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Abstract

The human SnoN is an oncoprotein that interacts with several transcription-regulatory proteins such as the histone-deacetylase,
N-CoR containing co-repressor complex and Smad proteins. This study presents the crystal structure of the Dachshund homology
domain of human SnoN. The structure reveals a groove composed of conserved residues with characteristic properties of a
protein-interaction surface. A comparison of the 12 monomers in the asymmetric unit reveals the presence of two major
conformations: an open conformation with a well accessible groove and a tight conformation with a less accessible groove. The
variability in the backbone between the open and the tight conformations matches the differences seen in previously
determined structures of individual Dachshund homology domains, suggesting a general plasticity within this fold family. The
flexibility observed in the putative protein binding groove may enable SnoN to recognize multiple interaction partners.
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Introduction

The Ski and SnoN oncoproteins regulate gene expression

through their interaction with a number of transcription factors

such as Smads [1,2], retinoic acid receptor a (RARa) [3,4], and

retinoblastoma protein (pRb) [5]. They also interact with

transcriptional co-regulators such as the nuclear hormone receptor

co-repressor (N-CoR) and silencing mediator of retinoid and

thyroid hormone receptors (SMRT), both components of a

macromolecular repressor complex containing mSin3 and histone

deacetylase (HDAC) [6,7].

The Ski/Sno protein family is defined by homology with v-Ski,

the transforming protein of Sloan Kettering virus [8–11]. The sno

gene (a.k.a skil for Ski-like) encodes SnoN protein of 684 residues as

well as three splice variants with varying C-terminal parts. The ski

gene has not been reported to give rise to alternative isoforms. Ski

and SnoN share three structural domains, the N-terminal

Dachshund homology domain (DHD), a Smad4-binding domain,

and a C-terminal coiled-coil domain (Fig. 1A). The DHD is a ,100

aa globular domain with structural homology to the forkhead/

winged-helix family of DNA-binding proteins [12,13]. The Smad4-

binding domain of ,100 aa shares structural homology with DNA-

interacting SAND (Sp100, AIRE1, NucP41/75, DEAF1) domains,

found in a number of chromatin remodeling proteins [14,15].Al-

though, both the DHD and the Smad4-binding domains are related

to DNA-binding domains, neither Ski nor SnoN bind DNA but act

as protein interaction modules [16]. The C-terminal coiled-coil

domain has BAR domain-like features and has been reported to

mediate both hetero- and homodimerization of Ski and SnoN

[17,18]. The Ski family also contains two more recently described

members: Fussel-18 (functional Smad suppressing element on

chromosome 18) [19], and Fussel-15 [20].

Both Ski and SnoN are predominantly nuclear proteins and

classified as oncoproteins based on their transformation ability when

overexpressed in chicken or quail embryo fibroblasts [21,22]. They

also display increased expression levels in various human tumors

[10,23]. The most studied role of Ski and SnoN is their negative

regulation of tumor growth factor beta (TGF-b) induced signaling.

Members of the TGF-b superfamily of extracellular growth factors

include TGF-b, bone morphogenic protein (BMP) and activin.
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These growth factors regulate multiple cellular processes, such as

cell proliferation, differentiation, apoptosis and developmental fate

in metazoans [24]. TGF-b signaling is relayed by members of the

Smad family of transcription factors (Fig. 1B). Activated TGF-b
receptors recruit and phosphorylate R-Smads (Smad2/3) which

then associate with the co-Smad, Smad4, to form the active trimeric

Smad complex. This Smad complex is translocated to the nucleus,

where it binds Smad-binding elements within promoters of TGF-b
responsive genes to regulate their transcription, either by activation

or repression [25].

Ski and SnoN have been reported to regulate Smad-mediated

signaling through multiple mechanisms. At the promoter site, Ski

and SnoN recruit the HDAC repressor complex to Smads, acting

as a bridge binding N-CoR through the DH domain [7].

Moreover, the binding of Ski to Smad4 has been reported to

destabilize the trimeric Smad complex [15], at the promoter site in

the nucleus, as well as in the cytoplasm [26]. In addition, binding

of Ski to R-Smads 2 and 3 have been suggested to interfere with

their recruitment to the TGF-b receptor complex [15].

This study describes the crystal structure of the Dachshund

homology domain of human SnoN. Structure and sequence

analysis revealed a highly conserved cleft in the expected protein

interaction face, with the hallmarks of a protein-protein interaction

interface. The 12 molecules in the asymmetric unit reveal

significant flexibility of this region, suggesting the existence of an

open and a tight conformation. The variable regions of the fold

corresponds to the differences seen between previously published

structures of DH domains, i.e. from Ski and Dach1 [12,13]. The

flexibility might be necessary for the DH domain to accommodate

binding motifs from different interaction partners.

Results and Discussion

Overall description of the structure
A fragment of human SnoN encompassing residues 137 to 238,

covering the Dachshund homology domain (SnoN-DHD), was

crystallized and diffraction data was collected to 2.45 Å. The

structure was solved by molecular replacement using the structure

of the Dachshund domain of human Ski (Ski-DHD) as a search

model (PDB entry: 1SBX) [12]. Statistics of the data processing

and refinement of the structure are presented in Table S1. The

asymmetric unit in the crystal contained twelve protein molecules

and the crystal organization can be viewed as a non-crystallo-

graphic trimer of tetramers. During purification SnoN-DHD

migrated as a monomer in size exclusion chromatography (data

not shown). Atomic models were built for residues 144 to 235 for

all chains, and additional termini residues within 141–238 were

built for most chains.

The SnoN-DHD is a small globular domain which belongs to

the a-b roll architecture according to the CATH classification

[27]. It is composed of a twisted five-stranded anti-parallel b-sheet

sandwiched between three a-helices on one side and one a-helix

on the other (Fig. 2A). Helix a3 is separated from helices a1, a2

and a4 by one extended stretch of residues (191 to 198) on its N-

terminal side, and a turn, whose specific conformation is conferred

by Pro 212, on its C-terminal side. Helix a2 is lined by the 191–

198 stretch on its C-terminal side and by a helix-turn-helix on its

N-terminal part. The extended conformation of residues 191 to

198 seems to restrict the relative motions of the two helical

domains on this side of the molecule and might therefore rigidify

the scaffold of SnoN-DHD.

Comparisons within the DHD family
The DH domain is related to the forkhead/winged-helix type of

DNA-binding motifs in which the ‘‘wing’’ is a b-strand hairpin

corresponding to strands b4 and b5 of the DHD, and where the

‘‘helix’’ corresponds to the a2 helix of the DHD. In the DH

domain, the helix a3 has been inserted in the hairpin loop [13]

(Fig. 2A). Due to this apparent kinship, the DH domain was

suggested to be DNA binding, and indeed there is evidence

indicating that the DACHbox-N domain interacts with DNA

[13,28]. In DACHbox-N DHD, the surface composed of helix a2

and b4 and the loop between helix a3 and strand b5 is positively

charged (Fig. 2B). This surface correlates with the DNA-

interaction face of winged-helix motifs and was suggested to be

the site of DNA binding for DACHbox-N. In both Ski-DHD and

SnoN-DHD, the electrostatic potential of the corresponding

surface is more neutral and a role in DNA-binding of these two

proteins thus seems less likely.

Figure 1. Domain structure and functional overview of the Ski/
Sno proteins. Panel A. Schematic representation of the Ski/Sno
family of proteins with the conserved domains colored. The family
includes the full-length SnoN and splice variants from the sno gene:
SnoN2 with 46 aa deletion in the C-terminal region; SnoA, which carries
a shorter and unique C-terminal sequence (grey) compared to SnoN;
and SnoI, covering only aa 1–399. Human Ski and the v-ski protein of
the Sloan Kettering virus are added for comparison. Panel B. Simplified
overview of Ski and SnoN involvement in Smad-regulated TGF-b
signaling. Ski and Sno proteins can act as bridges between the Smad
complex and the N-CoR/mSin3A/HDAC1 repressor complex.
doi:10.1371/journal.pone.0012907.g001

Dachshund Domain of Human SnoN
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Conserved residues reveal a putative protein-interaction
groove

Based upon alignment of six orthologous proteins (Fig. 3A), a

molecular surface representation of SnoN-DHD was rendered and

colored according to the degree of sequence conservation (Fig. 3B).

The figure reveals a highly conserved groove composed of helices

a1 and a2, strand b5 and the loop connecting a3 to b5.

Interestingly, this groove is located on the same face as the

proposed DNA-binding region in DACHbox-N. It is composed of

16 residues and has a solvent-accessible surface area of about

690 Å2 according to ICM-Pro v.3.7-1e [29] (Fig. 3C). The size of

this conserved groove corresponds to the buried surface area of an

average protein-protein interface, that ranges between 600 to

1000 Å2 per subunit [30]. The groove is composed of aliphatic

residues (Leu and Ile), non-charged polar residues, two prolines

and an alanine. With the exception of the alanine and prolines,

this composition is characteristic of a protein-protein interacting

surface [31]. Depletion of Glu, Asp and Lys relative to the total

composition of the solvent-exposed residues is a common feature

of protein-protein interaction surfaces [31] and it can be noted

that the conserved groove of SnoN-DHD lack such residues.

Moreover, protein-protein interfaces appear to be enriched in Leu

and Ile but not in Val and Ala. Leu and Ile are found in the SnoN-

DHD groove but not Val and only one Ala. Taken together, the

properties of this groove fit well with those of an average protein-

protein interaction surface. Other conserved residues on the

SnoN-DHD surface are mostly located on helix a4 and in the loop

between b2 and b3 but do not form any patches big enough to

mediate extended protein-protein or protein-DNA contacts.

Open and tight states of the dachshund homology
domain

A superimposition of the twelve different monomers of SnoN-

DHD present in the asymmetric unit reveals variability in the

overall structure of the different monomers (Fig. 4A). The

variations are localized primarily to secondary-structure elements

bordering the conserved groove, i.e. helix a2 and the loop

connecting helix a3 to strand b5. The most variable regions

between the different monomers are in the N-terminus of helix a2

where the Ca of Asn184 has moved 2.8 Å, and in the a3-b5

connecting loop where the Ca of Pro216 has moved 2.8 Å. The

shift of these regions causes the gap of the conserved groove to

increase or decrease. Interestingly, the 12 different monomers in

the SnoN asymmetric unit group into one of two basic

conformations: an open conformation represented by chains A,

B, C, D, E and G (colored yellow in Fig. 4) and a tight

conformation represented by chains F, I, K and L (colored blue in

Fig. 4). Chains H and J (green) are somewhat intermediate but

closer to a tight conformation

The shift of the fold from open to tight conformation is

accompanied by a number of side-chain reorientations in the

structural elements flanking the conserved groove (Fig. 4B–D). For

instance, the shift of the N-terminal part of the a2 helix towards

the a3 helix closes the gap between the two, where a1 helix moves

outwards. The conformational shifts of helices a1 and a2 are

coupled to a motion of the connecting stretch wherein Arg176

displays a w-angle rotation as well as side-chain flipping (Fig. 4B).

On the C-terminal side of helix a2, where almost no backbone

Figure 2. The SnoN-DHD structure and surface charge com-
parison. Panel A: Ribbon representation of SnoN-DHD. Panel B:
Comparison between electrostatic surfaces of SnoN-DHD (chain A), Ski-
DHD and DACHbox-N. Molecular surfaces are colored according to
electrostatic potentials with maximum color potential set to 65 kT/e.

SnoN-DHD, Ski-DHD (PDB 1SBX) and DACHbox-N (PDB 1L8R) are in the
same orientation as in Figure 2A. Electrostatic potential was calculated
with the program ICM-Pro v.3.7-1e [29] using the REBEL (rapid-exact-
boundary-element) method.
doi:10.1371/journal.pone.0012907.g002

Dachshund Domain of Human SnoN
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shift is seen, Tyr191 rotates 180 degrees around its x1-angle

(Fig. 4C). On the opposite side of the groove, in the loop

connecting helix a3 and strand b5, only small backbone motions

are seen but here Phe213 flips its aromatic ring 180 degrees

towards the backbone of the loop (Fig. 4D). Within the crystal

lattice, the Arg176, Tyr191 and Phe213 side-chains are involved

in different intermolecular contacts in the two conformations.

Although crystal packing is likely to stabilize the individual open

and tight conformations, the crystal environment is not identical

for all open-conformation chains, or for all tight-conformation

chains. Together this suggests that there is a close equilibrium

between the two conformations.

The gap of the open and tight conformations differs in width

between approximately 13 and 7 Å, which is well suited to

accommodate a protein helix or loop (Fig. 5). The open and tight

conformations could thus well be part of an induced-fit mechanism

allowing SnoN-DHD to increase interactions with a protein

partner in the conserved groove.

Interestingly, the major differences in backbone conformation of

the previously determined DHD structures, i.e. from human Ski

Figure 3. Conserved regions in SnoN-DHD. Panel A: Sequence alignment between human SnoN-DHD and five orthologous proteins. The
sequence of SnoN-DHD corresponds to the protein fragment used in structural determination. The Genbank ID of the five orthologous sequences
are: Danio rerio (gi:190338009), Mus musculus (gi:113205055), Nasonia vitripennis (gi: 156550231), Apis mellifera (gi: 110748778), and Aedes aegypti (gi:
157124676). Secondary structure elements and numbering of SnoN-DHD are depicted above the alignment. Alignment was generated by ClustalW
[41] and colored by ESPript [40]. Panel B: Conserved residues on the surface of SnoN-DHD. The molecular surface of SnoN-DHD is colored according
to the sequence conservation from the alignment in Fig 3A. Residues are colored in red and orange if they are strictly conserved in six or five
sequences, respectively. Yellow and pale yellow represent residues that are similar in six and five sequences, respectively. Other residues are colored
in white. SnoN-DHD is in the same orientation as in Fig 2A. Panel C: Conserved groove on the surface of SnoN-DHD. Structure of SnoN-DHD is
represented in ribbon mode. The molecular surface of the conserved groove mentioned in the text is displayed and colored in light blue. It is
composed of the following residues: Leu167, Pro168, Gln169, Leu171, Asn172, Ser173, Leu 180, Ile183, Asn184, Ile210, Leu211, Pro212, Ala215, Ser217,
Cys218 and Gly219. The position of these residues on the surface is indicated by their corresponding one-letter label.
doi:10.1371/journal.pone.0012907.g003

Dachshund Domain of Human SnoN

PLoS ONE | www.plosone.org 4 September 2010 | Volume 5 | Issue 9 | e12907



[12] and DACHbox-N [13], are located to the a2 helix and the

a3-b5 connecting loop. These different conformations matches

very well the open and tight conformations of SnoN-DHD (Fig. 6).

The best superimposition between Ski-DHD and SnoN-DHD is

achieved with chain D of SnoN-DHD (Fig. 6A, r.m.s.d. of 0.80 Å

for 94 aligned Ca), whereas the best superimposition with the

DACHbox-N is obtained with chain I of SnoN-DHD (Fig. 6B,

r.m.s.d. of 1.17 Å for 92 aligned Ca). The Ski-DHD structure thus

displays an open conformation while the DACHbox-N displays a

tight conformation, as compared to SnoN-DHD. This finding

suggests the existence of a general flexibility within the DHD fold,

rather than an intrinsic structural difference between the

Dachshund domains from these different proteins. Although both

Ski- and SnoN-DHD are protein-interacting domains, their DHD

fold has retained the interaction site from their DNA-interacting

winged-helix relatives.

The SnoN-DHD structure presented here and the comparison

with related structures strongly suggest the existence of a

conserved and flexible groove which constitutes a likely protein-

interaction surface. The flexibility of this groove might be

necessary to accommodate different binding partners, such as N-

CoR or Ski-interacting protein (Skip) [32]. Future structural and

biochemical studies of the DHD family members with their

potential interaction partners should allow the evaluation of this

model.

Materials and Methods

Protein expression and purification
Human sno (skil) cDNA was obtained from Mammalian Gene

Collection (accession no. BC059386). The sequence encoding

SnoN residues 137–238 was amplified by PCR and inserted into

pNIC28-Bsa4 by ligation independent cloning. The expression

construct included a TEV protease-cleavable N-terminal hexahis-

tidine tag. Protein expression in Escherichia coli strain BL21(DE3)

R3 pRARE was done in a LEX system (Harbinger Biotechnology

and Engineering) using Terrific Broth medium supplemented with

8 g/l glycerol, 34 mg/ml chloramphenicol and 50 mg/ml kana-

mycin, induction with 0.5 mM IPTG, and over night culture at

18uC. Cells were harvested by centrifugation 4,400 g for 10 min at

4uC and resuspended in 50 mM HEPES pH 7.8, 500 mM NaCl,

10 mM imidazole, 10% glycerol, 0.5 mM TCEP, and Complete

EDTA-free Protease Inhibitor (Roche Biosciences). Cells were

lysed by a freeze/thaw cycle followed by addition of benzonase

Figure 4. Conformational changes among the SnoN-DHD monomers. Panel A: Superposition of the twelve monomers of SnoN-DHD
present in the asymmetric unit (stereo view). Chains A, B, C, D, E and G are colored in yellow, chains F, I, K and L in blue, and chains H and J in green.
The red, orange and violet dots represent the location of Arg176, Tyr191 and Phe213, respectively. Panels B–D: Side-chain conformational changes
of Arg176, Tyr191 and Phe213.
doi:10.1371/journal.pone.0012907.g004

Figure 5. Open and tight conformation of SnoN-DHD: molecular surface representation. Panel A: SnoN chain C. Backbone of SnoN-DHD
chain C is colored in yellow. Molecular surface of residues form the conserved groove and involved in conformational change is displayed in green.
Panel B: SnoN chain F. Same as Panel A except that blue was used as a color for the backbone of chain F.
doi:10.1371/journal.pone.0012907.g005

Dachshund Domain of Human SnoN
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(Novagen) and sonication (Sonics VibraCell). Lysates were

centrifuged at 49,000 g for 20 min at 4uC. The supernatants

were decanted and filtered.

Filtered lysates of cells expressing SnoN137–238 were loaded onto

HiTrap Chelating HP columns (GE Healthcare) in buffer 1

(30 mM HEPES pH 7.5, 500 mM NaCl, 10 mM imidazole, 10%

glycerol, and 0.5 mM TCEP). The columns were washed with

buffer 1 containing 25 mM imidazole. Bound protein was eluted

with buffer 1 containing 500 mM imidazole, and loaded onto a

HiLoad 16/60 Superdex-75 column (GE Healthcare) pre-

equilibrated with buffer 2 (20 mM HEPES pH 7.5, 300 mM

NaCl, 10% glycerol, 2 mM TCEP). Fractions containing target

protein were pooled, and the N-terminal hexahistidine tag was

removed by incubation with His-tagged TEV protease (molar ratio

30:1) over night at 4uC, followed by passage over a 1 ml HiTrap

Chelating HP column pre-equilibrated with buffer 1 with 25 mM

imidazole. The cleaved protein was concentrated and the buffer

was changed to buffer 2 using a centrifugal filter device with 5,000

NMWL. The final protein concentration was determined to

19.6 mg/ml in a volume of 0.7 ml. Aliquots were flash-frozen and

stored at 280uC. The identity of the protein was verified by time-

of-flight mass spectrometry analysis.

Crystallization, data collection, structure solution and
refinement

Crystals of SnoN-DHD were obtained by the sitting drop

vapour diffusion method in a 96-well plate. 0.1 ml of the protein

solution (19.6 mg/ml) was mixed with 0.2 ml of well solution

consisting of 0.2 M ammonium nitrate and 20% (w/v) PEG 3350.

The plate was incubated at 4uC and rhombohedral crystals

appeared after 15 to 29 days. After 73 days, the crystal was

transferred to cryo solution consisting of 20 mM HEPES,

300 mM NaCl, 20% glycerol, 0.2 M ammonium nitrate and

20% (w/v) PEG 3350, pH 7.5, and flash-frozen in liquid nitrogen.

Diffraction data to 2.45 Å resolution were collected at ESRF

Grenoble, France (beamline ID 29). Data was integrated and

scaled using XDS and XSCALE [33]. PHASER [34] found 7

correct monomers in the asymmetric unit using the structure of the

Dachshund-homology domain of human SKI (PDB-code: 1SBX)

[12] as a probe. This solution was refined in CNS [35] using

simulated annealing. The resulting monomer model was used as a

probe in a new query in PHASER and resulted in the discovery of

two more monomers. Analysis of the crystallographic contacts

allowed to build 3 additional monomers in the density map with

Coot [36], resulting in the final asymmetric unit of 12 monomers.

Data in the interval 19.95–2.45 Å resolution was used for

refinement. Iterative cycles of manual building in both Coot and

O [37] and restrained refinement in REFMAC5 [38] were

performed. TLS refinement was included in the last steps of the

refinement process. According to the results provided by the

TLSMD server [39], 11 monomers were divided into 3 TLS

groups, 4 TLS groups being used for monomer E. For further

details, see Table S1. The atomic coordinates and structure factors

were deposited to the Protein Data Bank, www.rcsb.org (PDB

entry code 3EQ5). Sequence alignments were obtained using

ESPript [40]. Structural images and iSee datapack were rendered

using ICM-Pro v.3.7-1e [29].

Supporting Information

Datapack S1 Standalone iSee datapack - contains the enhanced

version of this article for use offline. This file can be opened using

free software available for download at http://www.molsoft.com/

icm_browser.html.

Found at: doi:10.1371/journal.pone.0012907.s001 (ICB)

Table S1 Data collection and refinement statistics for SnoN-

DHD.

Found at: doi:10.1371/journal.pone.0012907.s002 (0.12 MB

DOC)

Figure 6. Superposition of SnoN-DHD, Ski-DHD and DACHbox-N. Panel A: Superposition of open conformation SnoN-DHD (chain D) and
Ski-DHD. SnoN- and Ski-DHD are colored in yellow and red, respectively. Representation of Ski-DHD was limited to residues 97 to 192. Panel B:
Superposition of tight conformation SnoN-DHD (chain I) and DACHbox-N. SnoN-DHD and DACHbox-N are colored respectively in blue and violet.
doi:10.1371/journal.pone.0012907.g006
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Text S1 Instructions for installation and use of the required web

plugin (to access the online enhanced version of this article).

Found at: doi:10.1371/journal.pone.0012907.s003 (0.44 MB

PDF)
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