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Abstract

Recent evidence points to two potentially fundamental aspects of the default network (DN), which have been relatively
understudied. One is the temporal nature of the functional interactions among nodes of the network in the resting-state,
usually assumed to be static. The second is possible influences of previous brain states on the spatial patterns (i.e., the brain
regions involved) of functional connectivity (FC) in the DN at rest. The goal of the current study was to investigate
modulations in both the spatial and temporal domains. We compared the resting-state FC of the DN in two runs that were
separated by a 45 minute interval containing cognitive task execution. We used partial least squares (PLS), which allowed us
to identify FC spatiotemporal patterns in the two runs and to determine differences between them. Our results revealed
two primary modes of FC, assessed using a posterior cingulate seed – a robust correlation among DN regions that is stable
both spatially and temporally, and a second pattern that is reduced in spatial extent and more variable temporally after
cognitive tasks, showing switching between connectivity with certain DN regions and connectivity with other areas,
including some task-related regions. Therefore, the DN seems to exhibit two simultaneous FC dynamics at rest. The first is
spatially invariant and insensitive to previous brain states, suggesting that the DN maintains some temporally stable
functional connections. The second dynamic is more variable and is seen more strongly when the resting-state follows a
period of task execution, suggesting an after-effect of the cognitive activity engaged during task that carries over into
resting-state periods.
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Introduction

The default network (DN) is an ensemble of brain regions that

shows deactivation during a wide range of externally-cued tasks

compared to a task-free resting-state, and exhibits coherent low-

frequency endogenous resting-state fluctuations [1–14]. Conse-

quently, most studies of the DN have relied on either task-related

deactivations or resting-state analysis to investigate its composition

and function. In addition, these studies have mostly focused on the

spatial domain, i.e., the regions that are part of the DN, and

attempted to characterize changes in involvement of various DN

regions, and in the strength of their connections due to age,

disease, and other factors. Evidence has emerged from these

studies that the DN modulates its spatial composition, and its

functional connectivity (FC) pattern, under various conditions,

such as varying levels of consciousness [15–17], and due to various

syndromes, such as dementia and autism [5,18–21].

An equally important question, and one that has direct

relevance for cognitive studies, is whether the DN alters its

functional structure across time or in response to cognitive activity,

i.e. whether two resting-state scans that are separated by time or

task execution will show the same spatial composition. Despite

studies showing that the DN’s general architecture appears to be

stable and consistent across individuals [9,22], there is evidence

from a few studies that preceding tasks can affect the functional

connectivity of the DN and other resting-state networks. For

example, Waites et al examined functional connectivity in several

resting networks, before and after a language task, and found

increased connectivity between the posterior cingulate (PCC), a

node of the DN, and medial frontal regions after the task [23].

Changes of connectivity in a network involving a language-related

area in the left inferior frontal gyrus also were noted. Similarly,

Duff et al [24] showed increased spectral power and inter-regional

correlations in a resting network involving motor cortex after

participants performed a series of motor tasks. Changes in resting

connectivity of visually-selective brain areas, such as the fusiform

face area, also have been noted after exposure to their preferred

stimulus type, relative to a non-preferred type [25]. These studies

indicate the malleable nature of the spatial characteristics of

resting state networks, but there is still not much known about how

the resting DN per se is influenced by cognitive tasks.

The temporal nature of the DN also has received some recent

attention. Barnes et al [26] measured the fractal scaling properties

of the DN during rest, as a measure of the low frequency
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oscillations of the BOLD signal, and found a decrease after

performance of working memory tasks that gradually returned to

pre-task levels, possibly reflecting post-task ‘‘recovery’’ of the

resting-state. In addition, this recovery was slower after more

demanding tasks than after easier ones. Chang and Glover [27]

showed, using wavelet analysis, that there is some temporal

variability in the resting-state FC of DN regions with the PCC

when assessed over 12-15 minutes of rest. Greater variability was

seen in those regions that correlated negatively with the PCC (e.g.,

areas related to networks engaged during tasks), relative to the DN

regions that correlated positively with the PCC. These two studies

suggest that the DN may dynamically alter its functional

connections across relatively short time scales of minutes, or even

seconds, either in response to a preceding task or endogenously.

The abovementioned preliminary evidence points to two

potentially major DN characteristics that are in need of further

investigation: the temporal dynamics of the network during rest,

and possible task-related influences on the spatial FC patterns

during the resting-state. However, no study to date has

investigated modulations in both the spatial and temporal

domains; this was the goal of the current study. We compared

the resting-state FC of the DN in two runs that were separated by

a 45 minute interval containing cognitive task execution. We used

partial least squares (PLS) for this purpose, which allowed us to

identify FC spatiotemporal patterns [28] in the two resting runs

and to determine differences between them. If the DN, as

delineated during rest, is unaffected by any previous brain state,

then both resting scans should have the same DN spatial pattern,

as well as a constant FC measure through time. However, if the

FC of the DN is influenced by cognitive activity, as we

hypothesized, then the post-task connectivity should differ from

that seen pre-task and could potentially involve changes in both

DN regions and other areas involved in the cognitive tasks, for

example task-positive network (TPN [7,8]) regions, which are

known to participate in a broad range of tasks. To distinguish

changes in resting FC due to intervening cognitive activity from

those that might be due to time in the scanner per se, we also

compared FC in the first and second rest runs to that in the first

and last task runs. This was done under the assumption that any

change in FC seen in both rest and task runs might be due to time

in the scanner, whereas changes seen only in the two resting runs

would reflect an influence of the intervening cognitive activity.

Methods

Participants
Eighteen healthy right-handed young adults (age M = 24 years,

SD = 3; 9 males) participated in this study after providing written

informed consent. The Research Ethics Board of Baycrest Centre

approved the study.

Scanning Session
Each session included a high-resolution structural scan, followed

by 10 functional runs, each lasting 5:40 minutes. The first and last

runs were resting-state runs (Rest1 & Rest2), where subjects were

instructed to lie still with their eyes closed, relax, and clear their

minds, but to not actively suppress any thoughts that may

spontaneously arise. Following scanning, subjects were asked if

they fell asleep during the resting runs. Runs 2–9 were task runs,

described below. Therefore, each session consisted of 2 resting-

state runs, separated by 8 block-design runs of various tasks, a gap

of about 45 minutes.

Each of the eight task-runs was composed of alternating 20 sec

blocks of task and rest [29]. We used four task types: self-reference,

other-reference, vowel identification, and motor. In all tasks,

participants were shown a word and instructed to make a two-

choice response. In the self-reference task subjects decided whether

a personality-trait word represented them or not, in the other-

reference task subjects judged whether the word represented a

person they know well, and in the vowel identification task subjects

identified whether the third letter from the end of the word was a

vowel. The possible answers for these three tasks were ‘‘yes’’ or

‘‘no’’. In the motor task the word was irrelevant, and participants

pressed button 1 or 2, depending on a number shown on the

screen.

Image acquisition and Preprocessing
Scanning was carried out with a Siemens Trio 3T scanner.

Anatomical scans were acquired with a 3D MP-RAGE sequence

(TR = 2 sec, TE = 2.63 msec, FOV = 25.6 cm2, 2566256 matrix,

160 slices of 1 mm thickness). Functional runs were acquired with

an EPI sequence (170 volumes, TR = 2 sec, TE = 30 msec, flip

angle = 70u, FOV = 20 cm2, 64664 matrix, 30 slices of 5 mm

thickness). Pulse and respiration were measured during scanning.

Preprocessing was performed with AFNI [30] and consisted of

physiological correction for pulse and respiration [31], slice-timing

correction for the resting runs, rigid-body motion correction,

spatial normalization to the MNI template (TT_avg152T1,

resampling our data to 26262 mm), and smoothing (full-width

half-maximum, 6 mm). The time series of the CSF, white matter,

and major blood vessels were sampled from ROIs and regressed

out from the data.

Lastly, we temporally resampled all voxels’ time series by

dividing the time series into 30 ‘‘blocks’’ of 5 consecutive volumes

each, normalizing each block to the first volume of that block, and

then averaging all volumes of the block. This averaging produced

an effective low-pass filter of 0.1 Hz and reduced temporal noise.

Since respiratory and cardiac fluctuations were shown to bias time

course correlations [32–34], many FC studies apply a low-pass

filter to their data. We did not apply such a filter because (a) our

temporal resampling effectively filtered the data, (b) we applied

physiological correction for pulse and respiration, and (c) PLS

calculates correlations across participants, rather than within-

subject time course correlations, as many FC studies do. We

consider the block normalization performed in PLS as an

alternative to global signal removal, a controversial preprocessing

step that has been shown to bias correlation/anti-correlation

observations [35–37].

Data analysis
General approach. We analyzed our data with partial least

squares [28,38,39], a multivariate approach that robustly identifies

group-level spatiotemporal activity patterns correlated to neuronal

activity (seed-PLS). As a multivariate approach, PLS compu-

tationally assumes that cognitive processes are a result of the activity

of integrated neural networks, rather than activity of independent

brain regions. The PLS approach to FC is somewhat different from

time course correlation approaches or other methods that assess the

within-subject relation between regions. Instead, PLS assesses

across-subject correlations, which provides an indication of the

stability of the relations between regions, and provides com-

plementary information [39,40].

PLS starts by creating a matrix of the correlations, across

subjects, between seed activity and all other brain voxels for each

‘‘block’’. This matrix is decomposed using singular value

decomposition (SVD) to identify latent variables (LVs), which

are orthogonal patterns of brain activity that characterize common

or different patterns of group-level FC across ‘‘blocks’’, thus
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assessing both spatial and temporal aspects of FC. For each LV,

The SVD maximizes covariance and minimizes residuals between

the seed activity and the spatiotemporal brain data. Each voxel has

a weight, or salience, which is proportional to the covariance of its

activity with the FC pattern on each LV. The significance for each

LV as a whole is determined with a permutation test. The rows of

the data matrix are re-ordered a number of times (i.e. the no. of

permutations, in our case - 1000), and each time the SVD creates

a new set of LVs, and the amount of covariance accounted for by

these permuted LVs is compared to that of the original LV. The

original value is assigned a probability based on the number of

times the values from the permuted data exceed the original value.

This is the permuted p value, representing the significance of the

LV.

The reliability of each voxel’s salience is determined with a

bootstrap test. Subjects are randomly resampled with replacement

a number of times (i.e. the no. of bootstraps, in our case - 1000),

and their standard errors [SE, 41] are calculated. The ratio of

salience value to the standard error for each voxel, or bootstrap

ratio (BSR), is a measure of voxel reliability. Unlike univariate

analyses, saliences are calculated in a single analytic step, thus no

correction for multiple comparisons is required (for further details

on PLS, see [28]). Voxel saliences are also used to assess how

robustly each subject exhibits each LV’s spatial pattern for each

block, by summing them to produce a ‘‘brain score’’. To provide

an assessment of seed FC, brain scores are correlated with the seed

activity in each ‘‘block’’; this provides a measure of the correlated

activity between the seed and the whole-brain pattern identified by

the LV across time. The bootstrap is used to calculate confidence

intervals around these correlations.

To investigate the whole-brain FC of the DN, we performed

several seed-PLS analyses using a PCC seed (22, 250, 28, a

coordinate identified in a previous study [29]). Peak coordinates of

regions that showed connectivity with the PCC were identified for

all analyses using cluster reports with the following thresholds:

cluster size = 80 voxels (0.64 ml), minimum distance between

Figure 1. LV1 – the primary DN dynamic showing stable correlations. LV1 - The primary resting-state spatiotemporal pattern of PCC
correlations, showing positive FC across most of the ‘blocks’ in both resting runs. A) The spatial composition, capturing the DN. The red regions (with
positive BSRs) indicate areas with positive correlation with the PCC seed (no negative BSRs met the threshold, value range displayed is consistent
with Figure 2). B) The temporal structure – correlations of brain scores with seed activity across time for each 10 sec ‘block’. Bars = 95% confidence
intervals. The spatial and temporal correlational patterns are very similar across Rest1 and Rest2.
doi:10.1371/journal.pone.0013311.g001
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peaks = 1 cm, and a BSR equivalent to a two-tailed p value of

0.001 (i.e., BSR = 3.3). Within large clusters, multiple peaks were

noted if they met the BSR threshold and were more than 1 cm

from all other peaks. Anatomical labels were assigned using the

Eickhoff Anatomy Toolbox [42] and an anatomy atlas [43].

Pre-task vs. post-task resting-state DN FC
The first analysis included Rest1 and Rest2, and was a data-

driven examination of the spatial and temporal characteristics of

DN functional connectivity in the pre-task and post-task resting-

states. We report here the temporal and spatial patterns of the two

primary LVs, accounting for 42% of the covariance in the data

(each of the remaining LVs accounted for ,5% of the covariance).

The spatial patterns in these two LVs were further assessed by

calculating a series of conjunction maps, aimed at identifying the

spatial commonalities and differences between them. To make

these conjunction maps, the BSR maps of LV1 and LV2 were

multiplied to create a new BSR image. Any voxel/cluster that had

high BSR values in both LVs received an even higher BSR in the

new map, thus it contained ‘‘hotspots’’ common to the two LVs.

We then applied two different masks to this image to identify

voxels with common or different patterns of FC, including only

those voxels that met the BSR thresholds for each LV considered

separately.

We next carried out a contrast-driven analysis, using specific

contrasts entered into the analysis rather than using a data-driven

approach. The purpose of this analysis was to identify regions with

overall differences in the strength of FC between rest runs. For this

analysis, we directly contrasted Rest1 and Rest2, across all time

points, by entering a series of 21’s for the Rest1 blocks and 1’s for

the Rest2 blocks.

Comparing FC during rest and task
A second series of contrast-driven analyses was carried out to

distinguish differences between rest runs that would be due to the

influence of the intervening cognitive tasks from the effects of time

in the scanner per se. These analyses included the first and last task

runs, which we will refer to as Task1 and Task8, in addition to

Rest1 and Rest2. These two task runs were separated by a

temporal gap similar to the one separating the resting-state runs.

The first contrast assessed a simple effect of time in the scanner

(i.e. Rest1/Task1 vs. Task8/Rest2 = 21/21/+1/+1) and the

second assessed an interaction of time and type of run (Rest1/

Rest2 = 21/+1 and Task1/Task8 = +1/21, or together = 21 +1

21 +1). That is, the second contrast was designed to identify those

FC changes from Rest1 to Rest2 that differed from any change

seen between the two task runs, and which could be attributed to

some factor other than time in the scanner.

Results

Pre-task vs. post-task resting-state DN FC
The data-driven analysis of Rest1 vs. Rest2 revealed two

prominent spatiotemporal FC patterns for the PCC seed. The

primary LV (36% of the covariance, p = 0.001) showed mostly

positive correlations between the PCC and the rest of the DN

across the entire run, for both Rest1 and Rest2 (Figure 1). DN

areas with this pattern of FC included angular gyrus, middle

temporal gyrus, medial temporal lobes, ventromedial frontal

cortex, superior frontal gyrus, and cerebellum. Positive correla-

tions were also found between the PCC and subcortical areas and

the inferior frontal gyri (see Table 1 for the entire list). Only

positive correlations with the PCC were seen on this LV.

The secondary LV (6% of the covariance, p = 0.001) showed a

pattern of mostly positive PCC connectivity during Rest1 with a

subset of the regions seen in the first LV (red regions in Figure 2).

However, during Rest2, the connectivity pattern was more variable

across time. In some of the Rest2 blocks the PCC was positively

correlated with the subset of DN regions that dominated the FC

pattern during Rest1, and in other blocks was positively correlated

with a different set of regions (blue regions in Figure 2, see Table 2

for the entire list). That is, during Rest2 the PCC switched its

connectivity pattern back and forth between a group of DN regions

and a different set of regions. Some of these other regions were

similar to areas in the task-positive network (TPN, [7,8]) that is often

found to be negatively correlated with the DN. Indeed, a number of

areas seen on LV2 were in close proximity (,1cm) to TPN regions

reported by Fox et al [8], such as the anterior portion of the insula,

Table 1. LV1 - Brain areas showing stable positive
correlations with the PCC across time, for both Rest1 and
Rest2.

Region Hem X(mm) Y(mm) Z(mm) BSR

Angular gyrus Left 246 262 30 20.98

Calcarine gyrus midline 4 290 6 11.60

Cerebellum Left 222 278 228 10.05

Cerebellum Right 22 242 218 9.72

Cerebellum Right 6 250 240 11.79

Cerebellum Right 38 256 250 8.42

Fusiform gyrus –
posterior region

Right 24 282 224 11.96

Inferior frontal gyrus
p. orbitalis

Left 242 26 210 10.70

Inferior frontal gyrus
p. triangularis

Left 256 24 10 8.28

Inferior frontal gyrus
p. triangularis

Right 58 30 8 9.36

Medial frontal gyrus Left 26 228 66 8.43

Medial frontal gyrus Left 26 56 4 17.99

Medial frontal gyrus midline 2 48 26 17.76

Middle frontal gyrus Right 44 10 44 10.38

Middle temporal gyrus Left 266 234 22 13.72

Middle temporal gyrus Left 258 214 212 13.42

Middle temporal gyrus Right 56 228 210 11.12

Middle temporal gyrus Right 56 0 222 13.03

PCC midline 22 250 28 789.72

Precentral gyrus Left 218 224 56 8.70

Precentral gyrus Right 28 226 54 7.69

Putamen/claustrum Right 34 0 212 10.10

SMA - BA6 Right 8 210 66 7.50

Superior frontal gyrus Left 216 40 38 17.20

Superior frontal gyrus Right 20 38 32 11.80

Superior temporal gyrus Right 48 252 20 19.05

Superior temporal gyrus Right 42 26 222 12.09

Thalamus Left 214 218 24 9.49

MNI coordinates. BSR.3.3 is equivalent to p,0.001. Hem = hemisphere;
SMA = supplementary motor area; PCC = posterior cingulate cortex, the seed
used in the FC analysis. See also Figure 1.
doi:10.1371/journal.pone.0013311.t001
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precentral gyrus, and middle frontal gyrus. Thus, one way to think

about LV2 is that it shows intermittent positive connectivity

between the PCC and task-positive regions during Rest2.

To assess whether the distribution of correlations differed

between Rest1 and Rest2, we used a non-parametric test to

compare the correlations seen in Figures 1 and 2. As seen in

Figure 3, these distributions were not found to be significantly

different for LV1 (z = 21.4, p = 0.16, Wilcoxon test), but did differ

for LV2 (z = 23.48, p = 0.0005). That is, the pattern of PCC

connectivity seen in LV1 was equally positive for both rest runs,

whereas in LV2 the PCC was more connected with other DN

regions (more positive correlations) in Rest1 and more connected

with the alternate regions during Rest2 (more negative correlations).

Stable vs. variable DN spatial patterns
The next step was to elaborate and differentiate between stable

and variable DN regions; we use ‘‘stable’’ to refer to areas that

showed positive network connectivity with other DN regions on

both LV1 and LV2, and ‘‘variable’’ to describe those regions with

different connectivity on LV1 and LV2. To do this, we created two

conjunction maps.

The first conjunction map identified DN regions common to

both LVs, i.e. - voxels that had positive BSRs (red regions seen in

Figures 1 and 2) in both (Figure 4a). This map, isolating the

regions that showed stable FC with the PCC in both LVs, included

most of the areas currently thought to comprise the DN, such as

medial frontal gyrus, angular gyrus and middle temporal gyrus (see

Table 3a for the entire list). Notably absent from this common

map were the medial temporal regions and cerebellum.

The second map (Figure 4b) identified voxels that were part

of the FC pattern seen throughout Rest1 and Rest2 in LV1 (red

regions in Figure 1) but more variably correlated with other DN

areas in LV2 (blue regions in Figure 2). This map included areas

such as anterior cingulate, lingual gyrus, superior temporal

Figure 2. LV2 – the secondary DN dynamic showing variable correlations. LV2 - The secondary resting-state spatiotemporal pattern of PCC
correlations, showing a transition from relative stability of DN connectivity to switching between two different patterns of FC. A) The spatial pattern
of FC seen in this LV. Activity in red regions (positive BSRs) is associated with increased activity in the PCC during those blocks with positive
correlations between brain scores and PCC (seen in B), whereas increased activity in blue areas (negative BSRs) is correlated with increased activity in
the PCC for blocks where the correlations are negative. B) Correlations across time. Rest1 shows relatively stable positive correlations between the
PCC and other DN regions, while Rest2 shows switching between the two patterns of connectivity. Bars = 95% confidence intervals for the
correlations.
doi:10.1371/journal.pone.0013311.g002
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gyrus, and precentral gyrus (see Table 3b for the entire list).

These two maps shown in Figure 4 therefore identify two subsets

of regions that are functionally connected to the PCC, one of

which shows positive connectivity regardless of whether FC is

assessed before or after a series of cognitive tasks, and a second

that shows more variable connectivity after participants carry

out cognitive tasks.

Contrasts Exploring FC differences in rest and task runs
The direct comparison of Rest1 and Rest2, across all time

points, is shown in Figure 5 (p,0.002). This contrast identified

only areas with stronger connectivity during Rest2 (there were no

above-threshold regions with stronger connectivity in Rest1).

There was stronger connectivity during Rest2 in supplementary

motor area (SMA), precentral and postcentral gyri, lingual gyrus,

and amygdala (see Table 4a for a full list). Not surprisingly, these

areas overlap with those seen in LV2 of the previous analysis,

specifically with areas that showed more variable FC with the PCC

and other DN regions (see Figure 4b). This suggests that the

increased connectivity with these regions from Rest1 to Rest2 is

due to an influence of the intervening tasks. However, it is

important to separate differences in FC that might reflect being in

the scanner for some length of time from those that are due to the

influence of carrying out cognitive tasks.

To address this issue, we tested for common differences between

FC in the two rest conditions and the first and last task runs, as

well as differences unique to the two rests. The first contrast

identified those areas with similar changes between the first and

second rest runs and the first and last task runs, i.e., those changes

likely due to time in the scanner. These areas are shown in Figure 6

and are limited to five clusters in bilateral precuneus, left fusiform

gyrus, SMA, and lingual gyrus (p = 0.001). In all of these areas

there was stronger FC during Rest2 and Task8, relative to Rest1

and Task1 (Table 4b; there were no regions with stronger FC

during Rest1 and Task1). Therefore, changes in FC here could be

due to the effect of time in the scanner.

Table 2. LV2 - Brain areas showing variable correlations with
the PCC across time, during Rest2.

Region Hem X(mm) Y(mm) Z(mm) BSR

Amygdala Left 218 2 220 25.69

Cerebellum Left 28 272 236 25.57

Cerebellum Right 32 272 250 25.10

Cerebellum Right 28 246 236 23.84

Cuneus midline 24 268 2 27.19

Fusiform gyrus Left 230 250 218 26.62

Inferior frontal gyrus
p. triangularis

Left 240 34 16 26.66

Inferior frontal gyrus
p. triangularis

Right 46 22 6 26.09

Inferior occipital gyrus Left 232 278 28 24.99

Inferior parietal lobule Left 262 234 30 25.23

Inferior parietal lobule Right 24 254 38 24.03

Inferior parietal lobule Right 62 222 38 25.30

Insula Left 230 18 6 27.56

Insula Left 236 24 10 26.19

Insula Right 38 212 22 26.13

Middle cingulate cortex Left 26 6 40 26.17

Middle cingulate cortex Left 28 226 44 25.22

Middle frontal gyrus Right 32 0 38 25.54

Middle frontal gyrus Right 52 46 8 25.10

Middle frontal gyrus Right 42 46 20 24.40

Middle frontal gyrus Right 28 44 20 25.19

Middle temporal gyrus Right 56 252 26 23.76

Postcentral gyrus Left 266 218 30 25.61

Postcentral gyrus Right 60 212 16 27.00

Precentral gyrus Left 248 22 46 26.99

Precentral gyrus Left 256 6 4 27.49

Precentral gyrus Left 220 220 54 26.61

Precentral gyrus Right 58 2 28 25.65

Precentral gyrus Right 20 226 58 25.58

Precentral gyrus Right 48 24 50 24.37

Precuneus Left 216 258 48 26.30

Precuneus Right 14 246 58 25.77

Superior frontal gyrus Left 222 2 48 26.99

Superior temporal gyrus Left 246 218 6 25.62

Angular gyrus Left 242 264 28 12.07

Angular gyrus Right 44 248 26 9.32

Medial frontal gyrus midline 2 54 26 7.13

Medial frontal gyrus midline 2 56 12 6.47

PCC midline 22 250 28 398.19

Superior frontal gyrus Left 212 50 36 7.56

MNI coordinates. BSR.3.3 is equivalent to p,0.001. Hem = hemisphere;
PCC = posterior cingulate cortex, the seed used in the FC analysis. Labels in
italics are regions positively correlated with the seed. See also Figure 2.
doi:10.1371/journal.pone.0013311.t002

Figure 3. Correlation distributions in LV1 and LV2. Correlation
values for all 10-sec blocks, sorted and plotted from lowest (most
negative) to highest (most positive), to show the distributions in LV1
and LV2. A) LV1 – Rest1 correlations (squares) are not significantly
different from Rest2 correlations (triangles). B) LV2 – Rest1 correlations
(squares) are more positive than Rest2 correlations (triangles).
doi:10.1371/journal.pone.0013311.g003
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Finally, a contrast to identify areas with a time6run type

interaction was carried out. This is a stringent test of those effects

limited to the difference between Rest1 and Rest2 because it

requires the areas that increase in strength between the resting

runs to weaken between the two task runs. This contrast

(p = 0.004) showed a set of regions with stronger PCC connectivity

in Rest2, relative to Rest1, but weaker connectivity in Task8

relative to Task1 (Figure 7). These were the left paracentral lobule,

right medial frontal gyrus, precentral gyrus, and supramarginal

gyrus (Table 4c).

Most of the regions identified by these direct contrasts were

also identified in the second LV of the data-driven analysis.

This suggests that the observed overall FC change in these

regions, with the exclusion of regions identified as showing

stronger FC in both rest and task runs (Figure 6), is likely due

to an influence of cognitive processing on resting activity in the

Figure 4. Conjunction analyses of LV1 and LV2. Conjunction analyses of LV1 and LV2, highlighting stable and variable DN regions. A) Stable DN
regions – voxels showing positive brain scores, and positive FC, on both LVs (red regions in both Figure 1 and 2). B) Variable DN regions – voxels with
positive brain scores (positive DN connectivity) on LV1 (red regions in Figure 1) and negative brain scores (negative DN connectivity) on LV2 (blue
regions in Figure 2). The colors represent the conjunction ‘‘BSR’’ values, which are a product of the BSR values of the original maps, thereby
highlighting common ‘‘hotspots’’.
doi:10.1371/journal.pone.0013311.g004
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second resting-state run, and not just time spent in the

scanner.

Discussion

The study of the DN, and the brain states that it supports, is

expanding in recent years. However, two possibly fundamental

aspects of the behavior of this network have been relatively

understudied. One is the temporal nature of the functional

interactions among nodes of the network, and the second is

whether DN functional connectivity can be influenced by a

preceding brain state. In our study, we aimed to address the

possibility of variability in both spatial and temporal domains. We

compared the resting-state FC of the DN using two runs that were

separated by a 45 minute interval containing task execution. We

found that the DN is not temporally static, but can vary

dynamically over time. The results revealed two primary modes

of FC as assessed using the PCC as a seed – a robust correlation

among DN regions, and a switching between connectivity among

certain DN regions and connectivity among other areas, including

some task-positive regions. The first FC pattern represents a stable

feature of the DN, suggesting that the DN indeed maintains some

temporally stable functional connections. However, the second FC

pattern may represent a dynamic behavior of certain DN regions

that occurs during rest periods that follow tasks, suggesting an

interaction between task-positive regions and DN regions that

carries over into resting-state periods.

Therefore, the DN seems to exhibit two simultaneous FC

dynamics at rest, one robust (accounting for 36% of data

covariance) and one secondary (6% covariance). The first is stable

in time and insensitive to previous brain states. The set of regions

showing this stable pattern of FC involved all regions currently

thought to be part of the DN [5,7,8], as well as some additional

areas not currently included in the DN, but that we have

previously shown are strongly functionally connected to the PCC

[29]. We show here that this widely distributed set of positive

correlations is the most prominent FC pattern for the PCC, and

does not include any anti-correlated regions. The second dynamic

is more variable, does include some regions that are anti-

correlated with a subset of the DN seen in the first FC pattern,

and is seen more strongly when the resting-state follows a period of

task execution, suggesting it may be an after-effect of the cognitive

activity engaged during the tasks. The set of DN regions that

correlated with the PCC on this pattern are similar to the set

typically reported for the DN, minus a few areas like the medial

temporal lobes. The set of areas comprising the alternate group

that correlated with the PCC, and negatively correlated with the

DN regions, included some general TPN areas, such as the

parietal areas and SMA, and the anterior insula/inferior frontal

regions. These two FC patterns that switch back and forth during

Rest2 may indicate that participants fluctuate between internal

thoughts (mediated by the DN [29,44]) and monitoring of the

external environment (TPN areas, occipital cortex [7,8]) and

somatic state (posterior insula [45]). We suggest two conclusions

from this result. Firstly, the DN that most studies have described

may be the more variable subset that we see in LV2, suggesting

that the strongest FC pattern of the PCC is more widely

distributed. Secondly, we were only able to see multiple co-

existing patterns by using a technique that allows for this. Future

studies should explore this idea further for the DN as well as other

resting state networks.

A few recent studies suggest that the DN is spatially stable at

rest, across time spans of minutes, hours, or even months

[22,46,47], but also sensitive to seemingly minor differences

between the conditions in which it is studied, such as whether the

resting run is carried out with eyes open vs. closed [48]. Our work

similarly suggests that the DN is reliable from one measurement to

another, but nevertheless can reflect some perturbations due to

outside influences, or perhaps internal ones as well. This

interesting characteristic is clearly demonstrated in our study,

which specifically investigated differences between pre- and post-

task resting states. Our results indicate that reliability of the DN

and its sensitivity to intervening influences may be seen in different

aspects of its functional connectivity. That is, the primary FC

dynamic reflects DN reliability and stability, and is not sensitive to

the previous task state, whereas the secondary dynamic reflects

sensitivity to task effects.

Table 3. Brain areas identified with conjunction analyses.

Region Hem X(mm) Y(mm) Z(mm)

3a - regions showing stable FC with the PCC, in both LVs

Angular gyrus left 248 262 35

Inferior parietal lobule left 250 257 46

Medial frontal gyrus midline 1 45 212

Medial frontal gyrus right 8 56 22

Middle cingulate cortex midline 4 226 36

Middle frontal gyrus left 237 30 43

Middle temporal gyrus left 265 23 223

Posterior cingulate cortex midline 1 246 18

Posterior cingulate cortex right 14 247 29

Precuneus midline 21 249 31

Precuneus right 6 263 44

Superior frontal gyrus left 216 49 34

Superior frontal gyrus right 23 49 38

Superior temporal gyrus right 55 258 29

Thalamus midline 1 216 17

3b - regions showing variable FC with the PCC, in LV2

Anterior cingulate cortex right 8 14 24

Cuneus left 27 262 3

Cuneus right 6 292 8

Cuneus right 16 274 15

Fusiform gyrus left 240 247 224

Insula left 231 224 9

Lingual gyrus left 212 249 213

Lingual gyrus midline 1 286 1

Lingual gyrus right 12 256 0

Middle cingulate cortex right 10 21 36

Precentral gyrus right 23 221 62

Precentral gyrus right 67 0 6

SMA - BA6 midline 4 25 54

Superior frontal gyrus right 8 14 57

Superior frontal gyrus right 25 215 66

Superior temporal gyrus left 256 224 5

Superior temporal gyrus right 57 221 2

MNI coordinates. BSR.3.3 is equivalent to p,0.001. Hem = hemisphere;
SMA = supplementary motor area; PCC = posterior cingulate cortex, the seed
used in the FC analysis. See also Figure 4.
doi:10.1371/journal.pone.0013311.t003
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There was consistency between the FC patterns identified in

LV2 of the data-driven analysis and the subsequent contrast

analyses in terms of the regions showing different FC between

Rest1 and Rest2. For example, both LV2 and the direct contrast

of Rest1 and Rest2 showed more FC for the left medial temporal

region, medial frontal/SMA, and lingual gyrus during the post-

task resting run. The contrasts comparing FC during rest and task

runs suggested that strengthened FC in the lingual gyrus and

Figure 5. Direct comparison of Rest1 and Rest2. Areas showing greater FC with PCC in Rest2 than Rest1, as found in the contrast analysis, and
shown in red (BSRs.3.3). No negative BSRs met the threshold.
doi:10.1371/journal.pone.0013311.g005

Table 4. Brain areas identified with contrast-driven analyses.

Region Hem X(mm) Y(mm) Z(mm) BSR

4a - regions showing stronger PCC FC in Rest2, relative to Rest1

Amygdala left 222 24 226 24.75

Lingual gyrus left 28 272 28 25.88

Paracentral lobule right 10 220 68 25.90

Parahippocampal gyrus left 226 224 224 24.82

Postcentral fyrus right 52 210 16 25.23

Precentral gyrus right 28 218 46 25.26

SMA - BA6 midline 24 12 50 24.99

Superior temporal gyrus left 234 2 220 24.76

4b - regions showing stronger PCC FC in Rest2 & Task8, relative to Rest1 & Task1

Fusiform gyrus left 232 242 212 25.96

Lingual gyrus left 24 266 4 24.80

Precuneus right 14 258 46 25.04

Precuneus left 210 254 44 24.45

SMA - BA6 left 24 12 50 25.47

4c - regions showing stronger PCC FC in Rest2, relative to Rest1, as well as weaker FC in Task8 relative to Task1

Medial frontal gyrus Right 8 224 66 25.16

Paracentral lobule Left 218 220 56 26.15

Precentral gyrus Right 60 8 10 24.86

Supramarginal gyrus Right 52 250 36 25.44

MNI coordinates. BSR.3.3 is equivalent to p,0.001. Hem = hemisphere; SMA = supplementary motor area; PCC = posterior cingulate cortex, the seed used in the FC
analysis. See also Figure 5+6+7.
doi:10.1371/journal.pone.0013311.t004
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medial frontal areas might be a consequence of time spent in the

scanner, whereas stronger FC in SMA, anterior temporal regions

and right supramarginal gyrus is more likely to be an influence of

intervening task on resting FC. Some of these regions that

exhibited greater FC with the PCC in Rest2, or more variable FC

in Rest2, also exhibited increased activity (compared to baseline)

during internally-oriented tasks (SMA, inferior frontal gyri) or

during externally-oriented tasks (right supramarginal gyrus) in our

previous study [29]. Although this suggests some specific influences

of task demands on resting FC of the DN, future studies limiting

the type of intervening cognitive processes will be necessary to

determine if the effect that we observed on resting FC is a product

of our specific tasks, or of general task execution per se. There also

is a possibility that Rest2 was influenced by Rest1 itself, as others

have found [48], but we cannot address it here given the

intervening task runs. Regardless, it is likely that any possible order

effect of the resting runs per se would be outweighed by the task-

related effect we observed.

Figure 6. Direct comparison of Rest1 & Task1 vs. Task8 & Rest2. Areas showing greater FC with PCC in Rest2 and Task8, compared to Rest1
and Task1, and shown in red (BSRs.3.3). No negative BSRs met the threshold.
doi:10.1371/journal.pone.0013311.g006

Figure 7. A time6run interaction analysis of Rest1/Task1/Task8/Rest2. Areas showing stronger FC with PCC in Rest2 relative to Rest1, and
weaker FC in Task8 relative to Task1, as found in the interaction contrast analysis, and shown in red (BSRs.3.3). No negative BSRs met the threshold.
doi:10.1371/journal.pone.0013311.g007
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It is unlikely that the carry-over we observed is a product of the

sluggish temporal nature of the BOLD signal, especially since we

observed it as a secondary dynamic to the more robust, stable

pattern of FC. In addition, this carry-over is unlikely to constitute

simple residual processing from the previous task-induced brain

state, since it was present off and on during the entire second

resting scan. If it had been residual task-related processing, it

would have probably exhibited a ‘‘recovery’’ behavior, similar to

that shown in Barnes et al’s study [26]. More likely, this dynamic

may represent an interaction between DN regions (involved in

internally-oriented cognition) and TPN regions (involved in

externally-oriented cognition), as well as regions more specific to

the preceding active brain state (depending on the specific task

executed). In some cases, this interaction, in turn, might reflect

post-task consolidation or learning [44,49].

Finally, our study highlights some practical issues which should

be taken into consideration in future work involving resting-state

FC. First, our observation of different DN FC patterns between

pre- and post-task resting-states shows that not all ‘‘rests’’ are the

same. From a practical standpoint, researchers should take note

that FC calculated from a resting run that follows some cognitive

activity may be influenced by this previous brain state. A

particularly striking example is our observation that the PCC is

more strongly functionally correlated with some TPN regions after

a series of tasks has been performed. Moreover, this influence

might not necessarily just be carried over to a post-task resting-

state, but also to any post-task state, be it rest or a new task.

Therefore, a previous task might impact brain activity during the

performance of a current task, something which is rarely if ever

assessed.

Second, the fact that we observed two simultaneous resting-state

dynamics highlights the possibility that brain networks/areas may

be involved in multiple processing modes at any given point in

time. This notion is consistent with the idea of neural context [50]

and is an indication that network FC is both fluid and complex.

This observation of multiple dynamic aspects of FC of a single

region, the PCC in this case, may also characterize brain function

more generally and reflect a fundamental aspect of functional

organization in the brain. It is important to note that this result

was made possible by the use of a multivariate data-driven

approach, which was both less constrained than model-driven

ones, and well-suited to capture the complex nature of brain

function.
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