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Abstract

Current methods for the detection of contagious outbreaks give contemporaneous information about the course of an
epidemic at best. It is known that individuals near the center of a social network are likely to be infected sooner during the
course of an outbreak, on average, than those at the periphery. Unfortunately, mapping a whole network to identify central
individuals who might be monitored for infection is typically very difficult. We propose an alternative strategy that does not
require ascertainment of global network structure, namely, simply monitoring the friends of randomly selected individuals.
Such individuals are known to be more central. To evaluate whether such a friend group could indeed provide early
detection, we studied a flu outbreak at Harvard College in late 2009. We followed 744 students who were either members of
a group of randomly chosen individuals or a group of their friends. Based on clinical diagnoses, the progression of the
epidemic in the friend group occurred 13.9 days (95% C.I. 9.9–16.6) in advance of the randomly chosen group (i.e., the
population as a whole). The friend group also showed a significant lead time (p,0.05) on day 16 of the epidemic, a full 46
days before the peak in daily incidence in the population as a whole. This sensor method could provide significant
additional time to react to epidemics in small or large populations under surveillance. The amount of lead time will depend
on features of the outbreak and the network at hand. The method could in principle be generalized to other biological,
psychological, informational, or behavioral contagions that spread in networks.
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Introduction

Current methods for the detection of contagious outbreaks

ideally give contemporaneous information about the course of an

epidemic, though, more typically, the indicators lag behind the

epidemic.[1–3] However, the situation could be improved,

possibly significantly, if detection methods took advantage of a

potentially informative property of social networks: during a

contagious outbreak, individuals at the center of a network are

likely to be infected sooner than random members of the

population. Hence, the careful collection of information from a

sample of central individuals within human social networks could

be used to detect contagious outbreaks before they happen in the

population-at-large.

A contagion that stochastically infects some individuals and then

spreads from person to person in the network will tend, on

average, to reach centrally located individuals more quickly than

peripheral individuals because central individuals (as defined in

various ways described below) are a smaller number of steps

(degrees of separation) away from the average individual in the

network (see Figure 1).[4–6] Indeed, although some contagions

can spread via incidental contact, the duration of exposure

between people with social ties is typically much higher than

between strangers, suggesting that the social network itself will be

an important conduit for the spread of an outbreak.[5,7] As a

result, we would expect the S-shaped epidemic curve [8,9] to be

shifted to the left (forward in time) for centrally located individuals

compared to the population as a whole (see Figure 2). This shift, if

it could be observed, would allow for early detection of an

outbreak.

Prior modeling research suggests that vaccinating central

individuals in networks could enhance the population-level efficacy

of a prophylactic intervention [10–13] and other work suggests

that optimal placement of sensors in physical networks (such as

water pumping stations) could detect outbreaks sooner.[14]

However, mapping a whole network to identify particular

individuals from whom to collect information is costly, time-

consuming, and often impossible, especially for large networks.

We therefore explore a novel, alternative strategy that does not

require ascertainment of global network structure, namely,

monitoring the friends of randomly selected individuals. This strategy

exploits an interesting property of human social networks: on

average, the friends of randomly selected people possess more links

(have higher degree) and are also more central (e.g., as measured

by betweenness centrality) to the network than the initial,

randomly selected people who named them.[15–19] Therefore,
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we expect a set of nominated friends to get infected earlier than a

set of randomly chosen individuals (who represent the population

as a whole). More specifically, a random sample of individuals

from a social network will have a mean degree of m (the mean

degree for the population); but the friends of these random

individuals will have a mean degree of m plus a quantity defined by

the variance of the degree distribution divided by m. Hence, when

there is variance in degree in a population, and especially when

there is high variance, the mean number of contacts for the friends

will be greater (and potentially much greater) than the mean for

the random sample. This is sometimes known as the ‘‘friendship

paradox’’ (‘‘your friends have more friends than you do’’) [15–19].

While the idea of immunizing such friends of randomly chosen

people has previously been explored in a stimulating theoretical

paper [12], to our knowledge, a method that uses nominated

friends as sensors for early detection of an outbreak has not

previously been proposed, nor has it been tested on any sort of real

outbreak. To evaluate the effectiveness of nominated friends as

social network sensors, we therefore monitored the spread of flu at

Harvard College from September 1 to December 31, 2009. In the

fall of 2009, both seasonal flu (which typically kills 41,000

Americans each year [20]) and the H1N1 strain were prevalent in

the US, though the great majority of cases in 2009 have been

attributed to the latter.[1] It is estimated that this H1N1 epidemic,

which began roughly in April 2009, infected over 50 million

Americans. Unlike seasonal flu, which typically affects individuals

older than 65, H1N1 tends to affect young people. Nationally,

according to the CDC, the epidemic peaked in late October 2009,

and vaccination only became widely available in December 2009.

Whether another outbreak of H1N1 will occur (for example, in

areas and populations that have heretofore been spared) is a

Figure 1. Network Illustrating Structural Parameters. This real
network of 105 students shows variation in structural attributes and
topological position. Each circle represents a person and each line
represents a friendship tie. Nodes A and B have different ‘‘degree,’’ a
measure that indicates the number of ties. Nodes with higher degree
also tend to exhibit higher ‘‘centrality’’ (node A with six friends is more
central than B and C who both only have four friends). If contagions
infect people at random at the beginning of an epidemic, central
individuals are likely to be infected sooner because they lie a shorter
number of steps (on average) from all other individuals in the network.
Finally, although nodes B and C have the same degree, they differ in
‘‘transitivity’’ (the probability that any two of one’s friends are friends
with each other). Node B exhibits high transitivity with many friends
that know one another. In contrast, node C’s friends are not connected
to one another and therefore they offer more independent possibilities
for becoming infected earlier in the epidemic.
doi:10.1371/journal.pone.0012948.g001

Figure 2. Theoretical expectations of differences in contagion between central individuals and the population as a whole. A
contagious process passes through two phases, one in which the number of infected individuals exponentially increases as the contagion spreads,
and one in which incidence exponentially decreases as susceptible individuals become increasingly scarce. These dynamics can be modeled by a
logistic function. Central individuals lie on more paths in a network compared to the average person in a population and are therefore more likely to
be infected early by a contagion that randomly infects some individuals and then spreads from person to person within the network. This shifts the S-
shaped logistic cumulative incidence function forward in time for central individuals compared to the population as a whole (left panel). It also shifts
the peak infection rate forward (right panel).
doi:10.1371/journal.pone.0012948.g002
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matter of some debate,[1] but many scholars have been studying

the situation from biological and public health perspectives.[21,22]

We enrolled a total of 744 undergraduate students from

Harvard College, discerned their friendship ties, and tracked

whether they had the flu beginning on September 1, 2009 (from

the start of the new academic year) to December 31, 2009. This

sample was assembled by empanelling two groups of students of

essential analytic interest: (1) a sample chosen randomly from the

6,650 Harvard undergraduates (N = 319), and (2) a ‘‘friends’’

sample (N = 425) composed of individuals who were named as a

friend at least once by a member of this random sample (see

Supporting Information Text S1 for more details).

In addition, as a byproduct of empanelling the foregoing group

of 744 students, we wound up having information about a total of

1,789 uniquely identified Harvard College students (who either

participated in the study or who were nominated as friends or as

friends of friends); we used this information to draw the social

network of part of the Harvard College student body (see

Supporting Information Text S1 for more details).

All subjects completed a brief background questionnaire

soliciting demographic information, flu and vaccination status

since September 1, 2009, and certain self-reported measures of

popularity. We also obtained basic administrative data from the

Harvard College registrar, such as sex, class of enrolment, and

inter-collegiate sports participation.

We tracked cases of formally diagnosed influenza among the

students in our sample as recorded by University Health Services

(UHS) beginning on September 1, 2009 through December 31,

2009. Presenting to the health service indicates a more severe level

of symptomatology, of course, and so we do not expect the same

overall prevalence using this diagnostic standard as with self-

reported flu discussed below. However, UHS data offer the

advantage of allowing us to obtain information about flu

symptoms as assessed by medical staff.

Beginning on October 23, 2009, we also collected self-reported

flu symptom information from participants via email twice weekly

(on Mondays and Thursdays), continuing until December 31,

2009. The students were queried about whether they had had a

fever or flu symptoms since the last email contact, and there was

very little missing data (47% of the subjects completed all of the

biweekly surveys, and 90% missed no more than two of the

surveys).

Self-report of symptoms rather than serological testing is the

current standard for flu diagnosis. Similar to previous studies,[23]

students were deemed to have a case of flu (whether seasonal or

the H1N1 variety) if they reported having a fever of greater than

100u F (37.8uC) and at least two of the following symptoms: sore

throat; cough; stuffy or runny nose; body aches; headache; chills;

or fatigue. We checked the sensitivity of our findings by using

definitions of flu that required more symptoms, and our results did

not change (see Supporting Information Text S1). As part of the

foregoing biweekly self-reports, in order to complement the UHS

vaccination records, we also ascertained whether the students

reported having been vaccinated (with seasonal flu vaccine or

H1N1 vaccine or both) at places other than (and including) UHS.

To be clear, we are not suggesting that a person’s precise

position in the observed network, nor indeed whether he was

nominated as a friend or not (and by whom), traces out the actual

path by which he acquired (or did not acquire) the flu. The

topological parameters we measured here, or indeed the fact that a

person was deemed to be a member of the friend group, serve as

proxies for the subject’s actual location within what is an essentially

unobservable social network (including real friends, relatives,

casual contacts, and so on) through which the flu spreads by inter-

personal means. Being a ‘‘friend’’ is a marker for a person’s social-

network position, whatever the path of infection to this person

actually is. Of course, it is likely that measured friendship networks

are related to contact networks more generally: for instance,

people with more friends should come into greater contact with

more strangers both directly and indirectly via their friends.

Results

By December 31, 2009, the cumulative incidence of flu in our

sample was 8% based on diagnoses by medical staff, and it was

32% based on self-reports, which mirrored other studies of school-

based outbreaks and also contemporaneous national estimates for

the college-student population.[23,24] As expected, the prevalence

was higher by the self-report standard. We studied the association

of several demographic and other variables with cumulative flu

incidence at day 122 (the last day of follow-up) to see whether they

predicted an increase in overall risk. None of these variables was

significantly associated with flu diagnoses by medical staff (see

Supporting Information Text S1), so we focused on the effect of

these variables on shifts in the timing of the distribution.

As hypothesized, the cumulative incidence curves for the friend

group and the random group diverge and then converge (Figure 3).

NLS estimates suggest that the friends curve for flu diagnosed by

medical staff is shifted 13.9 days forward in time (95% C.I. 9.9–

16.6), thus providing early detection. This represents approxi-

mately 60% of one standard deviation in the time-to-event in the

whole sample. The results also indicate a significant but smaller

shift in self-reported flu symptoms (3.2 days, 95% C.I. 2.2–4.3). In

the case of both the clinical and self-reported diagnostic standards,

the estimates are robust to a number of control variables including

H1N1 vaccination, seasonal flu vaccination, sex, college class, and

inter-collegiate sports participation (see Supporting Information

Text S1).

The foregoing estimates rely on full information ex post, but we

wondered when it would also be possible to detect a difference in

the friend group and the random group in real time, given less

complete data. We therefore estimated the models each day using

all available information up to that day. For flu diagnoses by

medical staff, the friend group showed a significant lead time

(p,0.05) on day 16, a full 46 days before the estimated peak in

daily incidence in visits to the health service. For self-reported flu

symptoms, the friend group showed a significant lead time by day

39, which is 83 days prior to the estimated peak in daily incidence

in self-reported symptoms. Thus, a comparison of outcomes in the

friends group and the randomly chosen group could be an effective

technique for detecting outbreaks at early stages of an epidemic.

A possible alternative to the friendship nomination procedure

would be to rely on self-reported popularity or self-reported counts

of numbers of friends in order to identify a high-risk group. We

measured our subjects’ self-perceptions of popularity using an

eight-item scale, but this did not yield a significant shift forward in

time for flu diagnoses (see Supporting Information Text S1).

Moreover, controlling for self-reported popularity did not alter the

significance of the lead time provided by the friend group for

either flu diagnoses by medical staff or self-reported flu symptoms.

These results suggest that being nominated as a friend captures

more network information (including the tendency to be central in

the network) than self-reported network attributes. Such informa-

tion collected about one person, from another, might also be more

accurate [12].

Although the method described here does not require informa-

tion about the full network, our survey took place on a college

campus in which many nominators were themselves nominated,

Social Network Sensors
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and the same person was frequently nominated several times.

Hence, our data collection procedures wound up yielding

information about 1,789 unique, inter-connected students who

were either surveyed or were identified as friends by those who

took part in the study. A connected component of 714 people was

in turn apparent within these 1,789 individuals. We illustrate the

spread of flu in this component in Figure 4, which shows the

tendency of the flu to ‘‘bloom’’ in more central nodes of the

network, and also in a 122-frame movie of daily flu prevalence

available online (see Supporting Information Video S1).

Sampling a densely interconnected population also allowed us

to actually measure egocentric network properties like in-degree

(number of times a subject was nominated as a friend),

betweenness centrality (the number of shortest paths in the

network that pass through an individual), coreness (the number of

friends an individual has when all individuals with fewer friends

are iteratively removed from the network), and transitivity (the

probability that two of one’s friends are friends with one another).

This would not be possible in a deployment of the friends’

technique in larger populations (wherein surveyed individuals

would be much less likely to actually be connected to each other).

The results showed that, as expected, the friend group differed

significantly from the random group for all these measures,

exhibiting higher in-degree (Mann Whitney U test p,0.001),

higher centrality (p,0.001), higher k-coreness (p,0.001), and

lower transitivity (p = 0.039).

We hypothesized that each of these measures could help to

identify groups that could be used as social network sensors when

full network information is, indeed, available (see Figure 5). For

example, we expect in-degree to be associated with early

contagion because more friends means more paths to others in

the network who might be infected. NLS estimates suggest that

each additional nomination shifts the flu curve left by 5.7 days

(95% C.I. 3.6–8.1) for flu diagnoses by medical staff and 8.0 days

(95% C.I. 7.3–8.5) for self-reported symptoms. On the other hand,

the same is not true for out-degree (the number of friends a person

names). Pertinently, this is the only quantity that would be

straightforwardly ascertainable by asking respondents about

themselves. However, there is low variance in this measure in

the present setting since most people named three friends (the

maximum allowed by our survey).

We also expect betweenness centrality to be associated with

early contagion. NLS estimates suggest that individuals with

maximum observed centrality shift the flu curve left by 16.5 days

(95% C.I. 1.9–28.3) for flu diagnoses by medical staff and 22.9

days (95% C.I. 20.0–27.2) for self-reported symptoms, relative to

those with minimum centrality. A related measure, k-coreness, also

suggests that people at the center of the network get the flu earlier.

NLS estimates suggest that increasing the measure k by one (the

range is from 0 to 3) shifts the flu curve left by 4.3 days (95% C.I.

1.8–6.5) for flu diagnoses by medical staff and 7.5 days (95% C.I.

6.8–8.2) for self-reported symptoms. Moreover, both betweenness

centrality and k-coreness remain significant even when controlling

for both in-degree and out-degree, suggesting that it is not just the

number of friends that is important with respect to flu risk, but also

the number of friends of friends, friends of friends of friends, and

so on [6].

Finally, we expect transitivity to be negatively associated with

early contagion. People with high transitivity may be poorly

connected to the rest of the network because their friends tend to

Figure 3. Empirical differences in flu contagion between ‘‘friend’’ group and randomly chosen individuals. We compared two groups,
one composed of individuals randomly selected from our population, and one composed of individuals who were nominated as a friend by members
of the random group. The friend group was observed to have significantly higher measured in-degree and betweenness centrality than the random
group (see Supporting Information Text S1). In the left panel, a nonparametric maximum likelihood estimate (NPMLE) of cumulative flu incidence
(based on diagnoses by medical staff) shows that individuals in the friend group tended to get the flu earlier than individuals in the random group.
Moreover, predicted daily incidence from a nonlinear least squares fit of the data to a logistic distribution function suggests that the peak incidence
of flu is shifted forward in time for the friends group by 13.9 days (right panel). A significant (p,0.05) lead time for the friend group was first detected
with data available up to Day 16. Raw data for daily flu cases in the friend group (blue) and random group (red) is shown in the inset box (right panel).
doi:10.1371/journal.pone.0012948.g003
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know one another and exist in a tightly knit group. In contrast,

those with low transitivity tend to be connected to many different,

independent groups, and each additional group increases the

possibility that someone in that group has the flu and that it

spreads to the subject. NLS estimates suggest that individuals with

minimum observed transitivity shift the flu curve left by 31.9 days

(95% C.I. 23.5–43.5) for flu diagnoses by medical staff and 15.0

days (95% C.I. 12.7–18.5) for self-reported symptoms compared to

those with maximum transitivity. Moreover, transitivity remains

significant even when controlling for both in-degree and out-

degree.

Discussion

For many contagious diseases, early knowledge of when – or

whether – an epidemic is unfolding is crucial to policy makers and

public health officials responsible for defined populations, whether

small or large. In fact, with respect to flu, models assessing the

impact of prophylactic vaccination in a metropolis such as New

York City suggest that vaccinating even one third of the

population would save lives and shorten the course of the

epidemic, but only if implemented a month earlier than

usual.[25,26] A method like the one described here could help

provide just such early detection.

In fact, this method could be used to monitor targeted

populations of any size, in real time. For example, a health service

at a university (or other institution) could empanel a sample of

subjects who are nominated as friends and who agree to be

passively monitored for their health care use (e.g., in the form of

visits to health care facilities); a spike in cases in this group could be

read as a warning of an impending outbreak. Public health officials

responsible for a city could also empanel a sample of randomly

chosen individuals and a sample of nominated friends (perhaps a

thousand people in all) who have agreed to report their symptoms

using brief, periodic text messages or an online survey system (like

the one employed here). Regional or national populations could

also be monitored in this fashion, with a sample of nominated

friends being periodically surveyed instead of, or in addition to, a

random sample of people (as is usually the norm). Since public

health officials often monitor populations in any case, the change

in practice required to monitor a sample of these more central

individuals might not be too burdensome.

Moreover, whereas officials responsible for a single, relatively

small institution might possibly actively seek out central individuals

to vaccinate them (hence potentially confounding the utility of

such individuals as sensors), such a focused vaccination effort

would be unlikely to be initiated with a regional or national

sample, given the likely irrelevance of vaccinating the actual sensor

sample members as a means to control any wide-scale epidemic.

Regardless, since the people being followed as sensors would, in

most cases, be only a small fraction of all the central people in a

population (let alone of all the people in the population as a

whole), even if they were actually treated (after an epidemic were

noted to have affected them), it seems unlikely that this would

materially affect the course of the epidemic or compromise the

utility of the central individuals as sensors. Nevertheless,

mathematical modelling of such procedures would help us to

better understand what role sensors might play in helping to

reverse the course of an epidemic.

The difference in the timing of the course of the epidemic in the

friend and random groups could be exploited in at least two

different ways. First, if solely the friends group were being

monitored, an analyst tracking an outbreak might look for the first

evidence that the incidence of the pathogen among the friends

Figure 4. Progression of flu contagion in the friendship network over time. Each frame shows the largest component of the network (714
people) for a specific date, with each line representing a friendship nomination and each node representing a person. Infected individuals are colored
red, friends of infected individuals are colored yellow, and node size is proportional to the number of friends infected. All available information regarding
infections is used here. Frames for all 122 days of the study are available in a movie of the epidemic posted in the Supporting Information (Video S1).
doi:10.1371/journal.pone.0012948.g004
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group rose above a predetermined rate (e.g., a noticeable increase

above a zero background rate); this itself could indicate an

impending epidemic. Second, in a strategy that would yield more

information, the analyst could track both a sample of friends and a

sample of random subjects, and the harbinger of an epidemic

could be taken to be when the two curves were seen to first diverge

from each other. Especially in the case of the spread of contagions

other than biological pathogens, the difference between these two

curves provides additional information: the adoption curve among

the random sample provides evidence of secular trends in the

population, whereas the difference between the two curves provides

evidence of a network (inter-personal) effect, over and above the

baseline force of the epidemic.

While our goal here was to evaluate how the method of

surveying friends could provide early detection of contagious

outbreaks in general, it is noteworthy that, in the specific case of

the flu, the method we evaluated appears to provide longer lead

times than other extant methods of monitoring flu epidemics.

Current surveillance methods for the flu, such as those

implemented by the CDC that require collection of data from

subjects seeking outpatient care or having lab tests, are typically

lagging indicators about the timing of the epidemic (information is

typically one to two weeks behind the actual course of the

epidemic).[1] A proposal to use Google Trends to monitor online

searches for information about the flu suggests that this approach

could offer a better indicator, providing evidence of an outbreak at

least a week before published CDC reports.[2,3] Another

innovative proposal involved the use of a prediction market that

also accelerated the warning [27]. However, while potentially

instantaneous, the Google Trends and prediction market methods

would only, at best, give contemporaneous information about rates of

infection. In contrast, we show that the sensor method described

here can detect an outbreak of flu two weeks in advance. That is, the

sensor network method provides early detection rather than just rapid

warning.

Moreover, the sensor method could be used in conjunction with

online search. By following the online behavior of a friend group,

or a group known to be central in a network (for example, based

on e-mail records which could be used to reconstruct social

network topology), Google or other search engines might be able

to get high-quality, real-time information about the epidemic with

even greater lead time, giving public health officials even more

time to plan a response.

How much advance detection would be achieved for other

pathogens or in populations of different size or composition

remains unknown. The ability of the proposed method to detect

outbreaks early, and how early it might do so, will depend on

intrinsic properties of the thing that is spreading (e.g., the biology

of the pathogen); how this thing is measured; the nature of the

population, including the overall prevalence of susceptible or

affected individuals; the number of people empanelled into the

sensor group; the topology of the network (for example, the degree

distribution and its variance, or other structural attributes) [6,28];

and other factors, such as whether the outbreak modifies the

structure of the network as it spreads (for example, by killing

people in the network, or, in the case of spreading information,

perhaps by affecting the tendency of any two individuals to remain

connected after the information is transmitted). The amount of

time, in terms of early detection, provided could thus vary

considerably, depending on attributes unique to each setting.

While the social network sensor strategy has been illustrated

with a particular outbreak (flu) in a particular population (college

students), it could potentially be generalized to other phenomena

that spread in networks, whether biological (antibiotic-resistant

germs), psychological (depression) [29], normative (altruism) [30],

informational (rumors), or behavioral (smoking) [31]. Outbreaks of

a wide variety of deleterious or desirable conditions could be

detected before they have reached a critical threshold in

populations of interest.

Materials and Methods

We obtained written informed consent from all participants and

the study was approved by and carried out under the guidelines of

the Committee on the Use of Human Subjects in Research at

Harvard University.

To measure self-perceived popularity, we adapted a set of 8

questions previously used to assess the popularity of co-

workers.[32]

To ascertain friends, we asked: ‘‘We will ask that you provide us

with the names and contact information of 2-3 [of your] friends….

Please provide the contact information for 2–3 Harvard College

students who you know and who you think would like to

participate in this study.’’

Figure 5. Estimated days of advance detection of a flu
outbreak when following specific groups. Here, degree, transitiv-
ity, centrality, and coreness are computed based on the mapping of the
network. The high in-degree group is composed of individuals who
have a higher-than-average number of other people in the network
who name them as a friend. The low transitivity group is composed of
individuals with below-average probability that any two of their friends
are friends with one another. The high centrality group is composed of
individuals with a higher-than-average betweenness, which is the
number of shortest paths connecting all individuals in a network that
pass through a given person. The high coreness group is composed of
individuals with a higher-than-average coreness, which is the number of
friends a person has once all individuals with fewer friends have been
eliminated from the network. Analyses were conducted separately for
data based on flu diagnoses by medical staff (blue bars) and data based
on self-reported flu symptoms (green bars). Estimates and 95%
confidence intervals are based on a nonlinear least squares fit of the
flu data to a logistic distribution function (see Supporting Information
Text S1). The results show that flu outbreaks occur up to two weeks
earlier in each of these groups.
doi:10.1371/journal.pone.0012948.g005
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We used friendship nominations to measure the in-degree (the

number of times an individual is named as a friend by other

individuals) and out-degree (the number of individuals each person

names as a friend) of each subject. The in-degree is virtually

unrestricted (the theoretical maximum is N – 1, the total number

of other people in the network) but the out-degree is restricted to a

maximum of 3, given the way we elicited friendship information.

We measured betweenness centrality, which identifies the extent to

which an individual lies on potential paths for contagions passing

from one individual to another through the network; this quantity

summarizes how central an individual is in the network (see

Figure 1).[33] Additionally, we measured k-coreness, which

identifies the number of friends a person has after all individuals

with fewer friends are iteratively removed from the network.

Recent work suggests this measure may be more appropriate than

centrality for understanding spreading processes in correlated

networks [6]. We measured transitivity as the empirical probability

that two of a subject’s friends are also friends with each other,

forming a triangle (see Figure 1). This measure is just the total

number of triangles of ties between an individual and his or her

social contacts divided by the total possible number of triangles.

We used Pajek [34] to draw two-dimensional pictures of the

network, and we implemented the Kamada-Kawai algorithm,

which generates a matrix of shortest network path distances from

each node to all other nodes in the network and repositions nodes

in an image so as to reduce the sum of the difference between the

plotted distances and the network distances.[35] A movie of the

spread of flu with a frame for each of the 122 days of the study is

available online (see Supporting Information Text S1).

We calculated the cumulative flu incidence for both the friend

group and the random group using a nonparametric maximum

likelihood estimate (NPMLE) [36]. We also calculated the

predicted daily incidence using an estimation procedure designed

to measure the shift in the time course of a contagious outbreak

associated with a given independent variable (see Supporting

Information Text S1). In this procedure, we fit the observed

probability of flu to a cumulative logistic function via nonlinear

least squares (NLS) estimation [37]. To derive standard errors and

95% confidence intervals, we used a bootstrapping procedure in

which we repeatedly re-sampled subject observations with

replacement and re-estimated the fit [38]. This procedure

produced somewhat wider confidence intervals than those based

on asymptotic approximations, so we report only the more

conservative bootstrapped estimates. Finally, we calculated how

many days of early detection was possible for groups with various

network attributes by multiplying the coefficient and confidence

intervals in the foregoing models by the mean difference between

the above-average group and the below-average group (see

Supporting Information Text S1).

Supporting Information

Video S1 Progression of flu contagion in the friendship network

over time.

Found at: doi:10.1371/journal.pone.0012948.s001 (11.14 MB

MOV)

Text S1 Methods and Regression Output Tables.

Found at: doi:10.1371/journal.pone.0012948.s002 (0.27 MB

DOC)
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