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Abstract

Many important cellular protein interactions are mediated by peptide recognition domains. The ability to predict a domain’s
binding specificity directly from its primary sequence is essential to understanding the complexity of protein-protein
interaction networks. One such recognition domain is the PDZ domain, functioning in scaffold proteins that facilitate
formation of signaling networks. Predicting the PDZ domain’s binding specificity was a part of the DREAM4 Peptide
Recognition Domain challenge, the goal of which was to describe, as position weight matrices, the specificity profiles of five
multi-mutant ERBB2IP-1 domains. We developed a method that derives multi-mutant binding preferences by generalizing
the effects of single point mutations on the wild type domain’s binding specificities. Our approach, trained on publicly
available ERBB2IP-1 single-mutant phage display data, combined linear regression-based prediction for ligand positions
whose specificity is determined by few PDZ positions, and single-mutant position weight matrix averaging for all other
ligand columns. The success of our method as the winning entry of the DREAM4 competition, as well as its superior
performance over a general PDZ-ligand binding model, demonstrates the advantages of training a model on a well-selected
domain-specific data set.
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Introduction

Many vital cellular functions are mediated by protein complex

formation [1]. Numerous such protein-protein interactions are

enabled by peptide recognition domains, distinct structural units

that bind specific amino-acid sequences in their interaction

partners [1,2]. Metazoan genomes encode dozens of peptide

recognition domain families, each containing up to several

hundred member proteins. Every family is typically characterized

by a common fold and exhibits specificity to a particular ligand

binding motif.

One important recognition domain is the PDZ domain,

commonly found in organisms from bacteria to humans, and

functioning in scaffold proteins to assemble large molecular

complexes that facilitate formation of signaling networks [3,4,5].

The PDZ domain family is typically characterized by recognition

of hydrophobic C-terminal tails, and individual members possess

features that allow for distinct specificities within the broad

structure and function of the family. Recent large-scale analyses of

mouse [6] and human [7] data sets showed that PDZ-ligand

interactions are highly specific, with distinct specificity classes

evident among the binding motifs [7]. Moreover, this classification

was found to be conserved throughout evolution.

Naturally, a question of whether binding specificity can be

predicted from the PDZ domain’s primary sequence, arises. The

analysis by Tonikian et al. [7] established a predictive correlation

between the domain sequence and binding specificity in organisms

from worm to human. Most recently, Ernst and colleagues [8]

found that ligand binding capability is inherent to the PDZ

domain, and mutated variants can support specificities that do not

exist in nature, suggesting that this structural and functional

flexibility could be exploited to facilitate rapid rewiring of protein-

protein interaction networks during evolution [9]. These signifi-

cant findings represent a step toward the possibility of inferring

protein interactions directly from a genome’s sequence. The ability

to accurately predict domain binding specificities from primary

sequence in general, and for the PDZ domain in particular, would

provide yet another step in that direction.

Addressing this problem, the DREAM (Dialogue for Reverse

Engineering Assessments and Methods) Consortium issued a

Peptide Recognition Domain Specificity Prediction Challenge. A

part of this challenge was to predict position weight matrices

(PWMs) that describe the specificity profiles of five PDZ domains

to their target peptides. These test cases were modeled on the

ERBB2IP-1 (Erbb2 interacting protein) wild type protein, each

with multiple different mutations. The domains were examined

experimentally using phage-displayed random peptide libraries, a

powerful tool to elucidate domain specificity. The experiments

determined short linear peptide fragments that bind each of the

PDZ domains in question. The resulting binding patterns,

represented as PWMs, were withheld as the ‘‘gold standard’’ to

evaluate the challenge submissions.

Our approach, based on the experimental data set of Tonikian

et al. [7] profiling single-mutant PDZ binding specificities, aimed at
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generalizing the effects of single point mutations on binding

preference to multi-mutant sequences. To predict the challenge

PWMs, we combined linear regression-based prediction for ligand

positions whose specificity is known to be determined by relatively

few PDZ domain positions, and single-mutant PWM averaging for

all other ligand columns. Our resulting DREAM4 submission was

the winning entry, obtaining better predictions than the next

competing entry on four of the five test sequences. With the benefit

of the gold standard PWMs now available, we determined that our

method was close to the best possible combination of regression

and averaging based predictions. Finally, we found that basing

one’s predictions on the domain-specific single-mutant data was

more beneficial than following a general PDZ-ligand binding

model such as that of Chen et al. [10].

Results

Predicting PWMs for ERBB2IP-1 mutants
The DREAM4 PDZ-peptide recognition challenge consisted of

predicting binding specificities for five multi-mutant ERBB2IP-1

sequences (Figure 1). The PWMs predicted by our method for

these sequences were composites resulting from two different

approaches. The columns corresponding to ligand positions 0
(ligand C-terminal position), {1, {2, and {3 were predicted

using a regression approach, and the remaining columns by

clustering and averaging of corresponding PWM columns in the

training set (see Methods). This choice was made following an

observation by Tonikian et al. [7] that only a subset of the positions

mutated in the ERBB2IP-1 protein affected binding preferences

for ligand positions 0, {1, {2, and {3. Thereby, we were able to

reduce the regression’s dimensionality and decrease the risk of

overfitting. The remaining ligand positions have shown signifi-

cantly less specific binding preferences, and were affected by a

greater number of the mutated PDZ positions [7]. We chose to

average the corresponding single-mutant PWM columns in

deriving their multi-mutant profiles.

Our resulting binding specificities for the multi-mutant test PDZ

domains together with their gold-standard binding profiles

withheld during the competition, are shown in Figure 2. Each

submitted entry was compared with the corresponding gold

standard PWM using the Frobenius norm. Then, individual P-

values, defined as the probability that a random PWM has the

same or smaller Frobenius distance to the measured PWM, were

computed (and capped at 1:000e{100). The final challenge score

was indicative of the overall significance of the results, and a unit

increase for one prediction over the other reflected an average one

order of magnitude P-value improvement (see Methods). The

individual domain P-values, predicted by our method, ranged

between 5:949e{04 and 1:000e{100. The final resulting score

was 47:643, and our method was declared the PDZ challenge

winner. By comparison, the next best entry had the final score of

36:393, and worse individual Frobenius distances for four of the

five test cases.

Figure 1. Wild type and challenge PDZ domain sequences. The top line lists the full amino acid sequence for the wild type ERBB2IP-1 PDZ
domain. The following lines show mutations for the five test sequences. Amino acid numbering follows Tonikian et al. [7]. Graphics were generated
using TEXshade [17].
doi:10.1371/journal.pone.0012787.g001
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The high statistical significance of our predictions was largely

driven by our method’s ability to correctly recapitulate the highly

specific ligand positions 0 and {1 (see Figure 2). Indeed, if one

were to predict PWMs such that the canonical tryptophan in

position {1 and valine in position 0 were each assigned unit

probability, leaving all other columns uniform (‘‘canonical’’

predictor), the final score would be 44:516. Our method predicted

a very dominant tryptophan preference in position {1 for all five

PDZ mutants, and a strong preference for valine or leucine in

ligand position 0; the exception here was test case PDZ-2D5, for

which we incorrectly predicted valine instead of leucine /

isoleucine, resulting in a far worse P-value than for the rest of

the domains. Moreover, our ability to capture partial preferences

of the less specific ligand positions, such as phenylalanine in

position {2 of PDZ-2B11, contributed to our high scores beyond

what is achievable with only predicting canonical amino acids for

ligand positions 0 and {1. Indeed, our P-values were better than

those of the ‘‘canonical’’ predictor by three orders of magnitude on

average.

Combining regression- and average-based PWM
predictions

Our DREAM4 entry combined PWM columns predicted by a

regression-based approach with columns obtained using a PWM

averaging-based approach. With the benefit of published phage

display derived PWMs for the five test mutant PDZ domains

(Figure 2), we were able to assess our particular combination of the

two methods for groups of columns in ligand binding sites. We

examined eight alternatives in all, predicting varying numbers of

columns closer to the ligand C-terminal position with the

regression-based predictor, denoted Preg, and predicting the

remaining columns by the PWM single-mutant averaging-based

predictor, denoted Pavg. We also considered predicting entire

PWM profiles using Preg and Pavg in turn for all columns. The

resulting distances to the experimentally-derived PWMs, their

corresponding P-values and scores are listed in Table 1. The best

combined predictor, which used Preg predictions for columns 0,

{1, and {2, obtained the final score of 50:918, and found the

lowest Frobenius distances for four of the five test sequences. Our

DREAM4 submission, which differed in that column {3
prediction was replaced with that of Preg, had the second overall

result. As shown by Tonikian et al. [7], ligand position {3 makes

contact with seven of the mutated PDZ positions; it is likely that

not enough data was available to train the regression-based

method and avoid overfitting when predicting the specificities for

this position. Interestingly, the other combinations we considered

in Table 1, including the simplest predictor, which clustered and

averaged single-mutant PWMs for all ligand positions, obtained

better final scores than all other competing DREAM4 entries.

Comparison with a universal PDZ domain specificity
model

The specifications of the DREAM4 challenge and public

availability of ERBB2IP-1 single-mutant phage-display data have

allowed us to design a method that uses such data in predicting

binding specificities of multi-mutant domains. Alternatively, the

binding specificity of a query sequence can be deduced from a

universal PDZ domain family model. Arguably, such a model,

trained using a much larger and more diverse data set, could

potentially better depict subtle sequence-related specificity deter-

mining features. In the following, we assessed the performance of a

general model of PDZ domain selectivity, recently introduced by

Chen et al. [10], on single- and multi-mutant ERBB2IP-1

sequences, and compared it with ours.

We first examined the Chen et al. model predictions in

identifying binders for single-mutant PDZ domains. It is

reasonable to assume that a method should perform well on the

single-mutant data before attempting to predict binding prefer-

ences for multi-mutant domains. We used the binary model of

Chen et al. [10], trained on a quantitative PDZ domain interaction

data set [6] and using 100 mM dissociation constant as the

threshold for defining an interaction. The binary model was

chosen for evaluation since, as noted by the authors, it performed

better when predicting novel interactions. Surprisingly, though,

Figure 2. Gold standard and our predicted PWMs for the five multi-mutant proteins in the DREAM4 PDZ challenge. Top panel shows
PWMs resulting from the phage display screening. Bottom panel shows our predicted PWMs together with Frobenius distances when comparing
each prediction to the gold standard PWM, as well as the corresponding P-values. The final prediction score, a log-transformed ‘‘average’’ of the P-
values for the five domains and the basis of the final challenge rankings, is shown on the last line.
doi:10.1371/journal.pone.0012787.g002
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the results of predicting binders for single-mutant PDZ domains

were very poor. As shown in Figure 3, the true positive rate

profiled across the relevant model threshold (see [10] for details)

was much lower than the comparable rate Chen et al. observed for

their data set.

We then derived PWMs for the five multi-mutant PDZ domains

from the model of Chen et al. by converting their model scores into

Boltzmann probabilities. In line with the low true positive rate for

single-mutant ligand binding, the predicted multi-mutant PWMs

were poor as well. Only three of the five test cases (Figure 4)

showed significant similarity to the gold standard PWMs,

obtaining a collective final score of 9:442, much lower than any

of the scores in our combined model (Table 1). These results

demonstrate the benefit of training a predictor for a specific PDZ

domain (e.g, ERBB2IP-1 ), when feasible, on a well-selected data

set, as opposed to using a single model for an entire domain family.

It is conceivable, though, that the predictions of the Chen et al.

model may be improved by the inclusion of additional

information, and, in particular, the single-mutant phage-display

data, in their training set.

Discussion

We have presented a method for predicting PDZ domain

binding specificity, used in the DREAM4 peptide recognition

domain challenge to determine ligand binding profiles of five

multi-mutant ERBB2IP-1 PDZ domains. Though the issued

challenge focused on a very specific and well-defined problem, a

paradigm similar to ours can be adapted for broader usage and,

specifically, any domain, or domain family, for which multiple

PWMs have been experimentally determined and, preferably, a set

of interacting positions identified.

While our method was the winning entry of the DREAM4

challenge and performed very well on the defined task,

improvements can be made. First, following the challenge

specifications of predicting PWM models, we assumed positional

independence between columns in the ligand, a potentially

simplifying assumption. With the recent publication of binding

data for a large set of ERBB2IP-1 multi-mutant domains [8], a

more thorough examination of this aspect is possible. In particular,

such data sets would permit training of more sophisticated

machine learning-based specificity predictors that allow for

modeling pair-wise or even higher order positional dependencies,

both in the ligand and in the domain.

Second, the predictions for a few positions, mainly the low

specificity N-terminal ligand positions, can be significantly

improved. Notably, our training set appeared so limited that for

a few such positions lower Frobenius distances to the gold standard

PWMs would have been obtained by predicting a uniform PWM

column rather than the ones derived by either the regression or

average-based approaches. With the availability of a larger and

richer training set, this shortcoming can probably be ameliorated.

Nonetheless, studying the binding profiles at these low specificity

positions raises the question of whether these differences are

meaningful at all. While the Frobenius norm is a well-established

mathematical metric, it does not differentially score close-to-

background and highly specific positions, an approach that might

be beneficial for cases like the PDZ domain, where the degree of

specificity in the ligand columns varies greatly. A biologically-

motivated function, such as the Bayesian Likelihood 2-Component

(BLiC) [11] function, might better highlight the essential

differences, and similarities, between a given pair of PWMs.

Figure 3. Chen et al. model performance on the ERBB2IP-1
single mutant data. True positive rate produced by the binary model
of Chen et al. [10] for predicting ERBB2IP-1 single-mutant binders [7] is
compared to the rate Chen et al. report for their data set [10]. The rate is
profiled for a range of the binding threshold, t.
doi:10.1371/journal.pone.0012787.g003

Table 1. Prediction results for combinations of averaging-based and regression-based PWM columns.

PWM PDZ-2B11 PDZ-2B9 PDZ-2C6 PDZ-2D4 PDZ-2D5 score

Preg
({6:0)

1:002 1:876e{56 1:104 43:035e{18 0:849 1:115e{28 1:028 1:000e{100 1:287 2:916e{01 40:346

½Pavg
{6;Preg

({5:0)� 0:974 9:140e{63 1:086 3:094e{20 0:840 4:459e{30 1:008 1:000e{100 1:277 1:781e{01 42:330

½Pavg
({6:{5);P

reg
({4:0)� 0:949 6:336e{69 1:067 1:410e{22 0:845 2:692e{29 0:991 1:000e{100 1:234 8:577e{03 44:137

½Pavg
({6:{4);P

reg
({3:0)�

� 0:898 7:777e{82 1:062 2:425e{23 0:827 5:407e{32 0:975 1:000e{100 1:210 5:949e{04 47:643

½Pavg
({6:{3);P

reg
({2:0)� 0:787 1:000e{100 1:177 9:609e{11 0:770 6:591e{42 0:840 1:000e{100 1:208 4:046e{04 50:918

½Pavg
({6:{2);P

reg
({1:0)� 0:940 4:010e{71 1:214 9:868e{08 0:924 2:422e{18 0:937 1:000e{100 1:285 2:577e{01 39:121

½Pavg
({6:{1);P

reg
0 � 0:932 7:403e{73 1:214 9:868e{08 0:940 1:922e{16 0:934 1:000e{100 1:280 2:158e{01 39:104

P
avg
({6:0)

0:950 1:107e{68 1:189 8:526e{10 0:940 1:922e{16 0:880 1:000e{100 1:251 3:434e{02 38:841

Each line corresponds to a PWM (with Frobenius distance to the experimentally-derived PWM, the P-value and score), derived as a combination of columns from the
averaging-based predictor Pavg and the regression-based predictor Preg ; columns predicted by each method are indicated as subscript ranges. As elsewhere in the text,
column 0 is the ligand C-terminal position. Lowest Frobenius distance for each challenge sequence is highlighted in bold, and our DREAM4 submission is denoted by � .
doi:10.1371/journal.pone.0012787.t001
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Methods

Training data
Tonikian et al. [7] have studied the effect of point mutations on

binding preferences of the ERBB2IP-1 PDZ domain. They

considered mutations at ten binding site domain positions (23,

25, 26, 27, 28, 48, 49, 51, 79, 81), and for each such position (e.g.

23), they created a single-mutant variant, substituting the wild type

amino acid (L) with other amino acids (F, I, V) commonly found at

that PDZ position. In all, 91 ERBB2IP-1 binding site point

mutations were characterized, individually, using C-terminal

phage-displayed libraries [7], and sequences of thousands of

peptides that bind to these single-mutant PDZ domains, as well as

wild type ERBB2IP-1 , had been determined.

Following Tonikian et al., we generated a position weight matrix

(PWM) for every single-mutant PDZ variant based on its set of

binding peptides, adding no pseudo-counts and correcting for

codon bias by dividing observed amino acid frequencies by their

expected frequencies in the NNK codon set [7]. We then utilized

the resulting PWMs to train our models. Note that since the PDZ

challenge focused solely on ERBB2IP-1 mutants, we only

considered ERBB2IP-1 -related sequences in our training set

and deliberately disregarded similar data for other PDZ domains

available in databases such as PDZBase [12] or DOMINO [13].

Predicting PWMs
The DREAM4 PDZ-peptide recognition challenge was com-

prised of five multi-mutant ERBB2IP-1 sequences (Figure 1), each

containing between six and nine mutations with respect to the wild

type domain, from within the set of 91 single point mutations

characterized by Tonikian et al. [7]. Our method generalized the

effects of single point mutations in PDZ domains on binding

preference, as measured experimentally, to multi-mutant sequenc-

es. To that end, we experimented with two different approaches:

regression- and PWM averaging-based prediction.

Regression-based PWM columns. In defining the prediction

model, we needed to identify the PDZ positions that affect binding

specificity of every ligand position. Importantly, limiting sets of

interactions between a ligand position and PDZ domain residues

necessarily reduces the complexity of any potential predictor. We

were able to restrict the set of interacting PDZ positions for ligand

positions 0 (ligand C-terminal), {1, {2, and {3 following Tonikian

et al., who have shown that binding preferences at these positions are

determined, in large part, by mutations at PDZ positions f23g,
f28,48,51,79g, f79,83g, and f23,26,48,49,51,79,83g, respectively.

For the remaining ligand positions, with no such experimentally

restricted set of interactions, we considered the amino acids in all ten

binding site positions.

For a particular ligand position, we represented each amino

acid among the set of interacting PDZ positions (Figure 5A) as a

five-dimensional vector, derived by projecting a corresponding

high dimensional physical-chemical property vector onto the five

most significant principle components [14], and taking the

modulus of the resulting values. Each subsequence was then

encoded as a concatenation of such five-dimensional vectors

(Figure 5B, left). Such a representation has been shown useful in

various binding prediction scenarios (e.g., [15]). Next, principal

component analysis (PCA) was applied to further reduce the input

space dimensionality, discarding components along which the

variance of the data was less than 10{3 (Figure 5B, right). The per-

position data matrix, consisting of these PCA-based single-mutant

and wild type vectors, and the PWM-derived probabilities for each

amino acid at the corresponding position defined a set of

regression problems (Figure 5C). Given a query PDZ sequence,

the regression coefficients obtained by solving these problems

could be used to predict a ‘‘pseudo’’ probability for each amino

acid at each ligand position. For the final regression-based PWM,

denoted Preg, we replaced negative entries with zeros, and

normalized each per-position vector to sum to one.

Averaging-based PWM columns. We speculated that, in

some cases, the regression approach might lead to over-fitting and,

therefore, considered a supplementary, more ‘‘conservative’’

approach denoted Pavg, directly based on averaging PWM

columns. While the regression-based predictors attempted to

infer physical-chemical ‘‘rules’’ of binding preferences and, to this

end, incorporated information from all available single-mutants,

the average-based approach considered a smaller, but perhaps

more relevant, set of single-mutants. In particular, for a given

DREAM4 challenge sequence and for each ligand position, we

extracted the per-position amino acid probability vectors from the

corresponding point mutant PWMs (Figure 6 top and A). Since

point mutations mostly have a local effect on ligand binding

preferences, many of these vectors likely reflect the binding

preferences of the wild type domain. We therefore grouped the

vectors into clusters and averaged the cluster representative vectors

in an attempt to avoid biasing our amino acid preferences toward

the wild type. Specifically, we partitioned the input vectors into

five clusters, using complete linkage clustering with Euclidean

distance as a similarity measure, and computed the average over

all vectors in a cluster as its representative (Figures 6B,C). Finally,

we averaged these cluster representatives to obtain the average-

based PWM, Pavg (Figure 6D).

Figure 4. Performance of the Chen et al. model in predicting PWMs for the DREAM4 PDZ challenge sequences. PWMs generated using
the binary model of Chen et al. [10] after converting model scores to Boltzmann probabilities (with the temperature parameter set to 1=32). Individual
Frobenius distances to the gold standard PWMs and their corresponding P-values as well as the overall resulting prediction score are listed.
doi:10.1371/journal.pone.0012787.g004
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DREAM4 scoring metrics
The similarity between a computationally predicted PWM and

its gold standard, experimentally-determined counterpart was

judged using the Frobenius norm, computed as follows:

DDP{QDDF ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1

X
a[S

Pia{Qiað Þ2
s

where n denotes the number of columns (that is, ligand positions)

in PWMs P,Q, and S the alphabet, here the set of 20 amino acids.

To estimate a target-specific P-value for a given Frobenius distance

d , the DREAM4 organizers simulated an empirical frequency

distribution of Frobenius distances between the experimental

PWM and 10,000 randomly generated PWMs, and fit it to

stretched exponential functions, with different parameters to the

right and left of the mode of the distribution, as previously

described [16]. These functions were then used to compute the

probability of obtaining, by chance, a distance equal to or better

than d . Finally, the overall DREAM4 score was defined as the

average, over the five PDZ target sequences, of the negative log10-

transformed P-values, where larger scores indicated greater

statistical significance of the prediction.

Chen et al. model: a sequence-based PDZ specificity
predictor

Chen et al. [10] built a model to predict binding for arbitrary

PDZ domain-peptide complexes, using their primary sequences

only. The model identified, based on structural information, 38
potentially interacting position pairs, involving 5 C-terminal ligand

positions and 16 PDZ domain positions (22,24,29,54,80,89 as well

as the ten binding site positions, listed above, used by Tonikian

et al. [7]). Specifically, ligand positions 0,{1,{2 and {3 were

coupled with numerous (between seven and ten) PDZ positions

each, creating a very dense interaction network. Note that, in

contrast, the ERBB2IP-1 domain-ligand interaction network

observed experimentally by Tonikian et al. is much sparser, with

as few as one or two interactions for some ligand positions.

For each of the 38 potential interaction pairs, the model of Chen

et al. [10] inferred a score matrix, indexed by, and assigning a score

to, each combination of amino acids at the corresponding PDZ-

ligand positions. These pair-wise scores were then summed up to

Figure 5. Regression-based specificity prediction. (A). Shown on the left are PDZ binding site single-mutant sequences. Positions, not relevant
for predicting a particular ligand position (illustrated here for position {2 and shown in grey), are disregarded. The mutated amino acids are
highlighted. Shown on the right are single-mutant specificities corresponding to ligand position {2. (B). Subsequences at relevant specificity
determining positions are converted into numerical vectors, and dimensionally reduced using PCA. (C). The resulting vectors, along with the
corresponding per-amino acid probabilities (here, for amino acid threonine (T)), define a regression problem. The coefficients obtained by solving
such regression problems are used to predict the probability of each amino acid at a given ligand position.
doi:10.1371/journal.pone.0012787.g005
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give a final binding score; when this score was greater than some

defined threshold, the PDZ domain was predicted to bind the

peptide.

To predict binding specificities for a given ERBB2IP-1 multi-

mutant sequence and some ligand position, we had to convert

model scores to PWM probabilities. First, we summed the 20-entry

columns indexed by the amino acids in the multi-mutant PDZ

sequence and contributing to interactions with the ligand position

under consideration. We then converted these column scores to

Boltzmann probabilities using various system ‘‘temperatures’’, and

report the results for a temperature setting of 1=32, which

obtained the best overall DREAM4 score. Note that the Chen et al.

model is applicable only to the five C-terminal ligand positions

and, therefore, uniform amino acid preferences were assumed for

the remaining positions.
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