higher if the

median expression of xj over all conditions in the knock-out data-

set, X ko, is high. Conversely, the smaller the median expression

of xj , the worse our performance. Figure 3C shows that our

predictions for the regulatory interactions in network 1 have

relatively low error (black box plot), and the corresponding

median expression of the regulators in this network is relatively

high (gray box plot). For network 5 we see a relatively high error,

and the corresponding median expression of the regulators in this

network is the lowest of the five networks. In Figure 3D we see a

high correlation, R2~:95, between the median expression of the

regulators and the performance of MCZ in terms of AUPR. By

combining ranks from MCZ with our resampled network

inference pipeline, pipeline 4, we significantly improve perfor-

mance on networks 3–5 (Figure 2), and lower the correlation

between performance and median TF expression over all five

networks to R2~:81 (Figure 3D).

Regulatory interaction rankings derived from genetic
knock-out data and rankings derived from resampling
pipeline 2 are complementary

In the above section we focused on differences between the

performance of each method for each of the five networks. In this

section we focus on the performance of each method in a gene-by-

gene manner, in an effort to better understand how to best utilize

heterogeneous data collections. Specifically, we investigated the

performance of each network inference pipeline as a function of

the median expression of the regulators in the network. We bin

regulators based on their median expression, and compare the

error made in predicting their respective targets.

In Figure 4 we see that the performance of MCZ is better for

regulators with a higher median expression (shown in red). This

trend is more apparent in this gene-by-gene view than in our

network-centric analysis. Looking at each bin, shown from low to

high median expression, we see that predictions made by pipelines

that incorporate rankings made by tlCLR-Inferelator perform

better than the predictions made by MCZ for regulators whose

median expression is low (bins 0:1, 0:2). The error distributions of

the predictions made by pipeline 4 (purple bars) are lower than

those of MCZ (red bars) for regulators with a median expression

upto 0:4, and on par with the predictions made by MCZ for

regulators with a median expression of up to 0:6. The predictions

made by pipeline 4 are better than those made by pipelines 2 and

3 for all bins.

Predicting response of the system to double knock-out
For each 100-gene network we were asked to predict the cell’s

steady-state mRNA levels given that a pair of genes is knocked out.

There are twenty such pairs of genes (xi,xj~0) for each network.

We make these predictions using the parameterization, b, of the

system obtained from pipeline 3 (tlCLR-Inferelator+MCZ). We

also make these predictions using the parameters obtained by

taking the median weight from the ensemble, bmedian (eq. 23),

generated by pipeline 4 (Resampling+MCZ). The measure of

performance for the DREAM4 double knock-out predictions was

mean squared error (MSE). As a baseline, we compare the error of

our prediction to the error we would make if we used the initial

conditions as the prediction.

In Figure 5 we bin regulators based on their median expression

and show the corresponding error distributions for our predictions.

We compare our error to the error made if we used the initial

conditions as a prediction of the response of the system. In

Figure 5A we use the wild type expression, xwt, as the set of initial

conditions. We see that predictions made using either pipeline 3

(gray boxplots) or pipeline 4 (red boxplots) outperform the initial

conditions (green boxplots). In Figure 5B we construct our initial

conditions from the given single gene knock-out values and our

MCZ confidence scores (eq. 25). We see that our predictions (black

and red boxplots) outperform the initial conditions (green

boxplots). Furthermore, by comparing the green boxplots in

Figure 5B to those in Figure 5A, we see that predictions based on

initial conditions derived from the single knock-out data have

much lower error than predictions based on initial conditions

derived from the wild type. Regardless of which initial conditions

are chosen, predictions using parameters derived from pipeline 4

show almost identical performance as those made by using the

parameterization derived from pipeline 3.

Discussion

We participated in the DREAM4 100-gene in-silico network

inference competition. The method that we submitted, and that

Figure 2. Area under precision recall curve for each ranking
scheme. For each pipeline we evaluated the performance in predicting
topology using area under the precision recall curve (AUPR). We see
that pipeline 4 generally outperforms all other methods, followed by
MCZ, pipeline 3, and pipeline 2.
doi:10.1371/journal.pone.0013397.g002
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was the co-best performer on the 100-gene in-silico challenge, was

the rankings derived from the median corrected Z-scores of the

genetic knock-out data, MCZ. The power of the genetic knock-out

data, as also shown by Yip et al. in DREAM3 [48], is an important

point to consider for experimental design. However, it does have

limitations for which we compensated by integrating other data-

types, particularly time-series data. We observed that as the

median expression of the regulators in a network decreases, error

in predicting regulatory interactions using MCZ increases

(Figure 3). A plausible explanation for why a low median

expression of regulators leads to poor performance is that if a

regulator that is more likely to be active (i.e. a regulator whose

wild-type expression is high) is removed, then the corresponding

effect on its targets will be relatively large. Conversely, if a

regulator that is less likely to be active (i.e. its wild-type expression

is low) is removed, then the effect on its targets will be marginal.

Perhaps, the targets of such regulators will be most apparent in

over-expression experiments. If over-expression experiments are

not available, the poor performance in predicting the targets of

these regulators can be mitigated by combining the predictions

made by MCZ with predictions made by a method that takes

advantage of time-series data.

We used pipeline 3 (tlCLR-Inferelator + MCZ), which takes

advantage of the time-series data, to predict topology and

Figure 3. Trends in performance over the five networks. For panels A,B,C we consider only the performance of MCZ, and use relative rank as
an estimate of error. We compute relative rank in the following way. Denote by L the total number of possible regulatory interactions, and by l the

rank that was given to each regulatory interaction, xj?xi . The relative rank of xj?xi is defined to be
l

L
. Error distributions of the predictions for the

five networks are shown as black boxplots in panels A,B,C. Distributions of in-degree of the regulators, out-degree of the regulators, and median
expression of the regulators are shown as gray boxplots in panels A,B,C, respectively. A) There is no apparent relationship between relative rank
(Error) and the in-degree of the regulators. B) There is no apparent relationship between relative rank (Error) and the out-degree of the regulators. C)
Relative rank (Error) in network prediction increases as the median expression of the regulators decreases. D) we show the relationship between
median expression of the regulators and the performance in ranking regulatory interactions, in terms of AUPR, across all five networks. For MCZ a
correlation of (R2~:95) exists between the TFs median expression and AUPR (shown in red), while for Resampling+MCZ there is a smaller correlation
of (R2~:81) between the TFs median expression and AUPR (shown in purple).
doi:10.1371/journal.pone.0013397.g003
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dynamical parameters for each network in a way that was more

robust to the median expression of the regulators than methods

that use solely genetic knock-out data. We submitted topology

predictions and bonus-round (double knock-out) predictions

generated by pipeline 3. The topology predictions ranked 8th

out of 19 teams. Pipeline 3 is an improvement upon pipeline 2 in

terms of AUPR (Figure 2). Pipeline 2 ranked 2nd out of 22 on the

DREAM3 100-gene network inference challenge [31]. However,

pipeline 3 ranked 8th on the DREAM4 challenge. This

discordance between a worse performance relative to other teams,

but improved ability to recapitulate network topology is probably

due to a more concentrated use of the knock-out data by

participants of DREAM4.

Upon receiving the gold-standard networks we analyzed our

ability to rank regulatory interactions using the different pipelines.

Dissecting our performance, in a gene-by-gene manner, we saw

the that there are instances when predictions made by pipeline 3

are more accurate than those made by MCZ. Given the

performance of each of the methods, as evaluated by AUPR

(Figure 2), this is a surprising and promising result, implying that

methods that use only genetic knock-out data and those that take

advantage of time-series data produce complementary topology

predictions. Further demonstrating this point, we showed that

applying a resampling approach to pipeline 3 and combining the

results with MCZ, by aggregating the ranks derived from each

method, produces a final prediction that is better than the

predictions generated by either method alone. The improvements

from resampling (pipeline 4) are most evident on networks 3–5

(Figure 2), which have the lowest median expression of the

regulators (Figure 3A), and are hence hardest to predict using the

genetic knock-out data alone. We note that alternate ways of

combining predictions from multiple methods may further

improve upon our results. We also note that in pipeline 4 the

predictions of MCZ remain constant for each network in the

ensemble. This implies that although a single network generated

by pipeline 3 may perform poorly, our resampling approach

generates sufficient alternate topologies such that picking a

network based on the ensemble-median produces a much more

accurate topology prediction. This resampling approach also infers

an ensemble of dynamical parameters, retaining the ability to

predict the response of the network to new conditions.

We submitted predictions of system-wide expression in the

presence of double knock-outs for the DREAM4 bonus-round

challenge. The predictions we submitted were based on the initial

conditions derived from wild-type expression levels (xwt). The

quality of our double knock-out predictions was very sensitive to

the initial conditions (Figure 5). We found that using the single

gene knock-out data together with MCZ confidence scores as the

basis of our initial conditions dramatically improves our predictive

performance (compared to using initial conditions based on the

wild-type). This is due to the fact that the single-gene knock-outs

present a closer network state to the state we are trying to predict

Figure 4. Error as a function of binned median expression for all regulatory interactions. We further investigate the relationship between
the median expression of the regulators and each pipeline’s performance in predicting topology. We use relative rank as an estimate of error (as in
Figure 3). We bin the regulators for all five networks based on their median expression (each of the seven bins has a roughly equal number of
regulators). We show the distribution of relative ranks (Error) for each pipeline in each bin of regulator expression. We see that all of the pipelines that
incorporate the predictions of tlCLR-Inferelator (pipelines 2,3, and 4) outperform MCZ for regulators with low median expression (bins 0:1, 0:2).
doi:10.1371/journal.pone.0013397.g004
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(network response to double knock-outs) than does the wild-type.

When using initial conditions based on the single gene knock-out

data we saw that our improvement over these initial conditions

was larger than when using initial conditions based on wild type

(Figure 5). This is an interesting observation since one might

expect that it would be harder to improve upon initial conditions

that are already close to the true answer. We accurately predicted

the response of the network to double knock-outs using dynamical

Figure 5. Performance on double knock-out prediction. We assess the accuracy of predicting the system’s response to the simultaneous
removal (knock-out) of two genes xi ,xj . In total, there were one-hundred pairs of genes that were knocked out. We bin these pairs of genes based on
the average of their respective median expression in the single-gene knock-out data. We made two predictions, which differ only in the choice of
initial conditions. We compare the error (as evaluated by the mean squared error) of our prediction to the error made by using the respective initial
condition as a prediction. A) We use the wild-type expression, xwt, as the set of initial conditions (green boxplots). We see that our predictions (black
and red boxplots) are more accurate than if we used the initial conditions as a prediction (this is more apparent for TFs with a larger median
expression). B) We use a combination of the single-gene knock-outs to compute our initial conditions (eq. 25). We do this because the single-gene
knock-out data represents a system state that is closer to the state we are trying to predict than wild-type (as can be observed by comparing the
green boxplots in panel A to those in panel B). We show the error distributions using parameters calculated by either pipeline 3 (tlCLR-
Inferelator+MCZ) or pipeline 4 (Resampling+MCZ), gray and red boxplots, respectively, are smaller than the error distributions if we used the initial
conditions as a prediction. Regardless of the choice of initial conditions, the error distributions using parameters calculated by pipeline 4 (red
boxplots) are similar to the error distribution obtained by pipeline 3.
doi:10.1371/journal.pone.0013397.g005

Table 1. Salient characteristics of the three core methods.

MCZ tlCLR Inf

input data

optimal for comprehensive knock-out data H

optimal for ts data H H

output

topology (directed network) H H H

kinetic parameters (can predict system’s response) H

statistical approach

t-statistic H

mutual information H

regression H

Here we present the characteristics of the three core network inference methods, combinations of which constituted network inference pipelines. Median corrected z-
score (MCZ) uses the t-statistic on solely the steady state genetic knock-out data, and can predict the topology of the network. Time-lagged Context Liklihood of
Relatedness (tlCLR) is a mutual information based method that uses both time-series and steady state data to predict the topology of the network. The Inferelator 1.0
(Inf) is an ordinary differential equation (ODE) based method that uses both time-series and steady-state and can predict not only the topology of the network but also
the kinetic parameters of regulation, allowing for the prediction of the response of the system to new conditions.
doi:10.1371/journal.pone.0013397.t001
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parameters calculated by Pipeline 3 (whose topology prediction

was poor relative to those of other methods). Thus, we show that

our ability to predict data can tolerate a remarkable amount of

error in the predicted topology and still make accurate predictions

of the system’s response to new perturbations. This is perhaps not

surprising, as the Inferelator 1.0 [32] was designed to minimize

data prediction error. We have also shown that a parameterization

picked from the median of an ensemble of networks (generated by

resampling pipeline 3) retains, but does not significantly improve,

our ability to predict data in the double knock-out challenge (in

spite of the fact that this method produces more accurate topology

predictions). Perhaps an alternative way of picking parameters

from the ensemble of networks can improve upon the ability to

predict new data.

We have shown the complementarity between predictions made

using genetic knock-out data and those made using time series

data. We have shown that using solely genetic knock-out data can

result in accurate topology predictions, which can be further

improved upon by correctly incorporating predictions made using

time-series data. To this end, we have developed a relatively

simple method for combining the predictions made from genetic

knock-out and time-series datasets, showing an improved ability to

infer network topology while maintaining the ability to predict the

response of the system to new conditions. We suggest that

investigating alternate means of combining genetic and dynamic

experimental designs (leveraging the complementarity between

these two data-types), as well as methods that incorporate direct

binding data, will continue to be fruitful avenues of future

investigation.
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