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Abstract

Because many species-specific phenotypic differences are assumed to be caused by differential regulation of gene
expression, many recent investigations have focused on measuring transcript abundance. Despite the availability of high-
throughput platforms, quantitative real-time polymerase chain reaction (RT-QPCR) is often the method of choice because of
its low cost and wider dynamic range. However, the accuracy of this technique heavily relies on the use of multiple valid
control genes for normalization. We created a pipeline for choosing genes potentially useful as RT-QPCR control genes for
measuring expression between human and chimpanzee samples across multiple tissues, using published microarrays and a
measure of tissue-specificity. We identified 13 genes from the pipeline and from commonly used control genes: ACTB,
USP49, ARGHGEF2, GSK3A, TBP, SDHA, EIF2B2, GPDH, YWHAZ, HPTR1, RPL13A, HMBS, and EEF2. We then tested these
candidate genes and validated their expression stability across species. We established the rank order of the most preferable
set of genes for single and combined tissues. Our results suggest that for at least three tissues (cerebral cortex, liver, and
skeletal muscle), EIF2B2, EEF2, HMBS, and SDHA are useful genes for normalizing human and chimpanzee expression using
RT-QPCR. Interestingly, other commonly used control genes, including TBP, GAPDH, and, especially ACTB do not perform as
well. This pipeline could be easily adapted to other species for which expression data exist, providing taxonomically
appropriate control genes for comparisons of gene expression among species.
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Introduction

Humans and chimpanzees are about 98.8% similar at the

genomic level of alignable sequences [1]. Despite this modest

genetic divergence, they vary in many remarkable behavioral and

morphological aspects. Chimpanzee-human comparisons not only

provide insights into human origins and contribute to understand-

ing the evolution of uniquely human traits, they also provide

practical medical insights; although there may be pathological and

prognostic differences, the fact remains that chimpanzees and

humans differ in susceptibility and outcomes for many diseases [2].

For instance, Alzheimer’s disease is more common in humans and

progression to AIDS is very rare in chimpanzees infected with

HIV [3]. Humans and chimpanzees are almost identical at the

protein sequence level; hence, it has been hypothesized that most

of the phenotypic differences are caused by the regulation of gene

expression [4]. Many studies have therefore focused on detecting

differences in gene expression between these two species [5–16].

Gene transcript levels can be very precisely and reproducibly

measured with quantitative real-time polymerase chain reaction

(RT-QPCR). This technique is a relatively inexpensive technology

for assaying the expression of a small number of genes. RT-QPCR

is often preferentially used because of its wider dynamic range,

compared to that of microarrays [17], and is used for

corroborating results obtained from deep RNA sequencing [18].

However, the accuracy of RT-QPCR can be confounded by many

sources of variation, including the total RNA content of the

sample, the number of cells in the starting material, the RNA

extraction efficiency, differential enzymatic efficiencies, and

transcriptional activity [19].

One of the most widely used approaches to correct for these

variables is the normalization of expression levels with control

genes [20]. These control genes, also called normalizers or

reference genes, are often chosen from ‘‘housekeeping’’ genes

because they are expected to be evenly expressed across most

tissues and samples. However, caution is required when choosing

control genes. In particular, control genes that are not equally

expressed across samples, especially from different tissues or

species, can affect the accuracy of the calculation of relative

expression differences between samples. Moreover, it has been

shown that using only a single control gene can lead to appreciable

normalization errors and that using several normalizers is

preferable in order to compensate for the potential biases

introduced by an inappropriate normalizer [19,21–22]. Despite
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these known pitfalls, the choice of control genes for RT-QPCR is

usually dictated by customary usage rather than empirical

evidence and, most often, only a single control gene is used [23]

(e.g. [7,24]). It seems more and more evident that finding

‘‘universal’’ RT-QPCR control genes is a nearly impossible task.

Instead, it is necessary to identify control genes that are most

appropriate for the species, experimental conditions, and tissue

types being assayed [20–21,25–30].

In order to find control genes for comparing human-

chimpanzee gene expression across multiple tissues, we developed

a pipeline that draws on information from published microarray

datasets for identifying candidate normalizers. These genes were

chosen according to several criteria, including low variance within

and between species and equal expression across tissues. We then

validated each of the candidate control genes and proposed a

minimal set of empirically validated control genes appropriate for

assaying transcript abundance in cerebral cortex, liver, and skeletal

muscle genes.

Results and Discussion

In order to understand the genetic basis of many human specific

traits, it is often relevant to ask whether particular genes are

differentially expressed between humans and their closest living

relative, the chimpanzee [4]. For studies involving a small number

of genes, RT-QPCR is the gold standard for assaying transcript

abundance as it presents several practical advantages [17].

However, this technology requires the use of control genes for

normalization across multiple samples to account for technical and

intrinsic variation [20]. Ideally, these control genes should be

constantly expressed across all assayed samples. In the case of

inter-species comparisons, the selection of these genes is

particularly challenging since they need to be steadily expressed

at multiple levels of comparison: within and between species as

well as across tissues. Because ‘‘universal’’ control genes probably

do not exist, it is important to identify appropriate genes for each

project [20–21,25–30]. In order to find such genes for comparing

human and chimpanzee gene expression across multiple tissues,

we developed a pipeline that consists of three steps: (1) determine a

set of genes from published microarray studies with low variation

between and within species as well as across tissues; (2) design and

test for specificity primers for these genes; and (3) perform

expression assays and variation analyses to determine the best set

of control genes.

Candidate reference genes
We computed the evenness score [31] for 22,667 genes from

the Novartis expression atlas for 27 human tissues and examined

within and between human-chimpanzee variation for 4,365

genes and five tissues. We were able to calculate combined

variation scores (see Materials and Methods) for 3,556 genes

present in both the Novartis expression atlas and the human-

chimpanzee microarray dataset (Table S1). We were interested

in the top 5% of the list (,178 genes) with the smallest score.

Among these promising genes, we selected five genes with non-

related functions and spanning a range of expression levels:

GSK3A, USP49, EEF2, ARHGEF2, and EIF2B2 (Table 1). For

comparison, we selected commonly used control genes in the

literature: ACTB, GAPDH, HMBS, HPTR1, RPLI3A, SDHA,

TBP, and YWHAZ (Table 1). These genes have been used in

numerous studies; GAPDH and ACTB, in particular, have been

used in previous comparative primate gene expression studies

[7,24]. Interestingly, ACTB, GAPDH, and TBP were not among

the 5% most stable genes (Table 2). HMBS, SDHA, and RPL13A

were not present in the primate microarray dataset. HMBS and

SDHA were respectively within the 15 and 50% most stably

expressed genes across the 26 Novartis tissues. Due to a lack of

correlation between transcript abundance measurements from

microarray and RT-QPCR technologies, our method does not

guarantee that optimal genes identified in this step of our

pipeline are going to be the most optimal genes for RT-QPCR.

However, we believe that the top 5% of the list of candidates

contains genes with desirable properties for further testing with

the geNorm method.

Table 1. List of candidate genes.

Symbol Name Function Rank

GSK3A Glycogen synthase kinase 3 alpha Involved in hormonal control of regulatory proteins 13*

USP49 Ubiquitin specific peptidase 49 Breakdown peptides 15*

EIF2B2 Eukaryotic translation initiation factor 2B,
subunit 2 beta

Involved in protein synthesis 42*

ARHGEF2 Rho/rac guanine nucleotide exchange
factor (GEF) 2

Activates Rho GTPases, involved in numerous cellular processes
initiated by extracellular stimuli (cell cycle, motility, barrier etc…)

56*

EEF2 Eukaryotic translation elongation factor 2 Essential factor for protein synthesis 162*

ACTB Beta actin Cytoskeletal structural protein 450

TBP TATA box binding protein RNA polymerase II transcription factor 761

GAPDH Glyceraldehyde-3-phosphate dehydrogenase Glycolytic enzyme 990

YWHAZ Tyrosine 3-monooxygenase/trytophan 5-
monooxygenase activation protein, zeta polypeptide

Mediate signal transduction by binding to phosphoserine-containing
proteins

2302

HPRT1 Hypoxanthine phosphoribosyl-transferase 1 Generation of purine nucleotide through the purine salvage pathway 2346

HMBS Hydroxymethylbilane synthase Heme synthesis and porphyrin metabolism ?

SDHA Succinate dehydrogenase complex, subunit A Transfer electrons in the TCA cycle and respiratory chain ?

RPL13A Ribosomal protein L13a Structural constituent of ribosome ?

Genes are ranked according to variation between/within species and evenness across 25 tissues.
*Indicates a gene among the top 5%.
doi:10.1371/journal.pone.0012545.t001

Control Genes for Primates
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Primer design and efficiencies
We identified a list of genes for further testing, comprising the

five new candidates and four commonly used control genes:

(GSK3A, USP49, EEF2, ARHGEF2, and EIF2B2) and (ACTB,

SDHA, HMBS, and TBP). We used published primer sets for three

of the commonly used genes (ACTB, HMBS, and SDHA) [19], and

we designed new primer sets for the remaining six genes. We

tested these primers and estimated their efficiencies using cDNA

from the IMR32 cell line (Table 2). Interestingly, the published

primer set of ACTB had an efficiency greater than 100% and a

Primer-Blast analysis resulted in multiple hits, the best hit not

being ACTB. We therefore did not include this gene in subsequent

analyses. ‘‘Primer-Blasting’’ SDHA primer sets also lead to multiple

hits. However, the fact that the best hit perfectly mapped onto

SDHA and the fact that the primer efficiency was below 100%, did

not suggest multiple non-specific amplifications. All the other

primer sets had an efficiency ranging from 92.2% to 99.6% and a

unique sequence match to the appropriate gene in both the human

and chimpanzee genomes. We then narrowed our list to eight

genes: GSK3A, USP49, EEF2, ARHGEF2, EIF2B2, SDHA, HMBS,

and TBP. For all eight genes, the threshold cycle values (Ct) vary

between 19.42 and 30.5 (Figure 1). When tissues and species are

combined, HMBS, SDHA, EEF2, and EIF2B2 show the least Ct

variation, while TBP and USP49 show the largest variation.

Expression stability
In order to determine the most stably expressed genes from the

list of eight candidate genes, we used the geNorm method

developed by Vandesompele et al. [19]. We measured expression

levels across three tissues (liver, cerebral cortex, skeletal muscle) for

all eight genes for humans and chimpanzees (two individuals per

species). The eight genes were ranked according to their stability

score M for each tissue and for all tissues combined. Iteratively, the

gene with the highest score (largest variability) was excluded until

we reached the last gene pair (Figure 2; Table 3). Liver and

cerebral cortex tissues exhibited more stability than skeletal muscle

overall, but they converged to the same average stability score

when all genes were included. As expected, there is more variation

in all tissues combined than in each tissue separately, even when

we included all reference genes. Considering tissues taken

individually or combined, including all eight genes seems to be

the optimal strategy. However, there is a tradeoff between

optimality and practicality. In order to determine the minimal

set of genes for which stability would be acceptable and practical,

we calculated and plotted a variation coefficient for including an

additional gene (Figure 3; Table 3). If we consider the tissues

separately (cerebral cortex, skeletal muscle and liver), the best

three normalizers are respectively (Table 3): (EIF2B2, HMBS,

SDHA), (HMBS, EEF2, GSK3A), and (EIF2B2, USP49, TBP).

Adding a fourth gene does not drastically affect the normalization

factor. However, as expected, if we consider all tissues together,

the inclusion of a fourth gene has a large effect on the calculation

of the normalization factor (HMBS, EEF2, EIF2B2, and SDHA). As

practical limitations often preclude the use of too many genes, we

recommend using at least two from this quartet whose Ct range is

close to that of the target genes. The goal of our study is to

determine appropriate genes for multiple species and across

several tissues. The observed discrepancy between individual

tissues and all tissues in table 3 reflects both a bias produced by the

way we selected candidate genes from microarray datasets and the

difficulty of finding ‘‘universal’’ control genes. Finding optimal

control genes for multiple tissues does not guarantee that they are

the best for individual tissues. If one wants to focus on a single

tissue, it is preferable to determine a new set of candidate genes for

this tissue alone.

Conclusion
In addition to proposing, for the first time, a set of adequate

reference genes for comparing human and chimpanzee gene

expression, our study also proposes a pipeline that can be easily

Table 2. Primer sequences for candidate control genes, efficiency, and primerBlast results.

Symbol Forward primer Reverse Primer Eff% PrimerBlast Hit(s) Chr#

GSK3A CCCAACTACACGGAGTTCAA CCAGCAGGCTAGAGCAGAG 92.2 GSK3A 19*

USP49 CTCAGCCACCTCCAGAAGTT AAAGCTGAGTCTTCCCGTTG 95.8 USP49 6*

EIF2B2 TCAAGATTATCCGGGAGGAG ATGGAAGCTGAAATCCTCGT 96.5 EIF2B2 14*

ARHGEF2 ATCTACCCCTCCGACAGCTT CCAGGGGAGACTCATCATTG 95 ARHGEF2 1*

EEF2 AGAAGCTGTGGGGTGACAG GATCAGCTGGCAGAAGGTG 96.2 EEF2 19*

ACTB CTGGAACGGTGAAGGTGACA AAGGGACTTCCTGTAACAATGCA 109.4 LOC644936 (Beta-actin
pseudogene)

5*

ACTB 7

A26C1B 2

LOC653269 2

TBP GCTGAGAAGAGTGTGCTGGA GTAAGGTGGCAGGCTGTTGT 95.8 TBP 6*

HMBS GGCAATGCGGCTGCAA GGGTACCCACGCGAATCAC 99.2 HMBS transcript variant 1 11*

SDHA TGGGAACAAGAGGGCATCTG CCACCACTGCATCAAATTCATG 99.6 SDHA 5*

SDHALP1 3

SDHALP2 3

LOC220729 (SDHA
pseudogene)

3

LOC100134106 3

*Indicates that both the forward and reverse primers are perfect matches.
doi:10.1371/journal.pone.0012545.t002

Control Genes for Primates
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adapted and applied to other tissue and species comparisons.

Many control gene lists have been previously published [28,32–35]

but they are limited to their own specific application. In addition,

our approach is not based entirely on an a priori candidate gene list

but also includes genes based on comparative studies across

multiple species and tissues using a novel calculation of tissue

expression evenness [31]. While other studies have proposed

methods to detect candidate control genes based on microarray

data [23,34–35], to our knowledge, our pipeline is the first attempt

to implement an approach appropriate for comparisons among

species.

Materials and Methods

Gene selection
An appropriate control gene for comparing human and

chimpanzee expression across multiple tissues was defined by

steady expression between and within species as well as across

tissues. We established a genome-wide list of candidate normal-

izers by comparing their level of expression from published

microarray studies. Specifically, we used human microarray data

from the Novartis Gene Expression Atlas (http://biogps.gnf.org/)

and several microarrays from a human-chimpanzee study [14].

First, the Novartis expression dataset was analyzed to assess

human gene expression evenness across tissues. We examined

22,667 genes in 26 selected non-cancerous tissues: central nervous

system (temporal lobe, globus pallidus, cerebellum peduncles,

cerebellum, caudate nucleus, whole brain, parietal lobe, medulla

oblongata, amygdala, prefrontal cortex, occipital lobe, thalamus,

subthalamic nucleus, cingulate cortex, pons, fetal brain, olfactory

bulb), skeletal muscle, kidney, liver, heart, and testis (testis, testis

leydig cell, testis germ cell, testis interstitial, testis seminiferous

tubule). We determined the evenness of expression across these

tissues for each gene based on a previously published approach

Figure 1. Variation of threshold cycle levels. Box plot of threshold cycle levels of candidate genes for human-chimpanzee samples across
combined tissues: skeletal muscle, liver, and cerebral cortex.
doi:10.1371/journal.pone.0012545.g001

Figure 2. Average expression stability with iterative exclusion of the least stable gene. Low average M values indicate high stability and
high average M values indicate less stability.
doi:10.1371/journal.pone.0012545.g002

Control Genes for Primates
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[31]. Briefly, a gene can be plotted as a vector in a multi-

dimensional space representing its expression in every tissue (i.e.

each tissue is represented by an axis). We used a geometric

calculation to determine the evenness of expression across all

tissues. If a gene were perfectly evenly expressed, its vector would

form equal angles with each axis – we defined this as the expected

expression vector. The evenness score e of a gene is calculated

as the squared cosine of the angle e between the actual ex-

pression vector and the expected expression vector: e~ cos2 e~

Pn
i~1

exp ri

� �2
,

n|
Pn
i~1

exp rið Þ2 where n is the total number of

assayed tissues and expri is the gene expression for tissue i. If this

gene is equally expressed across all tissues, e = 1, while, if it is only

expressed in a single tissue, e will be small (0.04 in the case of 25

tissues). We then ranked all genes according to their expression

evenness.

Secondly, we used the human-chimpanzee microarray dataset

(11,780 genes) [14] to determine whether a gene has constant

expression within and between species. For the genes for which

both within and between species variation has been assayed as the

mean squared difference (4,365 genes), we calculated and

normalized the average and standard deviation within and

between species for all five tissues (brain, heart, testis, kidney, and

liver) [14]. The goal of this step was to identify genes that have

small differences between and within species across the five

tissues. We sorted the list of genes according to the product of

these values (score of differences). Finally, we intersected the gene

lists established from the evenness calculation and from the

human-chimpanzee microarrays and calculated a combined

variation score (product of 1-evenness and score of differences).

We then ranked them from the most steady (low score) to the

least steady (high score). Although outliers may influence it, this

metric is sufficient for establishing a list of candidates for further

scrutiny (i.e. geNorm analysis). We chose a final set of candidate

genes from among the high scoring genes (top 5%) according to

three additional criteria: (1) genes that cover a wide range of

Figure 3. Optimal number of control genes. The optimal number of control genes was determined by pairwise variations (Vn/n+1) between the
normalization factors NFn and NFn+1. The black arrows indicate the optimal number of genes to use for RT-QPCR normalization. For each tissue, the
inclusion of a fourth gene does not significantly change the normalization factor. For all tissues combined, the use of a fourth gene has a large effect
on the normalization factor.
doi:10.1371/journal.pone.0012545.g003

Table 3. Ranking of candidate control genes after geNorm
analyses for individual and combined tissues.

All tissues Cortex Muscle Liver

EIF2B2-EEF2 EIF2B2-HMBS EEF2-GSK3A EIF2B2-USP49

HMBS SDHA HMBS TBP

SDHA GSK3A ARHGEF2 HMBS

TBP EEF2 EIF2B2 GSK3A

GSK3A TBP TBP SDHA

ARHGEF2 ARHGEF2 SDHA EEF2

USP49 USP49 USP49 ARHGEF2

The best pair of genes is listed first.
doi:10.1371/journal.pone.0012545.t003

Control Genes for Primates
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expression levels and for which the combined variation score is

not mainly influenced by one extreme value; (2) genes with a

‘‘housekeeping’’ function which may be more likely to be valid

control genes; and (3) genes that are unlikely to be co-regulated.

For comparison, we also included a few commonly used control

genes.

RT-QPCR
Human total RNA samples were obtained from Biochain

(http://www.biochain.com/) and chimpanzee tissue samples from

the Southwest Foundation for Biomedical Research for cerebral

cortex (humans: A803159, A803148; chimpanzees: 4X0505,

4X0391), liver (humans: A602084, A507018; chimpanzees:

4X0505, 4X0391), and skeletal muscle (humans: A811244,

A508352; chimpanzees: 4X0505, 4X0391). Different RNA

extraction kits and protocols were used for processing different

tissues: QIAGEN RNeasyH Lipid Tissue Kit for cerebral cortex

samples, QIAGEN RNeasyH Kit for liver samples, and QIAGEN

RNeasyH Fibrous Tissue Kit for skeletal muscle samples. 6mg of

total RNA were reverse transcribed into cDNA according to the

manufacturer’s protocol using a High Capacity cDNA Reverse

Transcription Kit Archive Kit (P/N 4368813) from Applied

BiosystemsH. For all candidate genes, primers were designed in

conserved exonic regions across species and transcript isoforms.

Sequences of these regions were then mapped to the human and

chimpanzee genomes to verify their uniqueness using Primer-Blast

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). Primers were

designed using Primer3 [36] with the following parameters: 100–

150 base pairs (bp) product long, primer Tm min 58uC, opt 59uC,

max 61uC; primer size min 17 bp, opt 20 bp; max 23 bp. We

performed standard curves on each set of primers using cDNA

from an IMR32 cell line with a dilution series (eight dilutions). The

R2 of this dilution series and primer set efficiency were calculated.

The efficiency was determined as follows: Eff ~
10{1=slope

2
|100

where slope is the regression line slope. Expression levels were

measured on the ABI PRISM 7000. 30 ml reactions contained

15 ml 26 ABGene Absolute q-PCR SYBRH Green Mix, 0.75 ml

for each primer (10 mM), 1 ml of cDNA template, and PCR quality

water to reach the desired volume. The RT-QPCR program was:

95uC for 15 minutes, 40 cycles of a 15 second melt at 95uC, and a

30 second annealing/elongation at 60uC. The program ended

with a dissociation curve from 50 to 90uC. Reactions were done in

technical triplicates and those with a standard deviation above 0.3

were excluded and rerun.

Data analysis
We used the geNorm algorithm [19] implemented in the R

package SLRT-QPCR (http://www.bioconductor.org/packages/

2.2/bioc/html/SLRT-QPCR.html) and customized python scripts

to determine the best set of control genes among all the candidates.

The expression ratio of two ideal control genes should be similar

across all samples, therefore the variation of these ratios should be

small. To quantify the performance of a gene as an appropriate

control gene, we used a gene-stability score M, that is the average

pairwise variation of this gene with all the other genes. First, we

calculated the relative quantity of each gene g and sample i with the

delta-Ct formula [37]. Second, we assigned a stability rank to each

gene using an iterative process: starting from the complete set of

candidate control genes, we computed the stability measurement M

for each gene and iteratively excluded the least stable (the gene with

the lowest M is the most stable while the gene with the highest M is

the least stable). Finally, we used this ranked list to determine the

optimal set of genes for RT-QPCR normalization by calculating the

effect of including one additional gene to the set [19]. We calculated

a normalization factor NF (geometric mean of expression values) for

subsets n and n+1; a large pairwise variation (Vn/n+1) between NFn

and NFn+1 values indicates a non-negligible improvement for the

inclusion of an additional gene.

Supporting Information

Table S1 Complete results from the candidate control genes

selection pipeline.

Found at: doi:10.1371/journal.pone.0012545.s001 (0.94 MB

XLS)
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