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Abstract

Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogens based on distinct molecular signatures.
The human (h)TLR1, 2, 6 and 10 belong to the hTLR1 subfamilies, which are localized in the extracellular regions and activated
in response to diverse ligand molecules. Due to the unavailability of the hTLR10 crystal structure, the understanding of its
homo and heterodimerization with hTLR2 and hTLR1 and the ligand responsible for its activation is limited. To improve our
understanding of the TLR10 receptor-ligand interaction, we used homology modeling to construct a three dimensional (3D)
structure of hTLR10 and refined the model through molecular dynamics (MD) simulations. We utilized the optimized structures
for the molecular docking in order to identify the potential site of interactions between the homo and heterodimer (hTLR10/2
and hTLR10/1). The docked complexes were then used for interaction with ligands (Pam3CSK4 and PamCysPamSK4) using
MOE-Dock and ASEDock. Our docking studies have shown the binding orientations of hTLR10 heterodimer to be similar with
other TLR2 family members. However, the binding orientation of hTLR10 homodimer is different from the heterodimer due to
the presence of negative charged surfaces at the LRR11-14, thereby providing a specific cavity for ligand binding. Moreover,
the multiple protein-ligand docking approach revealed that Pam3CSK4 might be the ligand for the hTLR10/2 complex and
PamCysPamSK4, a di-acylated peptide, might activate hTLR10/1 hetero and hTLR10 homodimer. Therefore, the current
modeled complexes can be a useful tool for further experimental studies on TLR biology.
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Introduction

Toll-like receptors (TLRs) are evolutionarily conserved mem-

brane-bound pattern recognition receptors (PRRs) that recognize

a broad spectrum of microbial components such as lipopeptides

and non-self nucleic acids [1]. TLRs play a central role in innate

immunity and are required for the development of adaptive

immune responses. TLRs are type I transmembrane glycoproteins

that consist of an extracellular domain/ectodomain (ECD), a

single transmembrane spanning segment and a globular cytoplas-

mic Toll/interleukin (IL)-1 receptor (TIR) domain [2,3]. The

ECDs encompass 19–25 tandem copies of a motif known as the

leucine-rich repeat (LRR), whose primary function appears to be

ligand recognition and the formation of protein-protein interac-

tions with its partners [4,5,6]. The cytoplasmic TIR domain

recruits the adaptor protein that is essential for the downstream

signaling. To date, 10 hTLRs (human TLRs) and 12 mTLRs

(mouse TLRs) have been identified, each of which responds to

specific microbial products [2,7,8]. TLRs are categorized into six

major families: TLR1, TLR3, TLR4, TLR5, TLR7 and TLR11.

The classification is mainly based on amino acid similarities and

the ligand properties [9]. The present study mainly focused on the

TLR1 family, which includes TLR1, TLR2, TLR6 and TLR10.

Although TLR10 has been identified in humans and its

equivalent homologs can be found in other mammals, it is absent

from mice due to a retrovirus insertion. TLR10 is predominantly

expressed in immune cell-rich tissues, such as the small intestine,

stomach, thymus, peripheral blood lymphocytes, lymphnodes and

tonsils [10,11]. Co-immunoprecipitation studies have shown the

self association of TLR10, as well as TLR1 and TLR2 via the

extracellular domain of these receptors, which plays a pivotal role

in inducing type I interferon in plasmacytoid dendritic cells (PDC)

[12]. The ligand specificity has been elucidated for most of the

TLRs. Specifically, TLR2 and TLR4 recognize Gram-positive

and Gram-negative bacterial cell wall products, respectively, while

TLR5 recognizes a structural epitope of bacterial flagellin and

TLR3, 7, 8 and 9 have been demonstrated to recognize different

forms of microbial-derived nucleic acids [2,13]. However, the

ligand specificity of TLR10 remains elusive. The present study was

conducted to identify the hTLR10 self dimerization region as well

as its partners and possible ligands to activate these complexes.

Computational modeling has become an essential tool in

guiding and enabling rational decisions with respect to hypothesis

driven biological research. In the absence of an experimentally

determined structure, homology modeling could provide a rational

opportunity to obtain a reasonable 3D structure. The goal of

PLoS ONE | www.plosone.org 1 September 2010 | Volume 5 | Issue 9 | e12713



homology modeling is to model or predict the structural

coordinates of a query protein based on the known structure of

a sequence homology (template). The 3D structure of a protein

provides important information for understanding its biochemical

function and interaction properties in molecular detail. Here, we

used a combination of homology modeling and MD simulation to

construct a detailed 3D model of hTLR10. This model was then

used to investigate the nature of the three different binding modes

with hTLR1 and hTLR2, which provided the complex formation

of the hTLR10/1, hTLR10/2 hetero and hTLR10 homodimer.

These complex structures were then studied to analyze the

intermolecular contacts and to identify the specific residual level of

interactions between the two proteins. The results presented in this

study demonstrated that the binding orientations are similar

among all TLRs; however, the residual interactions with their

partners are specific. The hTLR10 complexes were then used for

protein-ligand docking to identify the potential ligands that

activate the TLR10 signaling. Finally, we have provided possible

ligands for the hTLR10 complex activation.

Methods

Homology modeling
The primary sequence of hTLR10 (accession number:

AAQ88667) and crystal structure coordinates of hTLR1 (PDB

ID: 2Z7X-B) were loaded into the Molecular Operating

Environment (MOE). The primary structure of hTLR1 and

hTLR10 were aligned and carefully checked to avoid deletions or

insertions in each LRR and then corrected manually based on the

LRR motif identified by TollML [14,15]. A series of 10 hTLR10

models were independently constructed with MOE by using the

Boltzmann-weighted randomized procedure. There was no

difference in the number and organization of secondary structural

elements and no significant main chain deviation among the 10

models developed. However, the model with the highest packing

score was selected for full energy minimization (MOE packing

score is 22.5478). The selected final model was subjected to MD

simulation for structural refinement [16]. The glycosylation sites

present in the final model were predicted by using the NetOglyc

server [17].

Molecular dynamics simulation
The MD simulations were conducted using the GROMACS

3.3.3 software [18]. The individual structures of the modeled

hTLR10, 1 and 2 were placed into a cubic box maintaining 10 Å

between the box edges and the protein surface. The resulting

system was then solvated with the simple point charge (SPC) water

molecule and then minimized by using steepest descent method

with GROMOS96 43a1 force field. Periodic boundary conditions

were applied in all directions and the system was neutralized by

adding appropriate counter ions (Na+ or Cl2). A twin range cutoff

was used for long-range interaction: 9 Å for van der Waals

interactions and 14 Å for electrostatic interactions. All bond

lengths were constrained with the LINCS algorithm [19]. The

SETTLE algorithm was applied to constrain the geometry of

water molecules [20]. The energy minimized system was subjected

to 100 ps equilibration and subsequently used in the 2 ns

production with a time step of 1 femtosecond (fs) at constant

temperature (300 K), pressure (1 atm) and number of particles,

without any position restraints. In each case, the final conforma-

tion obtained at the end of the simulation was further refined by

energy minimization for molecular docking. The refined model

was validated using the PROCHECK program [21] and the

Verify 3-dimensional (3D) server [22,23].

Molecular docking
The three widely accepted rigid-body protein-protein docking

programs, GRAMM-X [24], ZDOCK [25] and RosettaDock [26]

were used to predict and assess the interactions between hTLR10/

1, hTLR10/2 and hTLR10 homodimer complexes. Each docking

method returned the 100 most probable predictions out of

thousands of candidates based on geometry, hydrophobicity and

electrostatic complementarity of the molecular surface. We thus

performed restrained pairwise docking for hTLR10 heterodimer

complex based on the comparative studies results. Our compar-

ative studies clearly indicated that C-terminal region of LRR11–

14 plays a crucial role in dimerization. When we used our

comparative studies results as a constraint for homodimer, we

obtained the complex similar to heterodimer. However, the active

site was positioned far away from the ligand binding region and

hence, it was not appropriate to conduct further studies.

Consequently, the residues located near the hTLR10 active site

were considered as a constraint in our docking studies. The buried

surface interaction area of dimer models were calculated using the

PROTORP server (protein-protein interface analysis) [27].

Electrostatic potential calculation
The electrostatic potential surface of the hTLR10, 2 and 1 were

calculated using the PyMOL APBS (http://apbs.sourceforge.net)

tools. The molecular surfaces and ribbons of the figures were built

and colored with the PyMOL visualizing tool [28].

Computational alanine scanning to predict the binding
energy Hot-spots in the complex interface

The hTLR10/1, hTLR10/2 hetero and hTLR10 homodimer

were submitted to the Robetta Alanine scanning server (http://

robetta.bakerlab.org/alascansubmit.jsp) to predict the energetical-

ly important amino acid residues in its interface. The alanine

scanning server calculates the effects of alanine mutations on the

binding free energy of a protein-protein complex by using a simple

free energy function. The program replaces each of the interface

residues with alanine residue and computes the effect of this

mutation on the binding free energy of the complex. This analysis

serves as the identification of important residues that are crucial

for hTLR10 homo and heterodimer formation.

Construction and geometry optimization of hTLR10
ligands

Two ligands, Pam3CSK4 and PamCysPamSK4, have been

predicted to activate the hTLR10 complexes. The crystal structure

of hTLR1/2/Pam3CSK4 complex is known, and we took the

Pam3CSK4 site for docking. In case of PamCysPamSK4, we

modified the Pam3CSK4 at C2 position. Partial charges were

added to protonated and unprotonated molecules using the Merck

Molecular Force Field 94X (MMF94X), which is suitable for small

molecules [29]. All structures were energy minimized using the

conjugated gradient/truncated Newton optimization algorithm

with a convergence criterion of 0.05 kcal/mol, e= 1.

Binding site selection and exploration
The Site Finder module of MOE 2008.10 was used to identify

the possible substrate binding pockets within the newly generated

3D structure of the hTLR10/1, hTLR10/2 hetero and hTLR10

homodimers. Hydrophobic or hydrophilic alpha spheres served as

probes denoting zones of tight atom packing. The alpha spheres

were used as centroids for the creation of dummy atoms to define

the potential sites throughout the docking process.

Molecular Modeling of hTLR10
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hTLR10 complex-ligand docking
Protein-ligand docking was conducted using MOE-Dock

2008.10 and ASEDock. The docking procedure has been

previously described [30], and the same procedure was followed

for hTLR10 complexes and its ligands.

Validation of the hTLR10 ligand docking process via
hTLR1/2/Pam3CSK4 docking

Two docking methods, MOE-Dock 2008.10 and ASEDock, were

used to assess the validity of the hTLR10 complex-ligand docking

predictions by calculating possible bound conformations of hTLR1/

2/Pam3CSK4complexes. The crystal structure of hTLR1/2 was

retrieved from the PDB and prepared for docking, and partial

charges and hydrogen atoms were added. The obtained docking

poses (hTLR1/2/Pam3CSK4) were then compared with the original

crystal structure.

Results and Discussion

Molecular model of hTLR10 and evaluation
We built the 3D structure of hTLR10 using the crystal structure

of hTLR1, which serves as a suitable template (PDB ID 2Z7X-B)

[31]. Generally, TLR ectodomains are composed of a repeated

number of LRR, which vary in numbers among the known TLRs

[32]. Recent modeling studies of endosomal TLRs (hTLR7, 8, 9)

have shown that researchers used multiple templates to derive an

optimum alignment for all endosomal LRRs [33]. Conversely, we

used a single template (2Z7X-B) because it has 19 LRR, which are

aligned well with the 19 LRR in the target hTLR10. The primary

sequence alignment of hTLR10 and its template was used to

construct the final model (Figure 1). The identity and similarity

between the target and template were 40.74% and 59.26%,

respectively. Additionally, the sequence identity of each LRR

between the target/template is listed in Table 1. Direct

comparison of the modeled hTLR10 with its template showed

that the structural differences observed in the loop regions of the

LRR6, LRR14, LRR15, LRR19 and the rest of the regions were

similar to that of the template with RMSD values of 1.14 Å. These

structural differences occur away from the ligand binding sites

(Figure S1). Moreover, when we compared hTLR10 with the

available crystal structure of hTLR2 (in the same family) [31], we

found that the variation in loop regions in LRR1, LRR2, LRR3,

LRR4, LRR5, LRR7, LRR8, LRR11, and the rest of the regions

was similar to that of hTLR2 with RMSD values of 1.54 Å. The

final 3D structure of hTLR10 showed large characteristic

‘‘horseshoe-like’’ structures with concave surfaces formed by 19

parallel b-strands, whereas the convex surface contains more

diverse secondary structural elements, including a variety of

different length loops, 11 a helices and three 310 helices. Like all

TLRs, hTLR10 also contains the N-linked glycosylation consensus

sites. The glycans were exemplified to be non-functional for ligand

binding [25,28–31]. Hence, we predicted seven glycosylation sites

for hTLR10, which are located in the LRR4 (Asn91), LRR6

(Asn142), LRR8 (Asn189), LRR10 (Asn231), LRR12 (Asn254),

LRR15 (Asn369) and LRR16 (Asn378). However, our prediction

also revealed that none of the glycosylation sites contributed in the

dimerization and ligand binding sites. The predicted glycosylation

sites are similar to those of TLR1 family members [34].

Structure refinement and stability evaluation by
molecular dynamics

We performed 2 ns MD simulations to explore the structural

stability of the model structure of hTLR10 along with the crystal

coordinates of hTLR2 and 1. The crystal structures of the hTLR2/1

heterodimer along with its ligand were solved at 1.8 Å resolutions

[31]. The ligand was removed from the heterodimer and the dimer

was separated into hTLR1 and hTLR2. To evaluate the overall

stability of these models, we calculated the RMSD from the initial

structure of all backbone Ca atoms as a function of simulation time,

as shown in Figure 2A. The hTLR1 and hTLR2 reached equilibrium

around 500 ps, whereas hTLR10 reached the plateau after 900 ps.

The RMSD value of the Ca atom between the initial snapshot and

the final structure was around 2.8 Å for hTLR10, 2.6 Å for hTLR2

and 2.4 Å for hTLR1, which suggests that the protein remains stable

after reaching the equilibrium. The final snapshot at the end of the

simulation was selected from the 2 ns and subjected to further energy

minimization for fine refinement. The optimized structures of the

hTLR10, hTLR2 and hTLR1 were validated using the PRO-

CHECK program and Verify 3D server. Analysis of hTLR10

revealed that 94% of the dihedral angles are found in most favorable

regions of the Ramachandran plot and that the remaining 6% are

found within the allowed regions (Figure S2). This highlights the

excellent geometry of the model. Verify3D reports no values below

0.09, further indicating that all the residues are located in favorable

structural environments (Figure 2B). It should be noted that before

the simulation, hTLR1 and 2 had a few residues in the outlier region.

However, evaluation of the optimized structure of hTLR1 from the

MD simulation revealed that 96.1% of the residues were present in

the most favorable regions and remaining 3.9% residues were located

in allowed regions (Figure S2). Verify3D reported no values below

0.15 (Figure 2B). In the case of hTLR2, 94.14% of the residues were

located in most favorable region and 5.85% residues were located in

the allowed region (Figure S2). Verify3D reported no values below

0.17 (Figure 2B). This analysis indicates excellent geometry of the

crystal structure after the MD simulation and is thus considered a

reliable source for further studies.

Comparison of hTLR10 with hTLR1 and hTLR2
As shown in Figure 3, the structure based sequence alignment of

hTLR10 with hTLR2 and 1 shows that the LRR consensus

sequence motif ‘‘LxxLxLxxNxLxxLxxxxLxxLxx’’ aligned well at

the N-terminal, C-terminal and Central domain. In the above

sequence motif, x denotes any amino acids, and L represents

leucine, which can be replaced by other hydrophobic amino acids

such as isoleucine, valine and phenylalanine. The consensus

asparagine (N) in the LRR motif plays an important role in the

formation of the hydrogen bonds with the carbonyl backbone of

the neighboring strands [5,35]. The hTLR10 N-terminal domain

was composed of 1–4 LRR modules, with each LRR module

length being around 24 residues and the structurally important

asparagine ladder being conserved. Conversely, the central

domain is composed of 5–11 LRR modules and differs

considerably from the standard structure, with the lengths of their

LRR modules ranging from 20–30 amino acids and their b-sheet

conformations deviating significantly from those of the standard

LRRs. The absence of an asparagine ladder in the central domain

leads to the formation of an unusual b-sheet conformation.

However, we observed such unusual regions in hTLR1 and 2.

These unusual regions of hTLR1 and 2 possess hydrophobic

pockets, which have been reported to play an essential role in

ligand recognition [31]. This analysis shows that residues situated

in the ligand binding hydrophobic pockets in hTLR2 and 1 are

conserved in hTLR10 (Figure 3 shaded by cyan). Hence, we

believe that this region in hTLR10 might play a role in ligand

recognition. Finally, the C-terminal domain of hTLR10 contains

12–19 LRR modules and the asparagine ladder is conserved in all

LRRs, with each LRR module ranging in length from 20–30

Molecular Modeling of hTLR10
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amino acids. Bell et al. predicted that there were insertions that

occur at the position of LRR12 in hTLR2, LRR4 in hTLR10, and

LRR12 in hTLR1 [32]. However, our structure based analysis of

hTLR10 along with the crystal structures of hTLR1 and hTLR2

did not reveal such an insertion in these three receptors.

Receptor dimerization interface
The signaling mechanism of all TLRs is likely involved in

dimerization of the ectodomains [36]. However, this can be

achieved in various ways by using different receptors and

stimulation. It should be noted that the ligand induced

Figure 1. Sequence alignment used to build hTLR10, based on the hTLR1 template retrieved by MOE. Gray blocks: level of sequence
similarity. Tallest blocks: identical residues at that position. Intermediate blocks: non-identical residues that are relatively conservative with respect to
their properties. Small blocks: residues sharing mild conservation with respect to structure or function. The absence of a block indicates no
appreciable structure/function conservation. Gaps in one sequence relative to the other are indicated by dashes. 2Z7X-B denotes hTLR1. The
nineteen LRR are highlighted and contrasted by varying the colors.
doi:10.1371/journal.pone.0012713.g001
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dimerization takes place in the TLR signaling, and a few crystal

structures have already been solved based on this idea [31,37,38].

However, this cannot be conducted computationally; hence, we

initially focused on the dimerization mechanism of hTLR10 with

hTLR2 and 1 using protein-protein docking. The procedure of

protein-protein docking is highly computationally oriented. The

reliability of docking results strongly depends on the quality of the

docking methods. To verify the prediction confidence of the TLR-

TLR interaction of these three methods, GRAMM-X, ZDOCK

and RosettaDock, we restrainedly inputted hTLR1 and hTLR2,

for which the heterodimeric crystal structure is known, as test cases

[31]. The native dimerization structure of hTLR2/1 was found in

the top 100 solutions and it was ranked 23rd by GRAMM-X, 1st

by RosettaDock and 80th by Z-DOCK. These results demonstrate

that our docking protocol was reliable; therefore, we used it in the

subsequent hTLR10/2, hTLR10/1 hetero and hTLR10 homo-

dimer docking calculations.

We conducted restrained rigid-body docking of the hTLR10

homo and heterodimer. Each docking returned the 100 most

probable models from unbound monomer components. Thus,

each complex received a total of 300 candidate models

separated into three sets. Some models from the same set had

similar conformations, whereas most differed considerably from

one another. There were some shared models (intersection)

across both sets for each complex. These shared models were

considered as more confident solutions than others. The

optimal docking solution was selected for each complex from

the 300 candidates based on the following criteria: (i) models

that do not exist in the intersection of the three resulting sets

were excluded; (ii) only those models in which the dimerization

geometry was supported by the results obtained from our

comparative studies were included. The comparative studies

clearly indicated that the dimerization region is located at the

border of the central region followed by the C-terminal end

(Figure 3 represented in green color shade). Additionally, we

considered the active site region to be located on the adjacent

sides in the dimer interface. This two-step filtering led to a

unique solution. The ZDOCK/GRAMM-X/RosettaDock

ranking and the buried surface interaction area of all optimal

models are provided in Table 2.

hTLR10-hTLR2 complex
The orientation and interaction of the final hTLR10/2 docked

complex was similar to the hTLR2/1 crystal complex and

TLR10/1 (Figure 4A&B). The buried surface at the interface of

the hTLR10/2 complex constitutes 945.58 Å2 from the hTLR10

and 958.39 Å2 from hTLR2, which is in the range of typical

physiological interaction surfaces. Based on the solvation energy

calculated from the buried surface area and specific electrostatic

interaction, the dimer interface was judged by PROTORP server.

There are 14 residues from the hTLR10 that make contact

(DASA.1 Å2) with 15 residues from hTLR2. The non-covalent

interactions across the hTLR10/2 interface are listed in Figure 4C.

The hTLR10/2 interface possesses a small hydrophobic core

located in the central region (LRR11) surrounded by hydrogen

bonding and ionic interaction in the periphery. Five hydrogen

bonds are present in the interface of the hTLR10/2 complex

(Figure 4D), which includes a double hydrogen bond between the

K3470 side chain and the OH group of T3619. The carbonyl

backbone of N3970, carboxylic group of E3750 and carboxamide

group of N3450 form a hydrogen bond with the NH2 group of

K3839, NH2 group of Q3379 and carboxylic group of E3859,

respectively. Single apostrophes are used for the hTLR10 residues

and double apostrophes for the hTLR2 to differentiate them from

the ligand throughout the article.

Table 1. Sequence identities (%) of target-template of each
LRR pairs.

LRRs hTLR10 LRRs hTLR10

1 45.83 11 24.14

2 62.5 12 40.91

3 38.1 13 41.67

4 68 14 36

5 47.83 15 37.5

6 26.09 16 45.45

7 41.67 17 43.48

8 23.33 18 36.36

9 44.44 19 20.83

10 50 Avg 40.74

Note: LRRs, Leucine rich repeats; hTLR10, human Toll like receptor10; Avg,
average value.
doi:10.1371/journal.pone.0012713.t001

Figure 2. Structure refinement and stability evaluation. (A) The MD trajectory-based analyses for the model refinement. The RMSD plot of
hTLR10, 2 and 1 during the dynamic simulation. (B) The 3D structure profile plot for hTLR10, 2 and 1. The refined hTLR1 and hTLR10 are shown in blue
and red, whereas hTLR2 is shown in green.
doi:10.1371/journal.pone.0012713.g002

Molecular Modeling of hTLR10
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Figure 3. Structure-based sequence alignments of hTLR10, 2 and 1. The hTLR10, 2 and 1 sequences are aligned based on their structures.
Conserved leucines and asparagine ladder are written in red and green, respectively. The positions of b-strands are shown above the consensus
patterns.
doi:10.1371/journal.pone.0012713.g003

Table 2. Ranking and interaction area of the selected docking models.

Complexes GRAMM-X Z-DOCK RosettaDock Interaction Area (Å2)

hTLR10/hTLR2 33 26 1 945.58

hTLR10/hTLR1 45 73 8 809.63

hTLR10/hTLR10 81 59 13 858.74

doi:10.1371/journal.pone.0012713.t002

Molecular Modeling of hTLR10
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hTLR10-hTLR1 complex
The buried interface surface area between the hTLR10 and the

hTLR1 is 809.63 Å2 from hTLR10 and 798.12 Å2 from hTLR1

(Figure 5A&B). There are 15 residues from hTLR10 that makes

contact (DASA.1 Å2) with 10 residues from hTLR1. The non-

covalent interactions such as hydrophobic and ionic interactions

across the hTLR10 and the hTLR1 are listed in Figure 5C. Five

hydrogen bonds are present in the interface of the hTLR10/1

complex (Figure 5D). The NH2 group of R337+ forms two hydrogen

bonds with carboxylic group of E3859 and E3639, respectively. The

carboxamide group of Q383+ forms a hydrogen bond with the

carboxylic group of E3859 of hTLR10. The side chain of K3839 forms

two hydrogen bonds with the backbone oxygen group of L359+ and

the backbone oxygen group of N357+. Single apostrophes are used

for the hTLR10 residues and double apostrophes for the hTLR2 to

differentiate them from the ligand throughout the article.

hTLR10-hTLR10 dimer
The hTLR10 homodimer docking orientation is the same, but the

dimerization region is different from the hTLR10 heterodimer

complexes. The hTLR10 homodimerization region includes LRR11-

17 in comparison to LRR11-14 in the heterodimer complex. Such

types of dimerization have been conspicuously noted in TLR4

homodimer. The hTLR10 homodimer docked complex resembles a

typical ‘m’ shaped heterodimer, with two N-termini extending

outwards in opposite directions and LRRCT modules converging at

the center (Figure 6A&B). However, the hTLR10 homodimer

possesses more hydrophobic and hydrogen bond interactions than its

heterodimer complex. The buried surface area across the hTLR10

homodimer complex is 858.74 Å2. There are 13 and 14 residues from

hTLR10 chain D and E* that contribute to the above interface.

Figure 6C shows the hydrophobic and ionic interaction between the

homodimer of hTLR10/10*. Eight hydrogen bonds are present at

the interface of the hTLR10 homodimer, which includes the

carbonyl backbone of N4079 and Y4309 that forms two hydrogen

bonds with the side chain of K432*. Similarly, the side chains of

K4329, Q4549, N3629 and K3839 form hydrogen bonds with the side

chains of N404*, N425*, K356* and E358*, respectively. The

backbone oxygen group of K4099 forms hydrogen bonds with the

side chain of Y403* (Figure 6D). Single apostrophes are used for the

hTLR10 residues and asterisks for the other hTLR10 monomer to

differentiate them from the ligand throughout the article.

Figure 4. Protein-protein docking model of the hTLR10/2 complex. hTLR2 and hTLR10 are shown schematically in cyan and red, respectively.
Each LRR module is numbered and the N-terminal, central, and C-terminal subdomains are labeled. A and B, side view (A) and top view (B) of the
complex in ribbon representation. (C) Residues involved in the heterodimer interface in the hTLR10/2 are shown in cyan and red, respectively. The
interactions between the residues are depicted by dashed lines. (D) Hydrogen bonds between hTLR10 and hTLR2 (cyan) are marked by black dashes.
doi:10.1371/journal.pone.0012713.g004
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The docking results revealed that the amino acid residues across the

interface of the hTLR10 homo and heterodimer vary depending on

their partners, which clearly demonstrates that hTLR10 binds

specifically with its partners. The predicted docked complexes were

cross checked by the electrostatic potential of the individual structure.

The surface electrostatic calculation from hTLR10 revealed that the

highly negative charged surface along with a few positive patches were

located at the central region, followed by the C-terminal (LRR11-14)

(represented by the green color in Figure 3), whereas hTLR2 and 1

contain highly basic amino acids (Figure 2B). The hTLR10 negatively

charged surface (LRR11-14) would bind with hTLR2 and 1 (LRR11-

14) based on their respective opposite charges. However, in the case of

hTLR10, homodimer formation occurs between LRR11-17 of each

monomer. These LRR regions of each monomer have eight negative

and four positive charges where only a few residues are involved in the

complementary interaction has shown in Figure S3.

Virtual Ala scanning
An approximate estimation of the individual contributions of the

amino acid residues involved in the interaction was obtained by

computational methods. We used the Rosetta interface computa-

tional mutagenesis approach [39], which is similar in principle to

the experimental Ala-scanning mutagenesis procedure, to estimate

the change in the binding free energy (DDGbind) when each residue

at the interface of the hTLR10/2, hTLR10/1 and hTLR10/10*

complex is mutated to Ala. We utilized a cut-off of DDGbind.1.0

kcal/mol to qualitatively identify hot-spot residues that are essential

for the interactions. Correctly identified essential residues have

predicted and observed (DDGbind) values greater than or equal to

1 kcal/mol; whereas correctly identified neutral residues have

predicted and observed (DDGbind) values less than 1 kcal/mol.

To verify the prediction confidence of alanine-scanning muta-

genesis, we input the hTLR2/1 crystal structure as a test case. The

program predicted a few residues across the complex interface. Of

those, P315 in TLR1 has a value of 2.65. A mutation in this residue

leads to loss of the hTLR1/2 signaling [40]. This shows that P315 is

essential for the dimerization of hTLR1/2 complex. Therefore, we

believe that our protocol is reliable and we subsequently used it to

evaluate the docked complexes. The alanine scanning experiments

showed that two residues (T3619 and K3839) from hTLR10 and two

Figure 5. Docking model of the hTLR10/1 complex. The hTLR10 and hTLR1 are shown schematically in red and light blue, respectively. Each
LRR module is numbered and the N-terminal, central, and C-terminal subdomains are labeled. A and B, side view (A) and top view (B) of the complex
in ribbon representation. (C) Residues involved in the heterodimer interface in hTLR10/1 are shown in red and blue, respectively. The interactions
between the residues are depicted by dashed lines. (D) hTLR10 residues interact with hTLR1 by making hydrogen bonds (black dashes).
doi:10.1371/journal.pone.0012713.g005
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residues (K3470 and Y3760) from hTLR2 were crucial for the

formation of hTLR10/2 complex (Table 3), emphasizing their

contribution to the complex stability. Conversely, evaluation of the

hTLR10/1 complex revealed that two residues from hTLR10

(K3839 and E3859) and two residues from hTLR1 (R337+ and

Q383+) were indispensible for hTLR10/1 complex formation.

Finally, the dimer complex showed that one residue from hTLR10

(K3839) and one residue from hTLR10* (K356*) were essential for

homodimer complex formation. The rest of the residues at both

complex interfaces had DDGbind values .0.1 kcal/mol, which

suggests that their mutation to Ala does not have any functional

consequences on the formation of complexes.

Possible ligand recognition for hTLR10 based on the
cavity volume

Recent studies have revealed the binding of the tri-acylated

(Pam3CSK4) and di-acylated lipopeptide (Pam2CSK4) to hTLR2/

1 and mTLR2/6 complex, respectively [31,41]. It has also been

Figure 6. Docking model of the hTLR10/10* complex. hTLR10 and hTLR10* are shown schematically in red and green, respectively.
PamCysPamSK4 is shown in dark blue. Each LRR module is numbered and the N-terminal, central, and C-terminal subdomains are labeled. A and B,
side view (A) and top view (B) of the complex in ribbon representation. (C) Residues involved in the homodimer interface in the hTLR10/10* are
shown in red and green, respectively. The interactions between the residues are depicted by dashed lines. (D) hTLR10 residues interact with hTLR10
by making hydrogen bonds (black dashes).
doi:10.1371/journal.pone.0012713.g006

Table 3. Results of the predicted contributions of residues
through virtual alanine scanning.

TLR10/2 TLR10/1 TLR10/10*

PDB Chain DDGbind PDB Chain DDGbind PDB Chain DDGbind

Y323 A 2.04 Q383 B 1.25 K383 E 1.35

K347 A 2.72 R337 B 1.70 T430 E 3.56

Y376 A 0.92 K383 D 1.04 K383 D 1.32

T361 D 1.23 E385 D 1.01 K432 D 2.68

K383 D 0.93

Note: Chain A, hTLR2; Chain B, hTLR1; Chain D, hTLR10; Chain E, hTLR10*; PDB,
position of mutated residues in the pdb file; DDGbind, predicted change in
binding free energy upon alanine mutation.
doi:10.1371/journal.pone.0012713.t003

Molecular Modeling of hTLR10

PLoS ONE | www.plosone.org 9 September 2010 | Volume 5 | Issue 9 | e12713



demonstrated that hTLR2 possesses the di-acylated lipid binding

pocket with a volume of ,1200 Å3 and that hTLR1 has a single

acylated lipid binding pocket with a volume of 400 Å3. However,

the cavity volume of our hTLR10 model was 508 Å3. This pocket

size diversity is mandatory for discrimination of structurally

analogous lipopeptides. Unlike other LRR proteins, the ligand

binding cavity is located in the convex region, which lies in

between LRR9,12 [31]. The domain-exchange experiments

showed the importance of these regions (LRR9-12) in TLR1 and

6, which plays a crucial role in discrimination of a wide variety of

ligands.

In addition to the cavity volume, we compared the hydrophobic

amino acids lining the lipid binding pocket of hTLR10

(LRR9,12) with the template hTLR1 (LRR9,12). The results

showed that out of 18 hydrophobic residues, nine were identical

and the rest were replaced by other hydrophobic residues in

hTLR10 (Figure 7C). Previous studies have shown the importance

of M338 and L360 in TLR1, which play a crucial role in ligand

recognition. Substitution of these residues in TLR1 by F343 and

F365 in TLR6 results in blocking the ligand binding cavity due to

the bulky side chain. However, these important residues are

identical in hTLR10 (M338 and L360) and could play a significant

role in recognizing a single acyl chain of lipopeptide (Figure 7D).

The results of the present study clearly demonstrate that

hTLR10 might be able to accommodate single acyl chains from a

tri or di-lipopeptide ligands. This provides some information that

may enable identification of the ligand responsible for the

activation of the hTLR10/2, hTLR10/1, and hTLR10/10

complexes. Previous studies have shown that hTLR2 can

accommodate two ester bound lipid chains [31] and hTLR10

was found to possess amide bound lipid binding chains in the

current study, which indicates that the tri-acylated (Pam3CSK4)

lipopeptides act as ligand molecules. Additionally, the hTLR10

and hTLR1 central domain (LRR9-12) each possess a single acyl

binding cavity, which indicates that neither Pam2CSK4, PamCy-

sPamSK4 nor Macrophage-activating lipopeptide-2 (MALP-2) are

responsible for the activation of hTLR10 homo and hTLR10/1

heterodimer complexes. So, we ruled out the possibility of the

Pam2CSK4 and MALP-2 due to its nature. These ligands possess

two ester bound lipid chains that run parallel to each other and it

is not possible to accommodate both hTLR10 homo and

hTLR10/1 heterodimer complexes due to the lack of a binding

cavity. Whereas, the PamCysPamSK4 structure is different from

the above di-acyl peptides, which have acyl chains located at the

C1 and C3 atoms of glycerol (Figure S4). We have hypothesized

that these two acyl chains can be accommodated by hTLR1 and

hTLR10 respectively. We have tested our hypothesis by the

docking experiments.

Protein-ligand docking validation of known TLR1/2/
Pam3CSK4 complexes

To evaluate our docking simulation, the crystal structure of

hTLR1/2/Pam3CSK4 was downloaded from the PDB and

used to conduct two different docking calculations [31]. The

dominant clusters from the MOE-Dock and ASEDock docking

simulations were found to have the same binding orientation

when compared with the original crystal structure. The

similarity between the present docked poses (ASEDock yielded

bound conformations with the lowest RMSD (0.14), followed

by MOE-Dock (0.38)) and the crystal structures shows that our

docking protocol was able to reproduce the near native

hTLR1/2/Pam3CSK4 complex. Therefore, we consider that

our protocol to be trustworthy and we used it in the subsequent

docking calculations.

Figure 7. Structural comparison of ligand binding sites. (A) Structural comparison of the lipid-binding pockets of hTLR1 (Blue) and hTLR10
[12]. (B) Superimposition of the TLR6 (Green), TLR10 [12] and TLR1 (Blue): The residues responsible for the channel-blocking F343 and F365 in TLR6
are shown as green sticks and the corresponding residues M3389 and L3609 of TLR10 and M338+ and L360+ of TLR1 that are not involved in blocking
are shown as red and blue sticks, respectively.
doi:10.1371/journal.pone.0012713.g007
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hTLR10 complexes and their ligand interaction
The hypothesized (PamCysPamSK4, Pam3CSK4) ligands were

docked into the active site of hTLR10/1, hTLR10/2 and

hTLR10/10*. A close up view of the Pam3CSK4 in the

hTLR10/2 binding sites revealed an extensive spatial overlap of

the predicted best poses, despite the variety of docking methods

employed (Figure 8A). The bound conformation of the ligand

present in the hTLR10/2 shows that the two ester-bound lipid

chains of Pam3CSK4 are inserted in hTLR2, through a crevice

formed between the LRR11 and LRR12 loops and interact with its

internal hydrophobic pocket, whereas the remaining amide-bound

lipid chains are inserted into hTLR10 through the gap between the

LRR11 and LRR12 loops and interact with its internal hydropho-

bic pocket. The conserved cysteinyl group and glycerol backbone of

the lipopeptide is located in the narrow opening formed, where the

hTLR10 and hTLR2 pockets join. Their positions are partially

fixed by five hydrogen bonds: between the backbone nitrogen of

F34999 and a carbonyl oxygen of the lipopeptide, between the

backbone oxygen of N29499 and the backbone nitrogen of K4 in

the lipopeptide, between the backbone oxygen of Y3139 and the

backbone nitrogen of K3 in the lipopeptide, between the carboxamide

group of Q3169 and the amide oxygen in the lipopeptide and between

the Q3159 side chain and the carbonyl backbone of K5 in the

lipopeptide. The docked complex of hTLR10/1/PamCysPamSK4

shows a slight diverse binding mode in comparison with the TLR2/1/

Pam3CSK4 and mTLR2/6/Pam2CSK4 complex.

It is important to note that the ester bound lipid chain attached

to the glycerol is longer than the amide bound lipid chain. The

cavity volume comparison clearly indicates that hTLR10 (518 Å3)

is slightly higher than hTLR1 (400 Å3). Hence, the ester bound

lipid chain cannot accommodate in hTLR1. As expected, the

docking results showed that ester-bound lipid chains are

recognized through the binding pocket of hTLR10 and that

amide-bound chains are recognized through the binding pocket of

hTLR1 (Figure 8B). There are four hydrogen bonds that are

formed in the hTLR10/1 binding pocket: between the carboxylic

group of D2889 and the NH2 group of K4 in the lipopeptide,

between the hydroxyl group of Y3209 and the amide oxygen in

the lipopeptide, between the carbonyl backbone of G313+ and

the backbone nitrogen of K3 in the lipopeptide and between the

carboxamide of Q316+ and the amide oxygen in the lipopeptide.

Single apostrophes are used for the hTLR10 residues and a plus

symbol for the hTLR1 monomer to differentiate them from the

ligand.

In case of the hTLR10 homodimer, docking with PamCy-

sPamSK4 revealed that there is a slight difference in the

orientation of the ligand recognition site as well as the residual

contribution in the binding pocket. The LRR11 and LRR12 loops

of both hTLR10 chains are located in the center of the

dimerization interface and provide key hydrophobic residues to

enable recognition of the lipid chains of PamCysPamSK4

(Figure 8C). The hydrogen bonds present at the interface of

hTLR10/10* with PamCysPamSK4 are as follows: between the

carboxylic group of Q3169 and the amide oxygen in the

lipopeptide, between the backbone oxygen of D2889 and K4 in

the lipopeptide, between the backbone oxygen of Y313* and the

backbone nitrogen of K3 in the lipopeptide, between the

carboxamide of Q316* and the amide oxygen in the lipopeptide

and between the carboxamide of Q315* and K5 in the

lipopeptide. The docking studies clearly indicate that LRR9-12

present in the TLR1 family members plays a crucial role in ligand

recognition, and that the hydrophobic residues present in that

region are important for recognizing the acyl chain. These results

are in agreement with the domain-swap experiments [31].

Furthermore, the possible ligands predicted in this study are in

agreement with those of a previous study conducted by Hasan et

al., who reported that the ligands for TLR1 family such as tri- and

di-acylated lipopeptides might be the same for hTLR10 [12].

Previous studies have shown that NF-kB, ENA-78 and other gene

promoters are activated by an unknown ligand through the

TLR10 pathway [42]. Based on our current study, PamCy-

sPamSK4 and Pam3CSK4 might be possible ligands for the

activation of TLR10 signaling pathways.

Taken together, we elucidated the 3D structure of hTLR10 to

show its homo and heterodimerization with hTLR1 and hTLR2.

Based on these models, we also suggest three possible receptor

dimerization schemes that require different minimum ligand sizes.

These complexes provided the specific active sites, which enabled

us to predict the possible ligands necessary for the TLR10

activation. We also proposed that PamCysPamSK4 and

Pam3CSK4 are the possible ligand molecules for the TLR10

pathway. Our models provide a structural framework for

interpreting experimental data and allow predictions of the TLR

signal transduction process. The presented modeling approach can

be extended to other repetitive protein domains.

Supporting Information

Figure S1 The backbone superimposition of hTLR10 with

hTLR2 and hTLR1 are shown as red, cyan and blue, respectively.

Found at: doi:10.1371/journal.pone.0012713.s001 (1.75 MB

TIF)

Figure S2 The Ramachandran plot of refined hTLR10, 2 and 1.

Found at: doi:10.1371/journal.pone.0012713.s002 (1.85 MB TIF)

Figure S3 Electrostatic potential on the molecular surface of

hTLR10, 2 and 1. The LRR9-17 patches of hTLR10, 2 and 1 are

circled. Red and blue indicates negative and positive potential,

respectively. The surface potential was calculated and displayed

using the PyMOL ABPS tool.

Found at: doi:10.1371/journal.pone.0012713.s003 (2.64 MB TIF)

Figure S4 Chemical structure of lipopeptides used for docking

studies.

Found at: doi:10.1371/journal.pone.0012713.s004 (0.76 MB TIF)
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Figure 8. Protein-ligand docking complex. (A) The docked lipopeptide-binding site of the hTLR2-hTLR10 complex. The hTLR2 and hTLR10
residues involved in Pam2CSK4 binding are shown in cyan and red, respectively. Potential hydrogen bonds connecting the TLRs and the ligands are
shown in broken black lines. Pam3CSK4 is shown in dark blue. (B) The docked lipopeptide-binding site of the hTLR10-hTLR1 complex. The hTLR10 and
hTLR2 residues involved in PamCysPamSK4 binding are shown in red and light blue, respectively. Potential hydrogen bonds connecting the TLRs and
ligands are indicated by broken black lines. PamCysPamSK4 is shown in dark blue. (C) The docked lipopeptide-binding site of hTLR10-hTLR10*
complex. The hTLR10 and hTLR10* residues involved in PamCysPamSK4 binding are drawn in red cyan green, respectively. Potential hydrogen bonds
connecting the TLRs and the ligands are shown by broken black lines. PamCysPamSK4 is shown in dark blue.
doi:10.1371/journal.pone.0012713.g008
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