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Abstract

Otitis media (OM) is a highly prevalent pediatric disease caused by normal flora of the nasopharynx that ascend the
Eustachian tube and enter the middle ear. As OM is a disease of opportunity, it is critical to gain an increased understanding
of immune system components that are operational in the upper airway and aid in prevention of this disease. SPLUNC1 is
an antimicrobial host defense peptide that is hypothesized to contribute to the health of the airway both through
bactericidal and non-bactericidal mechanisms. We used small interfering RNA (siRNA) technology to knock down expression
of the chinchilla ortholog of human SPLUNC1 (cSPLUNC1) to begin to determine the role that this protein played in
prevention of OM. We showed that knock down of cSPLUNC1 expression did not impact survival of nontypeable
Haemophilus influenzae, a predominant causative agent of OM, in the chinchilla middle ear under the conditions tested. In
contrast, expression of cSPLUNC1 was essential for maintenance of middle ear pressure and efficient mucociliary clearance,
key defense mechanisms of the tubotympanum. Collectively, our data have provided the first in vivo evidence that
cSPLUNC1 functions to maintain homeostasis of the upper airway and, thereby, is critical for protection of the middle ear.

Citation: McGillivary G, Bakaletz LO (2010) The Multifunctional Host Defense Peptide SPLUNC1 Is Critical for Homeostasis of the Mammalian Upper Airway. PLoS
ONE 5(10): e13224. doi:10.1371/journal.pone.0013224

Editor: Frank R. DeLeo, National Institute of Allergy and Infectious Diseases, National Institutes of Health, United States of America

Received July 20, 2010; Accepted September 14, 2010; Published October 7, 2010

Copyright: � 2010 McGillivary, Bakaletz. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grant K99 DC008966 to G.M. and R01 DC005847 to L.O.B from the NIDCD/NIH. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Lauren.Bakaletz@nationwidechildrens.org

Introduction

Otitis media (OM), or inflammation of the middle ear, is the

second most common pediatric infectious disease. Over 80% of

children develop a least one incident of OM by three years of age

and more than half of children experience multiple episodes of this

disease [1,2]. OM is the leading cause for physician office visits and

pediatric surgeries and is the most frequent reason for the

prescribing of antibiotics. Indeed, the estimated cost per episode of

OM in the US is in the hundreds of dollars and more than 15 million

antibiotic prescriptions are written each year for the treatment of

OM. Further, the total cost of diagnosis and management of OM

exceeds $5 billion annually in the US alone which serves to

underscore the need to develop more effective preventative and

therapeutic strategies for this prevalent disease [3,4,5,6].

OM is not caused by highly virulent microorganisms, but is

instead induced by a subset of commensal bacteria that comprise

the normal flora of the pediatric nasopharynx. Three bacterial

species (nontypeable Haemophilus influenzae [NTHI], Streptococcus

pneumoniae, and Moraxella catarrhalis) are commonly isolated from

middle ear effusions, with the greatest number of cases of OM with

effusion caused by NTHI [7,8]. When host airway defenses are

compromised, most typically by upper respiratory tract (URT)

viruses, these bacteria can behave as opportunistic pathogens and

ascend the Eustachian tube (ET) to gain access to the middle ear

[9,10,11]. As such, it is important to understand and characterize

host defense mechanisms that contribute to prevention of OM and

promote overall health of the uppermost respiratory tract.

In the mammalian airway, there are multiple first lines of

defense that include mucociliary clearance, trapping functions of

mucus glycoproteins and action of surfactants [12]. Several

surfactant proteins are produced in the ET and these proteins

serve to lower surface tension at the mucosal surface, an important

parameter for optimal ET function [12]. Additionally, some of

these surfactant proteins are members of the antimicrobial host

defense family of proteins (APs) and protect mucosal surfaces by

direct agglutination and opsonization of microorganisms [12]. The

AP family of proteins, which also includes lysozyme, lactoferrin,

cathelicidins, peptidoglycan recognition proteins, and b-defensins,

are key components of the primary defense system and can

inactivate bacteria, fungi and viruses on epithelial surfaces that line

the respiratory tract [13,14,15,16,17]. We have previously

demonstrated that the chinchilla, a predominant host used to

model human OM, produces several APs in the upper airway

including a b-defensin, and that expression of this defensin at the

mucosal surface directly impacts the ability of NTHI to colonize

the nasopharynx [18]. Collectively, these data provide evidence

that effectors of innate immunity are produced at sites relevant to

OM and suggest that these proteins likely play a critical role in

defense of the middle ear.

The SPLUNC1 protein, a recently described AP, is a

predominant constituent of surface liquid that covers mucosal

surfaces of the human respiratory tract [19,20]. SPLUNC1 is a

secreted protein and has been detected in both nasopharyngeal

lavage (NL) fluid [21] and sputum [22]. This AP is produced by

mucosal tissues of the airway including the nasal septum, ethmoid
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turbinates, nasopharynx, trachea and lung [19,22,23,24]. Specifi-

cally, SPLUNC1 is predominately produced by mucous cells and

submucosal glands, although expression by epithelial cells of the

upper airway has also been reported [19,23]. With regards to

SPLUNC1 function, purified recombinant protein can kill bacteria

and also reduce biofilm formation by Pseudomonas aeruginosa in vitro,

supporting the assertion that this molecule functions in host defense

[19,20,25,26,27]. In addition, SPLUNC1 is a multifunctional

protein that serves to protect the sodium channel protein ENaC,

which regulates airway surface liquid volume, from proteolytic

cleavage. Effective maintenance of mucosal liquid volume,

mediated by appropriate expression of SPLUNC1, is thought to

promote mucociliary clearance of microorganisms in the airway

[20], a key host defense mechanism utilized in protection of the

middle ear [9]. Additionally, human SPLUNC1 has been reported

to act as a surfactant to reduce surface tension at an air-liquid

interface [28], thus providing an additional mechanism by which

this AP likely contributes to proper airway function. Altogether,

data obtained from these in vitro analyses suggests that SPLUNC1 is

an AP operational at mucosal surfaces that likely promotes health of

the airway through bactericidal and non-bactericidal mechanisms.

As SPLUNC1 is postulated to play a role in host defense against

microorganisms, we utilized small interfering RNA (siRNA)

technology to knock down expression of the chinchilla ortholog of

human SPLUNC1 (cSPLUNC1) and determined the impact of

altered cSPLUNC1 expression on the development of experimental

OM induced by NTHI. Under the conditions tested, chinchillas

administered a cSPLUNC1-specific siRNA, then directly challenged

with NTHI in the middle ear did not show a significant difference in

the concentration of bacteria within the tympanum, compared to

animals that received a control siRNA that did not modulate

expression of cSPLUNC1. In contrast however, reduced cSPLUNC1

expression had a major impact on ET function as evidenced by a

pronounced deficiency in the ability of this organ to maintain proper

middle ear pressure or mediate effective mucociliary clearance,

compared to controls. We thus provided evidence that ET

dysfunction observed in animals with diminished cSPLUNC1

expression was likely due to the intrinsic ability of this AP to function

as a biological surfactant. Collectively, our data suggested that the

surfactant activity of cSPLUNC1 was essential for homeostasis of the

uppermost airway and therefore, defense of the middle ear.

Results

Cloning of cSPLUNC1 cDNA
To begin to determine the role that SPLUNC1 might play

in prevention of bacterial OM, we cloned a 792 bp cDNA

that encoded the chinchilla ortholog of human SPLUNC1

(cSPLUNC1). The cSPLUNC1 cDNA was predicted to encode a

263 amino acid protein with an abundance of hydrophobic residues

(117 amino acids, 44%) and a molecular mass of 27.3 kDa.

CLUSTAL W analysis of the deduced cSPLUNC1 amino acid

sequence demonstrated strong conservation with human (74.6%

identity) and rat (68.6% identity) SPLUNC1 [supporting informa-

tion (SI) Fig. S1]. In addition, bioinformatic tools predicted that

cSPLUNC1, similar to human SPLUNC1, was a secreted protein

(Fig. S1). Collectively, these data suggested that cSPLUNC1 likely

shared activities with human SPLUNC1 such as the ability to kill

bacteria [25,26] and act as a surfactant in vitro [29].

Determination of relative expression of cSPLUNC1 mRNA
and protein in chinchilla tissues

To enable our ability to attempt to knock down expression of

cSPLUNC1 in vivo, it was necessary to first identify tissues in the

upper airway that expressed cSPLUNC1. We therefore isolated

total RNA from several URT tissues and used RT-PCR to amplify

cSPLUNC1 transcripts. cSPLUNC1 mRNA was detected in each

URT sample evaluated which included mucosa from the nasal

septum, nasoturbinate, ethmoid turbinate, nasopharynx, Eusta-

chian tube, and middle ear (Fig. 1A). We also amplified b-actin

from these same tissues as a control (Fig. 1A).

To complement our analysis of cSPLUNC1 mRNA expression,

we used Western blot to detect cSPLUNC1 protein in the

chinchilla upper airway. We reasoned that antibodies directed

against human SPLUNC1 would also detect cSPLUNC1, and

indeed demonstrated that this antiserum recognized recombinant

cSPLUNC1 [(r)cSPLUNC1] (Fig. 1B). As a reference, we also

detected recombinant human SPLUNC1 in the same immunoblot

(Fig. 1B). We subsequently showed that native cSPLUNC1 was

produced in mucosa of the nasal septum, nasoturbinate, ethmoid

turbinate, nasopharynx, Eustachian tube, and middle ear (Fig. 1B),

a finding that was in full agreement with results obtained from our

RT-PCR analysis. In addition, we demonstrated that cSPLUNC1

was secreted in the airway by detection of this protein in chinchilla

NL fluids (Fig. 1C). Interestingly, recombinant cSPLUNC1

separated by SDS-PAGE did not exhibit the same mobility as

native cSPLUNC1. This observation was due to the absence of

eukaryotic post-translation modifications such as glycosylation

which has been reported for human SPLUNC1 present in NL

fluid [30] and which we have obtained evidence for native

cSPLUNC1 (McGillivary et al, unpublished). Collectively, our

results demonstrated that cSPLUNC1 was produced at several

mucosal sites in the chinchilla URT and suggested that these

tissues were indeed appropriate targets for attempting to silence

cSPLUNC1 expression.

Administration and detection of siRNA in the chinchilla
upper airway

siRNA has not previously been used in the chinchilla host to

generate a knock down in gene expression. As such, it was

necessary for us to develop an siRNA approach to knock down

expression of cSPLUNC1 in vivo. Chinchillas were intranasally and

transbullarly administered 10 nmoles of a siRNA labeled with

alexafluor-647 and fluorescence was subsequently monitored in

the airway. We first used a non-silencing siRNA to minimize any

impact that gene knock down might have on our ability to track

the nucleic acid in vivo. We detected siRNA in the nasal cavity and

middle ear of chinchillas immediately after delivery of the

molecule to these sites (Fig. 2A), whereas no fluorescence was

detected in animals that did not receive siRNA (data not shown).

Three hours after administration of siRNA, we sacrificed a

chinchilla to determine the precise location of siRNA within the

nasal cavity. Fluorescence was readily observed in the nasoturbi-

nates and as far retrograde as the nasopharynx, but was not noted

in the ethmoid turbinates (Fig. 2B). The computer software used in

this analysis scales output to the greatest signal measured within a

single scan and therefore we reasoned that the observed very

strong fluorescence in the nasoturbinates could have masked

weaker fluorescence in the ethmoid turbinates. Therefore, we

covered the nasoturbinates to block fluorescence from this tissue

and were now able to show that siRNA was indeed delivered to the

ethmoid turbinates (Fig. 2C). To provide evidence that siRNA not

only reached sites of cSPLUNC1 expression but also entered

epithelial cells where gene silencing is mediated, we demonstrated

by fluorescence microscopy that delivery of siRNA to the

chinchilla nasal cavity resulted in the presence of siRNA within

the cytoplasm of epithelial cells of the upper airway (Fig. 2D).

Knocking Down SPLUNC1
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To next determine the kinetics for detection of siRNA in vivo,

animals were imaged one, two, four, and five days after

administration of the molecule. We detected fluorescence in the

nasal cavity of chinchillas for at least five days (Fig. 2E left panel)

and for a minimum of two days in the middle ear (data not shown).

Upon sacrifice of chinchillas five days after delivery of siRNA, we

demonstrated by ex vivo imaging that siRNA was indeed present in

the middle ear, in excised middle ear mucosa, and in ET tissues

(Fig. 2E right panel). These results demonstrated that siRNA

delivered to the nasal cavity and middle ear of chinchillas was

maintained in these tissues for a minimum of five days and

suggested that a knock down in cSPLUNC1 gene expression could

likely be similarly maintained for this duration.

Determination of cSPLUNC1 knock down in vivo
To now demonstrate that we could indeed silence cSPLUNC1

expression in the airway, we intranasally administered to

chinchillas one of several doses (0.05, 0.5, 5, or 10 nmoles) of

two unique siRNAs that were designed to knock down expression

of cSPLUNC1. We collected NL fluids from chinchillas before

siRNA treatment to determine baseline cSPLUNC1 expression in

these animals and used Western blot to determine protein

expression over time. We did not observe a significant decrease

in cSPLUNC1 expression when 0.05, 0.5, or 5 nmoles of siRNA

(cSPLUNC1 siRNA #1 or #2) was administered to chinchillas

(data not shown). In contrast, delivery of 10 nmoles of siRNA #1

to the nasal cavity resulted in diminished expression of

cSPLUNC1 after one and five days after delivery of siRNA, when

compared to cSPLUNC1 abundance from the same animal before

administration of siRNA (Fig. 3A). Delivery of siRNA #2 resulted

in a more modest and delayed reduction in cSPLUNC1

expression, while administration of 10 nmoles of negative control

siRNA did not result in a detectable reduction in cSPLUNC1

expression at any time point evaluated (Fig. 3A).

To provide additional evidence for siRNA-mediated knock

down in cSPLUNC1 expression, we analyzed cSPLUNC1 mRNA

expression in nasoturbinate mucosae of the upper airway one day

after delivery of siRNA to chinchillas (n = 3 animals per cohort).

RT-PCR analysis demonstrated that administration of

cSPLUNC1 siRNA #1 resulted in a 52% reduction (p = 0.004),

whereas delivery of cSPLUNC1 siRNA #2 resulted in a 25%

reduction (p.0.05) in cSPLUNC1 mRNA expression, compared

to animals that received the negative control siRNA (Fig. 3B and

C). Collectively, these data provided the first demonstration of a

gene knock down in the chinchilla.

Purification of native cSPLUNC1 and determination of its
ability to kill NTHI

As stated earlier, SPLUNC1 is a multifunctional protein that is

able to kill bacteria [20,25,26,27,28,30]. As NTHI is a

predominant causative agent of OM, we first demonstrated that

isolated native cSPLUNC1 was able to kill NTHI in vitro (Fig. 4A,

B, C, D, and E). We showed that our purified protein reacted with

SPLUNC1-specific antiserum in Western blot (Fig. 4B) and

capillary-liquid chromatography-nanospray tandem mass spec-

trometry (LC/MS/MS) analysis provided sequence which

matched 75 of the 263 amino acids predicted from the

cSPLUNC1 cDNA sequence. Further, we used circular dichroism

Figure 1. cSPLUNC1 mRNA and protein expression in the chinchilla upper airway. (A) RT-PCR analysis of (top panel) cSPLUNC1 or (bottom
panel) b-actin transcripts in multiple chinchilla tissue homogenates. b-actin mRNA was amplified to confirm that equal amounts of template RNA was
used in the amplification process. Amplicons generated with reverse transcriptase (+) or without reverse transcriptase (2) were separated in an
ethidium bromide-stained agarose gel. (B) We used anti-human SPLUNC1 in Western blot to detect native cSPLUNC1 in selected mucosal
homogenates. Recombinant cSPLUNC1 [(r)cSPLUNC1] was also detected to provide evidence that the antisera used in this analysis recognized the
chinchilla ortholog of human SPLUNC1 and recombinant human SPLUNC1 [(r)hSPLUNC1] served as the positive control in this analysis. (C) Proteins in
nasopharyngeal lavage fluid were separated by SDS-PAGE and Western blot was used to detect secreted cSPLUNC1 in the upper airway. cSPLUNC1
mRNA and protein was detected in every URT tissue evaluated.
doi:10.1371/journal.pone.0013224.g001

Knocking Down SPLUNC1
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to show that our purified protein exhibited secondary structure

similar to a published report for recombinant human SPLUNC1

[28] with 67% of the molecule predicted to be alpha-helical, 3% as

a b-sheet, and 30% in a random coil conformation (Fig. 4D).

Interestingly, our purification scheme, that included electroelution

of ,25 kDa native cSPLUNC1 from SDS-PAGE gels, also

resulted in detection of a ,65 kDa band by SDS-PAGE

(Fig. 4C). This protein was also identified by LC/MS/MS (53 of

263 amino acids) as cSPLUNC1 which suggested that native

cSPLUNC1 was capable of forming a multimer in vitro.

After we demonstrated our ability to purify native cSPLUNC1,

we next assessed the bactericidal activity of native cSPLUNC1

against NTHI and showed that 1.3 mg native cSPLUNC1/ml

phosphate buffer was able to kill greater than 50% of a 16105

inoculum of NTHI in a one hour assay (Fig. 4). Our data also

demonstrated that native cSPLUNC1 was more effective in killing

NTHI than either the human cathelicidin LL-37 or lysozyme

(Fig. 4), two additional APs that are expressed in the upper airway

[31,32]. As it has been estimated that SPLUNC1 is expressed in

airway secretions at concentrations of 10–250 mg protein/ml fluid

[28], these data suggested that as typically produced in the normal

upper airway, cSPLUNC1 was likely able to kill NTHI in vivo.

Effect of cSPLUNC1 knock down on the development of
bacterial OM

We next determined the ability of cSPLUNC1 to impact NTHI

survival in the chinchilla middle ear. Two cohorts of animals (n = 3

per cohort) were administered 10 nmoles of either a negative

control siRNA or cSPLUNC1 siRNA #1. Twenty-four hours

later, chinchillas were transbullarly challenged with NTHI and the

resultant middle ear effusions were collected 2 and 4 days after

bacterial challenge to determine the concentration of NTHI

present in these middle ear fluids. We showed that at the challenge

dose used (,1000 cfu NTHI/ear), the load of NTHI present in

effusions was not significantly different between animals that

received either control or cSPLUNC1 siRNA wherein approxi-

mately 16108 cfu NTHI/ml middle ear fluid were present two

days after bacterial challenge (Fig. 5). We also did not observe a

Figure 2. Detection of siRNA in the chinchilla upper airway. A negative control siRNA labeled with Alexafluor-647 was administered
intranasally and transbullarly to chinchillas and fluorescence was detected (A) immediately, (B, C, and D) three hours, or (E) five days after delivery of
siRNA. The images in (B and C) are of a sagittal section of a chinchilla head with tissues that express cSPLUNC1 identified by arrows. The
nasoturbinates in (C) are covered by black non-fluorescent paper to block the strong fluorescence from this tissue and to allow detection of the
weaker fluorescence from siRNA in the ethmoid turbinates and nasopharynx. (D) Nasoturbinate mucosae was embedded, sectioned, and stained with
phalloidin conjugated to FITC to detect actin (green) and DAPI to stain DNA (blue). The top panel shows the fluorescently-labeled siRNA (red) alone
and the bottom panel shows labeling for siRNA, actin, and DAPI. (E, right panel) Ex vivo analysis of the presence of siRNA in the tubotympanum. These
data demonstrated that siRNA entered epithelial cells of the upper airway and showed our ability to detect siRNA in the chinchilla nasal cavity,
Eustachian tube, and middle ear for at least five days after delivery of siRNA.
doi:10.1371/journal.pone.0013224.g002
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significant difference between the two cohorts in the load of NTHI

in the middle ears of animals four days after bacterial challenge

(Fig. 5).

In addition to culture data, we used tympanometry to provide

an indication of the relative severity of experimental OM in

animals challenged with NTHI. We monitored changes in middle

ear pressure (MEP) and tympanic membrane compliance (TMC),

or mobility of the tympanic membrane, to obtain quantitative

information on middle ear function. A tympanogram was

considered abnormal if middle ear pressure was $2100 daPa or

Figure 3. Knock down of cSPLUNC1 expression in vivo. (A) NL fluids were collected from chinchillas prior to administration of siRNA (d = 0) or
after delivery of 10 nmoles of an siRNA. Two unique siRNAs that were designed based on the cDNA sequence of cSPLUNC1 and an siRNA that did not
have complementary sequence to cSPLUNC1 were intranasally delivered to chinchillas, and NL fluids were collected from animals one and five days
later. cSPLUNC1 protein present in NL fluids was detected by Western blot using rabbit anti-native cSPLUNC1 and knock down in expression was
determined by comparison of band intensities for each panel before and after delivery of siRNA. (B) The siRNA molecules utilized in (A) were
administered intranasally to chinchillas (n = 3 per cohort) and 24 hours later animals were sacrificed, nasoturbinate mucosae was collected, and total
RNA was isolated. RT-PCR with primers designed to amplify (top panel) cSPLUNC1 or (middle and bottom panels) the control b-actin was used to
determine relative mRNA expression for the targets among the cohorts. Amplification was also done in the absence of reverse transcriptase to
demonstrate the absence of contaminating DNA as shown in the bottom panel. (C) Densitometric analysis of the intensity of RT-PCR amplicons
shown in (B). Administration of 10 nmoles of cSPLUNC1 siRNA #1 resulted in a significant reduction (asterisk) in cSPLUNC1 expression, compared to
the negative control siRNA.
doi:10.1371/journal.pone.0013224.g003

Knocking Down SPLUNC1

PLoS ONE | www.plosone.org 5 October 2010 | Volume 5 | Issue 10 | e13224



$+60 daPa and compliance values were #0.5 or $1.2 ml [33].

Our tympanometric analysis demonstrated that chinchillas

administered cSPLUNC1-specific siRNA developed a strong

negative MEP compared to controls. Chinchillas [n = 3 animals

(6 ears) per cohort] that received control siRNA demonstrated

both a normal average MEP value of 3612 daPa and compliance

value of 160.2 ml whereas chinchillas administered cSPLUNC1

siRNA exhibited an abnormally negative MEP of 2117612 daPa

and associated increased compliance value of 1.560.2 ml. The

difference in the average MEP and compliance values between the

two cohorts was statistically significant (p = 0.0001 for MEP and

p = 0.0001 for compliance). A representative image is shown in

Fig. 6A. The pronounced shift to a negative MEP with a

compliance value that was also abnormal, as assessed by the

relative height of the curve in the tympanogram, suggested that the

tympanic membrane was retracted and the mobility was thus

altered (i.e. reduced) in animals administered cSPLUNC1-specific

siRNA. We therefore directly visualized the middle ear cavity of

chinchillas by micro-CT analysis and indeed observed that the

tympanic membrane was retracted in animals that received

cSPLUNC1 siRNA, a result not seen with those that received

control siRNA (Fig. 6B). After challenge of chinchillas with NTHI,

MEP measured in animals that received the cSPLUNC1 siRNA

remained consistently more negative throughout the study

compared to animals that received a control siRNA (data not

shown). As a primary function of the ET is to equilibrate

atmospheric pressure between the middle ear and the nasophar-

ynx, these results suggested that silenced cSPLUNC1 expression in

animals with NTHI-induced OM resulted in ET dysfunction.

Determination of morphological changes in the
tubotympanum after cSPLUNC1 knock down

We next used a histological approach to begin to determine the

underlying mechanism for the defect in ET function that we

observed. Animals (n = 2 per cohort) that received control siRNA

and were challenged with NTHI showed an inflammatory cellular

infiltrate within the lumen of the ET but a predominately

characteristic ciliated pseudo-stratified columnar epithelium with

infrequent goblet cells evident (Fig. 7A). These results are

consistent with what has been published previously when

chinchillas are directly challenged in the middle ear with NTHI

and an inflammatory host response is initiated [34]. In contrast,

ETs from animals that received cSPLUNC1 siRNA demonstrated

a more pronounced influx of immune cells, cellular debris and

accumulation of mucus in the lumenal space (Fig. 7B). Goblet cell

hyperplasia was also evident in the epithelium of the ET, and the

increased number of these cells likely contributed to the increased

presence of mucus in the ET lumen (Fig. 7B, asterisks). Decreased

surfactant activity in the airway can result in increased production

of mucins [35], and therefore our data suggested that the ET

dysfunction we observed in chinchillas with NTHI-induced OM

subsequent to silenced cSPLUNC1 expression was due to

decreased surfactant activity in this tubal organ.

Figure 4. Purification of native cSPLUNC1 and its ability to kill
NTHI. Secreted proteins obtained from washing the apical surface of
CNPEs (Fig. S2) with PBS were separated by SDS-PAGE and (A) silver
stained or (B) used in Western blot to show native cSPLUNC1.
Additionally, proteins collected from the surface of CNPEs were
separated by SDS-PAGE, and cSPLUNC1 was gel extracted, electroelut-
ed, and refolded to obtain native protein. (C) Purified cSPLUNC1 was
detected in a silver stained SDS-PAGE gel and (D) shown to exhibit
secondary structure as determined by circular dichroism analysis. (E)
NTHI 86-028NP was incubated with increasing concentrations of native
cSPLUNC1, LL-37, or lysozyme for 1 hour, and the number of surviving
colony forming units were determined. Native cSPLUNC1 demonstrated
bactericidal activity against NTHI in vitro which suggested that
cSPLUNC1 may also impact the ability of NTHI to survive in vivo.
doi:10.1371/journal.pone.0013224.g004

Figure 5. Effect of cSPLUNC1 knock down on the development
of OM induced by NTHI. Chinchillas (3 per cohort) were administered
either a control or cSPLUNC1 specific siRNA and challenged one day
later with NTHI. The load of NTHI in middle ear effusions was
subsequently determined two and four days after bacterial challenge.
Knock down in cSPLUNC1 did not significantly impact survival of NTHI
in the chinchilla middle ear under the conditions tested wherein a
rigorous challenge dose was used.
doi:10.1371/journal.pone.0013224.g005

Knocking Down SPLUNC1
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Surfactant activity of native cSPLUNC1
To provide evidence that cSPLUNC1 indeed exhibited

surfactant activity, we evaluated droplet contact angle to

determine the relative ability of native cSPLUNC1 to reduce

surface tension of water in vitro. In this approach, droplets of a

solution were incubated on a hydrophobic surface and the ability

of a protein to reduce surface tension was assessed by measuring

the diameter of a droplet. We determined that 100 mg native

cSPLUNC1/ml water demonstrated a 25% increase in the droplet

diameter compared to water alone (p = 0.0003) (Fig. 8A and B).

SDS, a detergent, also exhibited surfactant activity and served as a

positive control (p,0.0001), while the negative control (lysozyme)

did not show a significantly increased droplet diameter, relative to

water (p.0.05). The greater ability of native cSPLUNC1 to act as

a surfactant, compared to water or lysozyme, was also observed by

reduced height of a native cSPLUNC1 droplet (Fig. 8C).

For a more quantitative analysis of cSPLUNC1 surfactant activity,

we used the pendant drop method to directly measure surface

tension. Droplets of water or lysozyme (20 mg/ml, 100 mg/ml, or

500 mg/ml) exhibited a surface tension of approximately 72 mN/m

(Fig. 8D), results that were consistent with what is known from the

literature [36]. In contrast, we showed that native cSPLUNC1

exhibited a dose dependent reduction in droplet surface tension

wherein 20 mg cSPLUNC/ml water, the least concentrated sample

tested, resulted in a statistically significant difference in surface

tension (64 mN/m, p,0.0001), compared to water alone (Fig. 8D).

The positive control (SDS) demonstrated a surface tension value of

29 mN/m (p,0.0001), a value that was similar to the surface tension

of a droplet of native cSPLUNC1 when tested at a concentration

of 500 mg/ml (Fig. 8D) (p,0.0001). These results showed that

native cSPLUNC1, at estimated physiological concentrations [28],

could indeed act as a surfactant and further supported the conclu-

sion that, in the context of NTHI-induced OM, expression of

cSPLUNC1 and its associated surfactant activity was crucial for

proper ET function.

Impact of silencing cSPLUNC1 expression on mucociliary
clearance in the ET

One biological function of the ET is to prevent entry of fluid

and/or debris into the middle ear to promote proper functioning

of the tympanum. As mucociliary clearance is impacted by

expression of surfactant proteins [12], we next assessed the

Figure 6. Impact of cSPLUNC1 knock down on the tubotympa-
num. Chinchillas were administered either a control or cSPLUNC1-
specific siRNA and (A) tympanometry was used to determine middle ear
pressure and tympanic membrane compliance and (B) computed
tomography imaging was used to visualize the right middle ear cavity
of chinchillas 24 hours after delivery of siRNA (before challenge with
NTHI). The tympanic membrane in (B) was pseudo-colored red to
highlight the retraction of the tympanic membrane that occurred in
animals that received cSPLUNC1 siRNA. Other structural differences that
are observed between the left and right panels (ie. morphology of the
cochlea) are due to slight differences in the positioning of animals in
the scanner and do not represent pathological changes in the ears of
animals when expression of cSPLUNC1 was diminished. Images shown
in (A) and (B) are representative of results obtained from the respective
cohorts. Knock down of cSPLUNC1 resulted in a strong middle ear
under pressure as evidenced by marked retraction of the tympanic
membrane. EAC – external ear canal, ME- middle ear cavity, C- cochlea.
doi:10.1371/journal.pone.0013224.g006

Figure 7. Effect of cSPLUNC1 knock down on the histopathol-
ogy of the ET recovered from animals with NTHI-induced OM.
Chinchillas (n = 2 per cohort) were administered either (A) a control or
(B) cSPLUNC1-specific siRNA and challenged one day later with NTHI.
After four days, animals were sacrificed and Eustachian tubes were
embedded and stained with hematoxylin and eosin. Asterisks in (B)
indicate goblet cells. Knock down in cSPLUNC1 expression in chinchillas
with OM induced by NTHI resulted in a pronounced influx of
inflammatory cells, accumulation of cellular debris and mucus, and
goblet cell hyperplasia in the ET.
doi:10.1371/journal.pone.0013224.g007
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effectiveness of the mucociliary system of the ET in chinchillas that

were administered either a negative control or cSPLUNC1-

specific siRNA. Twenty-four hours after delivery of siRNA, we

measured time required for the ET of chinchillas (4 ears per

cohort) to transport a small bolus of Coomassie brilliant blue from

the inferior aspect of the middle ear to the nasopharyngeal orifice

of the ET (Fig. 9A). For animals that received saline, the average

dye transport time was 126610 seconds, whereas chinchillas that

received the mucociliary stimulator isoproterenol exhibited a

decreased transport time of 91616 seconds (p = 0.009) (Fig. 9B).

This latter result was expected as isoproterenol is a b-adrenergic

stimulator known to increase ciliary beat frequency and thereby

promote mucociliary clearance in the ET [37]. Animals that

received negative control siRNA demonstrated a dye transport

time of 134617 seconds (p.0.05), similar to that of animals that

received saline alone (Fig. 9B). In contrast, delivery of cSPLUNC1

siRNA resulted in a statistically significant increase in time,

268656 seconds, required to translocate dye from the middle ear

to the nasopharynx (p = 0.002). Thus, knock down of cSPLUNC1

expression resulted in an approximate 50% decrease in the ability

of the ET to transport dye, compared to animals that received

saline alone. Collectively, these results demonstrated that silenced

expression of cSPLUNC1, and therefore also the associated

reduced surfactant activity, diminished mucociliary clearance by

the ET.

Discussion

OM is a disease of opportunity wherein commensal bacteria

present in the pediatric nasopharynx ascend the ET and enter the

middle ear cavity, most typically after or concurrent with infection

by URT viruses [7]. As such, characterization of host mechanisms

that promote health of the uppermost airway provide important

insight into the pathogenesis of OM and also help elucidate host

factors that contribute to the prevention of this highly prevalent

disease. In the mammalian airway, effectors of innate immunity

such as APs defend mucosal surfaces and act to protect a host

through bactericidal and non-bactericidal mechanisms [14,15].

SPLUNC1 is an AP that is abundantly expressed in the upper

airway [28], however the role that this protein might play in

prevention of OM is not completely understood. Here, we utilized

a siRNA-based approach to knock down expression of the

chinchilla homologue of human SPLUNC1 and thereby demon-

strated that this AP was critical for homeostasis of the

tubotympanum.

As a first step in the knock down of cSPLUNC1 expression, we

initially determined if we could deliver siRNA to tissues that

expressed cSPLUNC1 and also assessed the length of time the

molecule remained resident within the airway. We administered a

fluorescently-labeled siRNA to the chinchilla URT and deter-

mined that we could detect this siRNA in the middle ear and nasal

cavity. Specifically, intranasal administration of siRNA to the

chinchilla airway allowed for detection of the molecule in the

nasoturbinates, ethmoid turbinates and nasopharynx- sites known

to express cSPLUNC1. After intranasal and transbullar adminis-

tration of siRNA, we were able to detect fluorescence in the

chinchilla nasal cavity for at least five days and could also observe

fluorescence ex vivo in a dissected middle ear, excised middle ear

mucosa, and ET tissues. Our results demonstrated that siRNA

remained resident in the nasal cavity and middle ear for several

Figure 8. Surfactant activity of native cSPLUNC1. The relative ability of a droplet of water, lysozyme, native cSPLUNC1 or SDS to exhibit
surfactant activity was determined via (A, B, and C) contact angle or (D) pendant drop tensiometry analysis. SDS was used as a positive control for
surfactant activity whereas water and lysozyme served as the negative controls. (A, B, and C) Droplets of the four solutions were incubated on a
hydrophobic surface and images from a (A) top or (C) side view were collected. (B) The diameter of each droplet was measured in millimeters (n = 4)
and compared, as a percentage, to the water control which was set to a value of zero. (D) Surface tension of the four solutions was determined (n = 5)
and the mean 6 standard deviation presented. Asterisks denote a statistically significant difference (p,0.05) in values between samples and the
water alone control. Similar to SDS, native cSPLUNC1 reduced surface tension of water and suggested that this AP acted as a surfactant in vivo.
doi:10.1371/journal.pone.0013224.g008
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days and suggested that we could similarly likely maintain a

cSPLUNC1 knock down for this length of time in vivo. Indeed, we

demonstrated that administration of cSPLUNC1-specific siRNA

to the chinchilla airway resulted in a pronounced reduction in

cSPLUNC1 mRNA and protein expression after one day and

showed that protein expression was diminished for at least five

days. It will be interesting to determine the total length of time that

siRNA could be maintained in the nasal cavity, middle ear, and

ET, as it has been reported that knock down of a target can last

days to weeks depending on the dosing regimen [38].

Our data have provided the first demonstration of a successful

gene knock down in the chinchilla host, and have further allowed us

the opportunity to begin to assess the role that cSPLUNC1 played in

experimental OM induced by NTHI. Although purified native

cSPLUNC1 killed NTHI in vitro, the concentration of NTHI in

middle ear fluids after transbullar challenge was not increased by a

knock down in cSPLUNC1 expression, compared to controls. We

speculate that the discrepancy between the in vitro and in vivo

bactericidal activity of cSPLUNC1was likely due to the substantial

growth of NTHI in middle ears following the robust challenge dose

used here (ie. ,1000 cfu NTHI/ear), where the bacterial load

typically reaches ,16108 cfu NTHI per ml of middle ear fluid

within 48 hours. We are currently determining the role that

cSPLUNC1 has on the ability of NTHI to colonize the chinchilla

nasal cavity as the load of NTHI in this compartment (,16104 cfu

NTHI per ml NL fluid) is substantially less than that present within

the middle ear after direct, transbullar challenge [18].

Interestingly, knock down in expression of cSPLUNC1 resulted

in marked morphological and functional changes in the ET.

Animals that were administered cSPLUNC1-specific siRNA

showed a greater influx of immune cells into the ET lumen,

compared to controls. Human SPLUNC-1 binds bacterial

lipopolysaccharide which is thought to dampen the pro-inflam-

matory response [30], and this activity could explain the increased

abundance of white cells in the ET. However, we could not detect

a significant difference in expression of the pro-inflammatory

cytokines IL-1, IL-6, IL-8, IFN- c, or TNF-a in middle ear

effusions from animals that received either control or cSPLUNC1-

specific siRNA (data not shown), and therefore the underlying

mechanism responsible for the increased presence of leukocytes in

the ET remains to be described.

Silencing cSPLUNC1 expression in chinchillas with NTHI-

induced OM also resulted in an inability of animals to properly

equilibrate pressure between the middle ear and nasopharynx

which contributed to retraction of the tympanic membrane, and

also showed a greater accumulation of mucus in the ET lumen,

compared to controls. It is known that diminished surfactant

activity in the ET decreases the ability of this tubal organ to open

effectively which results in impaired pressure regulation in the

middle ear [12]. Also, it has been reported that surfactant protein

C-deficient mice challenged with Pseudomonas aeruginosa augment

mucin expression in the lung, compared to wild-type animals [35].

As we have demonstrated that cSPLUNC1 significantly affected

surface tension in vitro, our data collectively suggested that

cSPLUNC1 acted as a surfactant in vivo and that this activity of

cSPLUNC1 was critical for proper ET function. We suggest that

decreased surfactant activity in ETs from animals that received

cSPLUNC1 siRNA also contributed to the diminished effective-

ness of the ET mucociliary system since surfactants are known to

have a major impact on this function [12]. We demonstrated that

silencing cSPLUNC1 expression resulted in a 50% increase in the

time required for the ET to transport a small bolus of dye from the

middle ear to the nasopharynx. As mucociliary clearance is

affected by rheological properties of the mucus blanket [9], it is

likely that the increased mucus production in the ET of animals

that received cSPLUNC1 siRNA contributed to the results that we

observed. In addition, diminished cSPLUNC1 activity and

therefore reduced surface liquid volume, in an ENaC-dependent

manner, would likely result in altered airway hydration which

could also impact mucociliary clearance [20].

A question remaining is why silencing cSPLUNC1 expression

resulted in such a pronounced altered biological function when

additional surfactant proteins are also produced in the Eustachian

tube [12,39,40]. We suggest that diminished expression of

cSPLUNC1 with its unique combination of activities that include

binding of pro-inflammatory bacterial molecules, lowering of

surface tension, and acting as a liquid volume sensor in the

airway resulted in the establishment of an environment that could

not be compensated for by the presence of additional surfactants,

at least during the time frame that we evaluated. In a similar

manner, investigators that utilize diverse animal models have also

reported that altered expression of even a single effector of innate

immunity can impact a disease course [41,42]. As cSPLUNC1

played such an important role in maintaining normal function of

the ET, we anticipate that cSPLUNC1 also contributes to the

ability of the ET to prevent microbes such as NTHI from

entering the middle ear as these microorganisms do not typically

cause OM without prior compromise of immune defense [9]. If

this hypothesis is indeed proven to be correct, then cSPLUNC1

expression would affect all three known physiologic functions of

the ET that include pressure regulation, prevention of mucus and

debris entry into the middle ear, and defense of the tympanum

from microbes [16].

Figure 9. Role of cSPLUNC1 in ET function. Chinchillas (4 ears per
cohort) were administered either saline, isoproterenol, cSPLUNC1 siRNA,
or a negative control siRNA followed by delivery of a very small volume
of dye into the middle ear cavity 24 hours later. The average transport
time 6 standard deviation (in seconds) required for dye to be
transported from the middle ear to the nasopharyngeal orifice of the
ET was determined for each cohort. Asterisks denote a statistically
significant (p#0.05) difference in dye transport time between the
cohort that received saline alone and the cohorts that received
isoproterenol or the cSPLUNC1 siRNA. Whereas the b-adrenergic
mucociliary stimulator isoproterenol increased transport time, knock
down in cSPLUNC1 expression conversely prolonged dye transport time
likely as a result of reduced surfactant activity which diminished ET
mucociliary clearance.
doi:10.1371/journal.pone.0013224.g009
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Collectively, we have provided the first evidence that the AP

cSPLUNC1 is critical for proper ET function and serves to

maintain homeostasis of the middle ear. In addition, these data

also suggest that cSPLUNC1 contributes to normal protection of

the middle ear and thereby, plays a key role in prevention of OM.

Materials and Methods

Ethics Statement
All studies that involved chinchillas were performed under

protocol 01304AR, approved by The Research Institute at

Nationwide Children’s Hospital Institutional Animal Care and

Use (IACUC) Committee.

Animals
Healthy adult chinchillas (Chinchilla lanigera), were purchased

from Rauscher’s Chinchilla Ranch (LaRue, OH) and given

chinchilla chow (Cincinnati Lab and Pet Supply, Cincinnati,

OH) and water ad libitum. We collected NL fluids from animals

that were anesthetized with xylazine (2 mg/kg, Fort Dodge

Animal Health, Fort Dodge, IA) and ketamine (10 mg/kg,

Phoenix Scientific Inc., St. Joseph, MO).

Cloning of cSPLUNC1 cDNA
Human SPLUNC1 orthologs in the mouse, rat, and cow share

significant pair-wise amino acid identities [43], which suggested

that we could used PCR to amplify cSPLUNC1 cDNA. The

CloneMiner system (Invitrogen, Carlsbad, CA) was used to

construct a chinchilla cDNA library derived from pooled total

RNA isolated from tissues of the URT (nasal septum, nasoturbi-

nate, ethmoid turbinate, and nasopharynx). Total RNA was

isolated from individual mucosal samples as reported previously

[39] and suspended in a volume of 80 ml diethly pyrocarbonate-

water. Fifty microliters from each of four RNA samples were

combined into one tube, and the micropoly(A) purist system

(Ambion, Austin, TX) was used to enrich for mRNA. Total RNA

(211 mg), in a volume of 250 ml, was added to 250 ml of 2 X

Binding Solution and the mixture was incubated with oligo(dT)

cellulose. Cellulose with bound mRNA was pelleted, washed twice

with Wash Solution 1 and 2, and RNA was eluted with 100 ml of

RNA Storage Solution. An Agilent 2100 Bioanalyzer (Agilent,

Foster City, CA) was used to confirm the integrity of purified RNA

before and after mRNA enrichment. First strand cDNA was

generated from a reaction that contained 2.5 mg mRNA, a

CloneMiner biotin-attB2-Oligo(dT) primer (online supplement

Table S1), and Superscript II reverse transcriptase (Invitrogen).

E. coli DNA Ligase, DNA polymerase I, and RNase H were added

to samples at 16uC to produce second strand cDNA. An attB1

adapter (Table S1) was ligated to the 5-prime end of the double-

stranded cDNA, and the Qiaquick PCR purification system

(Qiagen, Valencia, CA) removed residual un-ligated adapters and

small (,100 bp) cDNA molecules.

The resultant cDNA was used in a Hotstart Pfu (Stratagene, La

Jolla, CA) PCR reaction with the primers human SPLUNC1-F

Internal (Table S1) and human SPLUNC1-R Internal (Table S1)

used to amplify a partial cSPLUNC1 cDNA (,300 bp).

Amplicons were cloned into pCR-BLUNT II topo (Invitrogen)

and transformed into E. coli Top10. We used M13 forward and

reverse primers to sequence plasmids from selected recombinants

that produced colonies on LB agar that contained 50 mg

kanamycin/ml. One clone with sequence homology to SPLUNC1

genes from other mammals was evaluated further. To obtain a

larger cSPLUNC1 cDNA clone, human SPLUNC1-F upstream

(Table S1) and chinchilla SPLUNC1-R internal (Table S1)

primers were utilized in a Hotstart Pfu PCR reaction with the

chinchilla cDNA library again used as template. An ,800 bp

fragment was cloned into pCR-BLUNT II topo and sequenced as

above. This plasmid (pGMSH-9) contained a DNA insert with

significant similarity to human SPLUNC1 but did not encode the

entire cSPLUNC1 open reading frame. Therefore, oligonucleo-

tides were designed from the 5-prime untranslated region of

cSPLUNC1 and the 3-prime untranslated sequence of the human

SPLUNC1 cDNA (chinchilla SPLUNC1-F upstream and human

SPLUNC1-R downstream [Table S1]). The complete 792-bp

cSPLUNC1 cDNA was PCR amplified and cloned in pCR-

BLUNT II topo to yield pGMSH-10. cSPLUNC1 cDNA

sequence was submitted to the GenBank database (http://www.

ncbi.nlm.nih.gov/Genbank/index.html) under accession number

FJ830605.

Computer algorithms were used to further analyze the deduced

amino acid sequence of cSPLUNC1. SignalP was used to identify

the signal peptide cleavage site and a DNASTAR CLUSTAL W

protein alignment was used to detect conserved regions between

chinchilla, human, and rat SPLUNC1 molecules.

Isolation of total RNA from chinchilla tissues and
performance of RT-PCR

Total RNA was prepared from frozen tissues as described [18].

For RT-PCR, chinchilla SPLUNC1-F (Table S1) and chinchilla

SPLUNC1-R (Table S1) at 0.5 mM each, with 2 nanograms of

total RNA, were used in 25 ml total volume amplification

reactions. As a control for loading of equal amounts of total

RNA in this analysis, RT-PCR reactions that contained primers

[chinchilla b-actin-F and chinchilla b-actin-R (Table S1)] to

amplify chinchilla b-actin (Genbank accession number

DQ826531) were also used. Amplicons generated from reactions

with or without reverse transcriptase, to confirm absence of

genomic DNA in RNA preparations, were separated in ethidium

bromide-stained 0.8% agarose gels.

Detection of cSPLUNC1 protein in the upper airway
Chinchilla tissues were homogenized in 0.5 ml sterile saline with

a 1 X solution of protease inhibitors (Roche, Indianapolis, IN).

Samples were centrifuged at 16,0006g for 1 minute and

supernatants were removed. We determined the protein concen-

tration of samples and equal amounts (30 mg) of protein were

separated by SDS-PAGE. Proteins were transferred to nitrocellu-

lose and blots were incubated with a 1:1,000 dilution of mouse

anti-human SPLUNC1 (R and D systems, Minneapolis, MN)

followed by a 1:10,000 dilution of a goat anti-mouse secondary

antibody conjugated to horseradish peroxidase. The chemilumi-

nescent ECL substrate (Amersham, Piscataway, NJ) allowed

capture of signal on film.

Ability to knock down expression of cSPLUNC1 in vivo
As an initial step towards the goal of generating a cSPLUNC1

knock down in the chinchilla upper airway, we first determined if

we could deliver siRNA to tissues that expressed cSPLUNC1. We

intranasally administered 10 nmoles of an Alexafluor 647-labeled

negative control siRNA (Qiagen, Valencia, CA) in a 200 ml

volume to animals via microaerosol sprayer (Wolfe Tory Medical,

Salt Lake City, UT). siRNA was also delivered transbullarly to

middle ears of chinchillas in a total volume of 200 ml saline. The

Xenogen IVIS Spectrum system (Caliper life sciences, Hopkinton,

MA) was used to detect the presence of fluorescently labeled

siRNA in the upper airway of the chinchilla immediately, 3 hours,

or 5 days after administration of siRNA.
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To provide evidence that siRNA entered epithelial cells of the

upper airway, one chinchilla that was administered fluorescently

labeled siRNA was sacrificed 3 hours later. Mucosa from the

nasoturbinates was dissected, frozen in O.C.T compound (Fisher

Scientific, Pittsburgh, PA), and sectioned. Slides were fixed

with cold acetone and non-specific binding was blocked with

image-iT FX signal enhancer (Invitrogen). A 200 nM solution of

FITC-conjugated phalloidin was used to label actin and DAPI

(49,69-diamino-2-pheynylindole) was used to label DNA. Sections

were viewed using a Zeiss Axiovert 200M microscope with

apotome, and images were captured with an Axiocam MRm

camera.

After establishment of an experimental approach to deliver

siRNA to the upper airway, we intranasally administered either

0.05, 0.5, 5, or 10 nmoles of negative control siRNA or one of two

siRNAs (cSPLUNC1 siRNA #1 and #2) designed to knock down

expression of cSPLUNC1. The sequence for the sense strand of

cSPLUNC1 siRNA #1 was GAAUUGAAAU UGCCCAUGtt

and the sequence for cSPLUNC1 siRNA #2 was GAAUAA-

CAUCAUCGAC UUAtt (Applied Biosystems, Foster City, CA).

We obtained NL fluids as previously described [44] one and five

days after delivery of siRNA. To detect cSPLUNC1, equal

amounts of protein (30 mg) in NL fluids were separated by SDS-

PAGE and Western blot was performed with a 1:500 dilution of

rabbit anti-native cSPLUNC1 as primary antibody (supporting

information (SI) Materials and Methods S1). Blots were then

incubated with a 1:10,000 dilution of a goat anti-rabbit secondary

antibody conjugated to horseradish peroxidase. The chemilumi-

nescent ECL substrate (Amersham, Piscataway, NJ) allowed

capture of signal on film. We could not provide a load control

for this analysis as an antibody that recognized an appro-

priate chinchilla protein secreted in the airway was not readily

available.

After determination of the optimal dose of siRNA required to

reduce cSPLUNC1 protein production, we next confirmed the

ability (or lack thereof) of these same siRNAs to diminish

cSPLUNC1 mRNA expression in vivo. We intranasally adminis-

tered 10 nmoles of cSPLUNC1 siRNA #1, cSPLUNC1 siRNA

#2, or negative control siRNA to chinchillas (n = 3 per cohort)

and sacrificed animals 24 hours later. Nasoturbinate mucosae was

dissected, frozen in liquid nitrogen, and total RNA was prepared

as described [18]. RT-PCR was performed as described above and

a GS-800 calibrated densitometer (Bio-Rad, Hercules, CA) was

used to determine pixel intensity of amplicons generated by RT-

PCR. Mean values (6 standard deviation) of the densitometric

analysis were reported as the ratio of the pixel intensity of samples

from chinchillas that received either cSPLUNC1 siRNA #1 or #2

compared to animals that received negative control siRNA.

Statistical significance was calculated using a Student’s T-test and

was significance was accepted at a p-value of #0.05.

Purification of native cSPLUNC1
To provide an abundant source of native cSPLUNC1, we first

cultured primary cells derived from the chinchilla nasopharynx as

this tissue was shown to produce native cSPLUNC1. Chinchilla

nasopharyngeal epithelial cells (CNPEs) were allowed to polarize

(Materials and Methods S1) and the apical surface of cells were

washed every 2 days with 0.5 ml of PBS per well to recover

secreted cSPLUNC1. Proteins collected from the apical surface of

CNPEs were pooled and 5 ml of this sample was lyophilized

overnight, suspended in 300 ml 1 X SDS-PAGE buffer without b-

mercaptoethanol, and separated in a 15% SDS-PAGE gel. Native

cSPLUNC1 was excised and electroeluted from the gel slice for

1K hours at 100 Volts in a 3.5 kDa D-tube dialyzer (EMD, San

Diego, CA). Samples were dialyzed overnight against distilled

water and lyophilized. cSPLUNC1 was suspended in 200 ml water

and residual SDS was removed using a detergent removal column

(Millipore, Billerica, MA). cSPLUNC1 was denatured by addition

of 2 ml of suspension buffer (6 M guanidine-HCl, 20 mM Tris-

HCl pH 7.0, 500 mM NaCl) and dialyzed at 4uC against buffers

that contained a sequentially reduced amount of urea (6 M, 3 M,

1 M, 0.5 M, and 0.1 M) to promote the slow refolding of

cSPLUNC1. Native cSPLUNC1 was ultimately dialyzed against

water overnight, lyophilized, and suspended in water.

Antimicrobial activity of native cSPLUNC1
The liquid bactericidal assay used was performed essentially as

described [40]. The assay was conducted with increasing

concentrations of native cSPLUNC1, the human cathelicidin AP

LL-37 (Peprotech, Rocky Hill, NJ), or lysozyme (Fisher). Colony

forming units were counted, and percent killing was calculated

relative to identical cultures incubated with only sodium phosphate

buffer (pH 7.2) that contained 1% sBHI. Data from triplicate

assays were presented as mean percentage killed 6 standard

deviation relative to concentration of AP.

Determination of the effect of a cSPLUNC1 knock down
on NTHI survival in the chinchilla middle ear

NTHI is a predominant bacterial causative agent of OM that

has been extensively utilized in chinchilla models [44]. As such, six

chinchillas (two cohorts of three each) were used to assess the

outcome of cSPLUNC1 knock down on the ability of NTHI to

multiply and survive in the middle ear. Ten nanomoles of either a

control or cSPLUNC1-specific siRNA were administered trans-

bullarly, and all animals were challenged one day later with

approximately 1000 cfu of NTHI strain 86-028NP [44]. Tympa-

nometry was used to monitor for development and severity of OM

as measured by: changes in middle ear pressure, tympanic width,

and tympanic membrane compliance as described [45]. A

tympanogram was considered abnormal if middle ear pressure

was $2100 daPa or $+60 daPa, compliance values were #0.5 or

$1.2 ml, and/or tympanic width was $150 daPa [33]. Epitym-

panic taps were attempted two and four days after bacterial

challenge and collected fluids were maintained on ice until serially

diluted and cultured on chocolate II agar plates (Fisher,

Pittsburgh, PA). Bacterial counts were reported as the average

cfu NTHI/ml middle ear fluid.

Influence of a cSPLUNC1 knock down on morphology of
middle ears challenged with NTHI

Micro-computed tomography (CT) (GE Healthcare, Pittsburgh,

PA) imaging can be utilized to non-invasively monitor morpho-

logical changes within the middle ear cavity during development

of OM. As such, we captured images of the chinchilla middle ear

before administration of siRNA, one day after delivery of siRNA,

and just prior to sacrifice. Final imaging was completed four days

after bacterial challenge, which was five days after administration

of siRNA to chinchillas. Anesthetized animals were scanned at

80 kV with a 450 mA current and a 3-D rendering from 200

separate images was generated with a reconstruction utility

provided by the manufacturer. Images were exported as a tiff

file and the tympanic membrane was pseudo-colored red for

improved visualization.

Our micro-CT analysis of chinchillas administered cSPLUNC1

siRNA suggested that a reduction in cSPLUNC1 expression

diminished the ability of the ET to function correctly during

NTHI-induced OM. As such, we used a histological approach to
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compare the morphology of Eustachian tubes from animals that

received control or cSPLUNC1 siRNA. Four days after bacterial

challenge, bullae with the ET intact were removed and fixed in

2% paraformaldehyde overnight at 4uC. After fixation, samples

were decalcified in a solution of 0.1 M tris (hydroxymethyl)

aminomethane pH 6.95 and 0.35 M ethylenediaminetetraacetic

acid (EDTA). EDTA solution was changed every 48 hours until no

calcium was detected according to the method of Seilly et al. [46].

Once decalcified, samples were embedded in paraffin, 5 mm

sections were cut and mounted onto slides, and sections were

stained with hematoxylin and eosin. Images were captured with a

Zeiss Axiocam MRc camera attached to a Zeiss Axioskop 40

microscope (Carl Zeiss Inc., Thornwood, NY).

Surfactant activity of cSPLUNC1
The results that we obtained from our in vivo analysis suggested

that cSPLUNC1 exhibited surfactant activity. We therefore tested

the ability of purified native cSPLUNC1 to act as a surfactant

in vitro. One measure of surfactant activity is the ability to reduce

surface tension, thus promoting spread and reducing the contact

angle of a solution on a hydrophobic surface. Four microliter

droplets of water, 100 mg lysozyme/ml water (Fisher), 100 mg

native cSPLUNC1/ml water, or SDS (10%) (Fisher) were thereby

incubated on the hydrophobic surface of Parafilm M for one

minute at room temperature as reported [36]. SDS was used as a

positive control and lysozyme was used as a negative control as is

not known to exhibit surfactant activity [36]. The concentration of

cSPLUNC1 used in this analysis was based upon the estimate that

cSPLUNC1 is present in epithelial airway secretions at concen-

trations of 10–250 mg/ml [28]. Samples were imaged with

Brightfield optics on a Zeiss Stemi SV6 microscope. Diameter of

a droplet was measured in millimeters using Axiovision software

and values (n = 4) were standardized to the average diameter of a

droplet of water and reported as the percentage increase in

diameter relative to the water control. Statistical significance was

determined using Student’s T-test and a p-value #0.05 was

considered significant.

We also used pendant drop tensiometry (Augustine Scientific,

Newbury, Ohio) to directly measure surface tension of a 1 ml

droplet of water, lysozyme, native cSPLUNC1, or SDS (10%).

Several concentrations of cSPLUNC1 or lysozyme diluted in water

(20 mg/ml, 100 mg/ml, and 500 mg/ml) were used in this

procedure. In this analysis, a droplet of one of the four solutions

was formed on the end of a capillary tip and digitally imaged. The

mean curvature of the solution was determined at over 300 points

along its surface, and surface tension was calculated from these

values. Tension measurements were determined five times for each

sample and mean values 6 standard deviation were reported.

Statistical significance was determined using Student’s T-test and a

p-value #0.05 was considered significant.

Impact of silencing cSPLUNC1 on ET mucociliary
clearance

Expression of surfactant proteins can promote effective

mucociliary clearance in the airway [12]. We therefore deter-

mined if cSPLUNC1 expression and its surfactant activity (or lack

thereof) affected mucociliary clearance in the URT. Chinchillas

were transbullarly administered (n = 4 ears per cohort) saline, 10

nmoles of cSPLUNC1 siRNA or 10 nmoles of a negative control

siRNA. Twenty-four hours later, the time required to transport a

small bolus of 5% Coomassie brilliant blue (Fisher) solution,

prepared in pyrogen-free saline, from the inferior aspect of the

chinchilla middle ear cavity to the nasopharyngeal orifice of the

ET was assessed following a published protocol [37]. The ability

of chinchillas to transport dye from the middle ear to the

nasopharyngeal orifice of the ET is a direct indicator of the

mucociliary clearance capability of this tubal organ [37]. One

cohort of animals that did not receive siRNA was admini-

stered 150 ml of a 0.005% solution of isoproterenol (Sigma), to

increase ciliary beat frequency and mucociliary clearance,

and thus served as a positive control [37]. One hundred and

fifty microliters of dye was delivered transbullarly to all four

cohorts of chinchillas and the transport time for appearance of

dye at the nasopharyngeal orifice of the ET was measured in

seconds. A camera (Watec-231S, Watec, Orangeburg, NY)

equipped with a three inch otoscope (Sopro-Comeg, Tuttlingen,

Germany) was used to visualize the opening of the ET and images

were captured with computer software (VetDock 2.1, Med-Rx,

Largo, Florida). Statistically significant differences in dye

transport times between the cohort that received saline alone

and those cohorts that received either isoproterenol, negative

control siRNA, or cSPLUNC1-specific siRNA was calculated

using Student’s t-test with significance accepted at a p-value of

#0.05.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0013224.s001 (0.06 MB

DOC)

Materials and Methods S1

Found at: doi:10.1371/journal.pone.0013224.s002 (0.06 MB

DOC)

Figure S1 In silico analysis of cSPLUNC1. DNASTAR Clustal

W alignment of cSPLUNC1 with human (accession no. AF70860)

and rat SPLUNC1 (accession no. NM172031). Numbers to the

left represent the amino acid number for the respective SPLUNC1

molecule and the arrow shows the putative signal sequence.

Chinchilla SPLUNC1 was an ortholog of human SPLUNC1.

Found at: doi:10.1371/journal.pone.0013224.s003 (7.14 MB TIF)

Figure S2 Growth of polarized chinchilla nasopharyngeal

epithelial cells (CNPEs) and detection of native cSPLUNC1.

Nasopharyngeal mucosa was recovered from a chinchilla and

transferred to a Transwell membrane. When the culture was

confluent, growth medium was removed from the apical surface to

promote polarization of cells. (A) Hematoxylin and eosin stain of

CNPEs cultured for 40 days at the air-liquid interface shows

cellular stratification and differentiation. (B) Section of embedded

CNPEs incubated with rabbit anti-cSPLUNC1 and goat anti-

rabbit IgG-AlexaFluor 488 to detect cSPLUNC1. The section was

also counterstained with the nuclear stain DAPI (blue). (C) Serial

section from (B) stained with periodic acid-Schiff-Alcian blue to

detect mucopolysaccharide-producing cells. Note that the cell

producing cSPLUNC1 (yellow arrow in B) was identified as a

mucin-producing goblet cell (black arrow in C) as indicated by the

red color.

Found at: doi:10.1371/journal.pone.0013224.s004 (0.76 MB TIF)
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