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Abstract

Background: Protection of the large intestine with its enormous amount of commensal bacteria is a challenge that became
easier to understand when we recently could describe that colon has an inner attached mucus layer devoid of bacteria
(Johansson et al. (2008) Proc. Natl. Acad. Sci. USA 105, 15064–15069). The bacteria are thus kept at a distance from the
epithelial cells and lack of this layer, as in Muc2-null mice, allow bacteria to contact the epithelium. This causes colitis and
later on colon cancer, similar to the human disease Ulcerative Colitis, a disease that still lacks a pathogenetic explanation.
Dextran Sulfate (DSS) in the drinking water is the most widely used animal model for experimental colitis. In this model, the
inflammation is observed after 3–5 days, but early events explaining why DSS causes this has not been described.

Principal Findings: When mucus formed on top of colon explant cultures were exposed to 3% DSS, the thickness of the
inner mucus layer decreased and became permeable to 2 mm fluorescent beads after 15 min. Both DSS and Dextran readily
penetrated the mucus, but Dextran had no effect on thickness or permeability. When DSS was given in the drinking water to
mice and the colon was stained for bacteria and the Muc2 mucin, bacteria were shown to penetrate the inner mucus layer
and reach the epithelial cells already within 12 hours, long before any infiltration of inflammatory cells.

Conclusion: DSS thus causes quick alterations in the inner colon mucus layer that makes it permeable to bacteria. The
bacteria that reach the epithelial cells probably trigger an inflammatory reaction. These observations suggest that altered
properties or lack of the inner colon mucus layer may be an initial event in the development of colitis.
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Introduction

Protection of the large intestine which harbors an enormous

amount (1013–1014) of commensal bacteria is a formidable

challenge. To handle this we have evolved ways of maintaining

a mutualistic relationship where both host and bacteria benefit.

How this is managed is still an enigma, but the identification of an

inner ‘firmly’ adherent mucus layer and an outer ‘loose’ non-

adherent mucus layer has recently shed light on this question [1,2].

These two mucus layers are built around a gel-forming mucin

called MUC2, a type of molecule that is preserved through

evolution all the way from the early metazoans [3]. The MUC2

mucin is a highly glycosylated protein that is produced and

secreted by the specialized intestinal goblet cells [4]. The human

MUC2 mucin is a large molecule made of about 5,200 amino

acids which is assembled into disulphide bond stabilized C-

terminal dimers in the endoplasmic reticulum before translocation

to the Golgi apparatus [5,6]. After O-glycosylation the dimers have

a mass in the range of five MDa and are then further associated

into trimers via their N-terminal regions [7] to generate enormous

net-like complexes [8]. After secretion, the MUC2 mucin network

is hydrated and expanded in volume and forms together with

other secreted proteins, a well-organized, stratified inner mucus

layer [2]. This layer is dense, firmly attached to the epithelium and

is insoluble in chaotropic salts. At a distance of 50 mm from the

mouse epithelial cell surface, the inner attached mucus is con-

verted into the outer mucus and expands in volume. This mucus

layer is fully soluble and has its volume expanded four-times as

compared to the inner adherent layer due to proteolytic cleavages

[2]. The protein composition is similar in these two mucus layers

as formed from a common source of secreted material. The

normal bacterial flora resides in the loose mucus, whereas the

inner attached mucus is impervious to bacteria and functions

as a protective barrier for the epithelial cell surface [2]. This

compartmentalization seems to be fundamental for the homeo-

stasis in the highly colonized colon. The importance of the mucus

barrier was further demonstrated in Muc22/2 mice where

bacteria are in direct contact with the epithelial cells and are also
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found deep in the crypts as well as inside epithelial cells [2]. Loss of

the barrier formed by the inner mucus layer triggers inflammation

and development of colon cancer [2,9,10].

We still lack knowledge about the pathogenic mechanisms

behind the inflammatory bowel disease ulcerative colitis (UC). We

also lack an understanding of the mechanisms behind the colitis

generated by sulfated polysaccharides. Initially, it was observed

that carragenan, a sulfated galactan from seaweed, in the drinking

water caused an ulcerative disease of colon in experimental

animals [11]. Later it was learnt that more reproducible results

were obtained by certain types of Dextran Sodium Sulfate (DSS)

[12,13]. The rodent UC model based on oral challenge with DSS

has now become the most commonly used model. This compound

gives wild type rodents an inflammation that starts distally after

about five days and is confined to the colonic mucosa [12–15].

There are also a number of genetically deficient mouse models

that develop colitis [16]. These include mouse strains with

manipulated innate and adaptive immune systems, but still some

of these models require DSS challenge [17]. Typically animals are

given a 3–5% solution of DSS in their drinking water, which

induces inflammation and bloody diarrhea after 4–7 days [18].

How DSS initiates the colonic inflammation is not well understood

despite its wide use. We have now addressed this issue by studying

the effect on the inner mucus layer secreted by mucosal explants

treated with DSS, and in mice given a 3% DSS solution. We

observed that DSS had a direct effect on the inner mucus layer

and that this allowed bacteria to penetrate this layer before any

signs of inflammation could be observed. Our observations suggest

a new model for the pathogenesis of colitis where the bacterial

protective properties of the inner mucus layer are in focus.

Results

Dextran Sodium Sulfate alters the mucus thickness and
permeability in vitro

DSS is the most commonly used agent to induce colon

inflammation in rodents. The mechanisms behind this effect are

not clear. However, since the firmly adherent mucus layer in colon

is shielding the epithelium from direct contact with bacteria and

the Muc2 mucin deficient mouse lacking this mucus layer get

a strong inflammation, we hypothesized that the inner mucus

layer become deranged upon DSS treatment. Therefore, we first

analyzed the effect of DSS on the mucus in vitro. In an Ussing

chamber-type explant culture system, the tissue from mouse distal

colon or human biopsies from sigmoid colon were mounted with

the lumen upwards in a horizontal chamber with a 1.5 millimeter

opening. The tissues secreted a mucus plume where the upper

surface of the mucus was visualized by sparkling charcoal on its

surface allowing measurement of the mucus thickness. The mucus

plume was allowed to grow for 45 min, the loose mucus was

removed and the thickness was measured before the apical buffer

was replaced with the same buffer containing 3% DSS or 3%

Dextran. The thickness of the inner firmly adherent mucus was

measured again after 15 min (Fig. 1A). In explants, both from

mice and humans, exposure to DSS caused a dramatic and

significant decrease in the thickness of the inner mucus layer as

compared to the mucus of explants treated with Dextran (Fig. 1A).

The mucus thickness decreased to 53% in the mouse and to 75%

in the human biopsies. The shrinking was observed already after

15 min suggesting a fast process that did not involve new mucus

secretion from the epithelium. No differences in the amount of

loose mucus were detected. These observations are most easily

explained by a direct effect on the inner firmly adherent mucus

layer itself.

To further address the effect of DSS on the mucus plume

produced by explants, its permeability properties were studied by

fluorescent confocal microscopy. As before, the mouse distal colon

explants were allowed to secrete mucus for 45 min. The tissue was

stained with a red fluorescent dye visualizing the crypt architecture

nicely as an intact epithelium (Fig. 1B). The explants were

analyzed by confocal XY stacks that are presented as Z-sections.

Figure 1. Direct effects of Dextran Sulfate (DSS) on mucus
formed by explant cultures of human and mouse colon. (A)
Effects of 3% DSS and 3% Dextran on the mucus thickness in mouse
distal colon explants (n = 7 in each group, p,0.001) and human
sigmoid colon biopsies (n = 6 in each group, p,0.01). Data is presented
as mean 6 SEM. The control values are normalized to 100 and the
student’s t-test was used to analyze the effect of the respective
treatments. (B) The tissue showed a nice crypt architecture in the XY
focal plane when stained with CellTracer BODIPY TR methyl ester as
seen in red. (C) Z-section of an X-Y confocal image stack of secreted
mucus on a mouse colon explants exposed to 3%DSS or Dextran for
15 min. The tissue was stained with a red fluorescent dye and 2 mm
green fluorescent beads were left to sediment onto the mucus. During
control conditions the beads remained on top of the mucus. Exposure
to DSS resulted in reduced mucus thickness and beads were able to
reach the epithelial surface within 15 min. Dextran had no effect on
either mucus thickness or permeability. Mucus top surface (1), inner firm
mucus (2), and epithelium (3) are marked to the left and right.
doi:10.1371/journal.pone.0012238.g001

Mucus and DSS
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First, to analyze how DSS and Dextran penetrate the mucus plume,

the apical liquid was replaced with a buffer containing similarly

sized FITC conjugated 3% DSS or 3% Dextran. Both these

molecules penetrated the mucus layer all the way down to the

epithelium within 15 min (data not shown). Secondly, green

fluorescent beads with a diameter of 2 mm were allowed to sediment

onto the mucus surface, and confocal XY stacks were recorded

directly and after 15 min incubation with 3% DSS or 3% Dextran

(Fig. 1C). The fluorescent beads were found on the top of the mucus

layer in the control and Dextran treated samples. In the DSS treated

explants, however, the beads penetrated the mucus and some beads

were found down on the epithelial cell surface already at 15 min.

This shows that DSS affects the mucus layer and allows beads, sized

like most bacteria, to penetrate into the mucus. The decreased

mucus thickness in the DSS treated samples was also observed as in

the initial mucus measurements. DSS can thus both decrease the

mucus thickness and increase the permeability of the mucus to allow

particles large as bacteria to quickly penetrate the inner firmly

adherent mucus of colon explants.

No signs of inflammation with short DSS exposure
The rapid effect of DSS on the mucus properties in the explant

system suggests that DSS could have an effect on the mucus before

any inflammation is observed. To analyze this, mice were given 3%

DSS ad libitum. Sections from colon were studied, but no signs of

infiltrating leukocytes or altered morphology of the epithelium could

be observed within 24 h (Fig. 2). However, after 120 h a clear

infiltration of leukocytes could be observed. We could thus confirm

the common understanding of the DSS model that there is no

inflammation during the first day of DSS treatment [14,15,18].

The epithelium producing the mucus is not affected by
short DSS exposure

In vivo measurements of the mucus in mice have previously

shown an inner firm mucus layer of about 50 mm [2]. Mice were

given 3% DSS in their drinking water for 24 h and were

anaesthetized. The colon was opened and a ring sealed with

silicone was placed on the epithelial surface. The prepared animal

was allowed a stabilization period of 1 h and then the thickness of

the secreted mucus layer was measured. The mucus formed inside

the ring was not subjected to DSS during this hour. This tissue had

only been exposed to DSS from the drinking water during the

24 h prior to the experiment. The animals treated with DSS

showed no significant alteration in the thickness of the inner firm

mucus layer (Fig. 3A). This suggests that the epithelium with its

mucus secreting goblet cells is functional and secretes a mucus

layer of normal thickness after 24 h DSS administration.

Since the Muc2 mucin builds the mucus network [2], we

analyzed the Muc2 mucin from mice that had been exposed to 3%

DSS in the drinking water for 12 h, 18 h and 24 h. AgPAGE

analysis revealed the normal pattern of reduced Muc2 monomer

band and the larger non-reducible oligomeric bands, both in the

inner firm and outer loose mucus samples (Fig. 3B). Proteomic

analysis of these bands as performed previously did not reveal any

alterations in the Muc2 peptide coverage or other major proteins

Figure 2. Histology of mouse colon stained with Haematoxylin/
Eosin for different times of DSS exposure. No increase in the
amount of infiltrating leukocytes or altered epithelial architecture as
sign for inflammation was observed after 12 and 24 h of DSS treatment.
Inflammation with infiltrating leukocytes and loss of normal epithelial
architecture was obvious after 120 h of DSS administration. Scale bars
are 100 mm.
doi:10.1371/journal.pone.0012238.g002

Figure 3. The epithelium can produce a normal mucus layer
after 24 h of DSS treatment. (A) The thickness of the inner firm
mucus layer was measured in vivo in mice after removal of the outer
loose mucus layer. The measurements were made in control animals
(n = 6) and in mice treated with DSS for 24 h (n = 3). No significant
difference was observed. (B) The loose and firm mucus from animals
treated with DSS for 12, 18 and 24 h were reduced and separated by
AgPAGE and stained with Alcian blue. The Muc2 bands migrate at their
normal position for a monomer (M) and non-reducible oligomers.
doi:10.1371/journal.pone.0012238.g003

Mucus and DSS
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(not shown) [2]. These experiments suggest that the epithelium is

normal and that there were no major biochemical alterations in

the Muc2 mucin at these early time points of DSS treatment.

The changes in mucus properties triggered by DSS
allowed bacteria to penetrate

As we observed that the inner mucus layer on colon explants

becomes permeable to 2 mm beads already after 15 min of DSS

exposure, we asked if DSS could affect the inner mucus layer prior

to inflammation in vivo. The colon was removed from mice that

had 3% DSS in their drinking water. The Carnoy fixed tissue

sections were immunostainined for Muc2 (green) and by FISH

(red) for bacterial 16S rRNA (Fig. 4). In non-treated control mice,

the inner stratified Muc2 mucus layer (labeled s) was as usual

observed to separate the bacteria in the outer loose mucus layer

(labeled o) from the epithelial cells. After exposing the mice to 3%

DSS in the drinking water for 12 h, the inner Muc2 layer was no

longer free from bacteria and they were observed all the way down

to the epithelial cell surface. Analysis of even earlier time points

showed that some bacteria were able to penetrate the inner mucus

layer already after 4 h. The inner mucus layer was also shown to

be less well organized as the stratified lamellar organization was

lost at 12 h. At 24 h the inner mucus layer had almost disappeared

and at 120 h it was totally dissolved and no normal mucus

organization could be observed.

To further evaluate bacterial penetration of the inner mucus

and the closeness of bacteria to the epithelial cells, a scoring system

from 0–5 was used. Here 0 means no bacteria penetrating the

inner mucus layer and 5 means a large number of bacteria

in direct contact with the epithelium. This scoring system is

explained and exemplified in Fig. S1. Using this system, blinded

tissue sections were evaluated by two independent examiners and

the average score is presented in Fig. 5A. A high score of 4

representing a large number of bacteria penetrating down to the

epithelium, was reached already after 12 h. During the following

12 h there was a transient decline in the score value. This variation

could be due to the murine diurnal rhythm of activity and

drinking. To evaluate this possibility, the DSS concentration was

measured in mucosal scrapings from mouse colon exposed to DSS.

The scrapings were extracted in guanidinium chloride and

Figure 4. Localization of bacteria in the colon mucus of mice
after DSS treatments for 12, 24 and 120 h or in nontreated
control (No DSS). Bacteria were stained by fluorescent in-situ
hybridization using the general bacterial rRNA probe, EUB338
conjugated with Alexa 555 (red). The mucus was visualized by
immunostaining of the same section with an anti-Muc2 specific
antiserum (green). Penetration of bacteria through the inner firm and
stratified (s) mucus layer was observed already after 12 h DSS
administration. The inner stratified mucus layer is marked by s and
the outer by o when any of the layers could be identified. Arrows point
out bacteria within the inner mucus layer (12 h) or close to the
epithelium in the absence of an inner mucus layer (120 h). Scale bars
are 100 mm.
doi:10.1371/journal.pone.0012238.g004

Figure 5. High number of bacteria penetrating the inner mucus
layer co-varies with high amounts of DSS in the colon mucus.
(A) Scoring of bacteria penetration of the inner firm mucus layer on a
scale from 0 (no penetration) to 5 (large number of bacteria reaching
the epithelial surface) of controls and DSS treated mice for indicated
times. The scoring system is exemplified and demonstrated in
Supplement Fig. S1. Mean values are for three mice (one mouse at
120 h) scored at four sites by two individuals in a blinded fashion. (B)
Mucus from the analyzed animals was extracted with guanidinium
chloride, the soluble fraction was reduced, separated on AgPAGE, and
the gel stained with Alcian blue. The Muc2 monomer is marked by M.
The DSS was also stained and is as expected absent in the untreated
control animals. The amount of DSS reflects the animals diurnal activity
and drinking rhythm as 12 and 36 h are after a night of activity and thus
show high levels of DSS compared to 18 and 24 h that are after an
inactive daytime that show low levels of DSS.
doi:10.1371/journal.pone.0012238.g005

Mucus and DSS
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analyzed by AgPAGE for large molecules (Fig. 5B). The

guanidinium chloride insoluble Alcian blue stained Muc2 band

showed no alterations (data not shown). The guanidinium

chlorides soluble fraction contained the DSS that had accumulated

in the distal colon in addition to some Muc2 (marked M). Fig. 5B

show high amounts of DSS at 12 h, 36 h and 120 h, but low levels

at 18 h and 24 h. Thus there is a direct co-variation between a

high bacterial penetration score and high relative amounts of DSS

in the mucus. This suggests a direct relation between the DSS

amounts in the colon mucus and bacterial penetration of the inner

mucus layer. These results further confirm that the DSS effect is

fast and direct just as observed for the DSS treated mucus on the

tissue explants. The in vivo experiments also suggest that the effect

is reversible, at least at the standard early time points for

evaluating DSS treatment.

DSS and bacteria are in contact with the epithelium after
12 h of DSS exposure

In the explant system the DSS was able to diffuse into the firm

mucus and when tested in vivo FITC labeled DSS was observed at

the epithelial surface. The FITC conjugated DSS was given to the

mice in the drinking water and already after 12 h a substantial

amount had reached down to the epithelial cells (Fig. 6A). The

penetration of bacteria into the mucus is thus simultaneous with

DSS penetration into the mucus, suggesting that DSS alter the

mucus properties in such a way that it allows bacteria to penetrate

the otherwise impermable mucus. As shown in Fig. 6B an enormous

bacterial load is observed on the epithelial surface already after 12 h

DSS treatment. This massive bacterial contact can be envisioned as

an explanation for the, until now unexplained, inflammation

induced by orally administered sulfated Dextran molecules.

Discussion

We could recently show that the inner mucus layer of colon is

devoid of bacteria as it probably acts as a ‘filter’ that blocks the

penetration of bacteria [2]. This explanation is supported by our

observation here that fluorescent beads with a diameter in the

same size range as bacteria (2 mm) do not penetrate the mucus

formed on top of tissue explants. Using the most commonly used

animal model for colitis, we have now shown that DSS in the

drinking water allows bacteria to enter and penetrate the inner

mucus layer before any inflammation can be observed. The

earliest time point that we could observe bacteria penetrating the

inner mucus layer was after 4 h, although the full effect was

observed after 12 h. The observed correlation between the

amount of DSS in the colon and the penetration of bacteria

suggests that the effect is direct, fast, and initially reversible. That

DSS can cause a fast alteration in the mucus permeability was also

evident from the results showing that 2 mm fluorescent beads were

able to penetrate the mucus plume formed on top of tissue explants

after only 15 min. The fast DSS effect on already formed mucus

was further illustrated by the observation that DSS significantly

reduced the mucus thickness in vitro within 15 min.

As the DSS effect is fast and exerts its action on already formed

mucus, it is unlikely that DSS alters the biosynthesis and formation

of new mucus. Instead DSS seems to have a direct effect on the

mucus biophysical structure. The reason for this effect on the main

mucus component, the MUC2 mucin, is not understood. The

glycans on the MUC2 mucin from human colon carries multiple

negative charges on both sialic acid and sulfate residues [19]. It is

thus likely that the highly sulfated DSS is readily soluble in the

highly sulfated MUC2 mucin network. This was confirmed, but

there was no major difference in the penetration of DSS and

Dextran when FITC-labeled conjugates were tested, since both

compounds reached the epithelial cells within 15 min. This means

that the high amount of bound sulfate on DSS must destabilize the

interactions that maintain the organization of the mucus. In fact,

this is supported by the immunohistochemistry pictures showing

that the typical stratified lamellar appearance of the inner mucus

layer was lost after DSS exposure. Dextran, which does not

contain the sulfate groups, does not affect the mucus organisation.

The importance of mucin sulfation for mucus function is further

illustrated by the observation that mice lacking the Nas1

sulfotransporter show less sulfation of their mucins and that these

animals are more susceptible to colitis [20]. The sulfation is thus

very important and colitis is observed, although less severe, using

also DSS with a molecular mass of only 5 kDa [21]. Interestingly,

DSS with a molecular mass of 500 kDa did not cause any

inflammation [21]. The reason for this might be that it was too

Figure 6. DSS treatment of mice allowed bacteria to penetrate
into the firm mucus layer and come in direct contact with the
epithelium. (A) Mice were given FITC-DSS (3%, green) in the drinking
water for 12 h. The distal colon was fixed and the sections were
immunostained with anti-Muc2 antiserum and anti-rabbit-Alexa546
(red). The arrows point at FITC-DSS that has penetrated the inner
stratified mucus layer (s). Large amounts of bacteria and FITC-DSS is
shown in the outer loose mucus layer (o). Epithelial cells are marked (e).
Scale bar is 25 mm. (B) Bacteria were stained with FISH using the general
rRNA probe EUB338 conjugated to Alexa 555 (red) and the nuclear DNA
stained with Sytox Green DNA stain (green). The picture shows massive
amounts of bacteria in contact with the epithelial cells. Scale bar is
10 mm.
doi:10.1371/journal.pone.0012238.g006
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large to easily diffuse into the mucus network. DSS and Dextran with

a molecular mass of 40–50 kDa, as normally used for the generation

of DSS colitis can, however, penetrate the mucus quickly. DSS with

all its sulfate groups are acidic in nature and one can speculate that

the DSS effect on colon mucus could be similar to the pore forming

effect of acid secreted from the stomach glands in the inner mucus

layer covering the stomach epithelium [22]. The DSS sulfate groups

might thus mimic the effect of hydrochloric acid in the stomach by

opening pores in the colonic mucus.

The normal approach for the generation of DSS colitis in

rodents is to use 3 to 5% of DSS for 5–7 days. The DSS passes

along the gastrointestinal tract without being degraded and the

water absorption in the colon will probably give a higher

concentration than that given in the drinking water. We chose

to use 3% for both our in vivo and in-vitro experiments. However,

still we could record the dramatic effects on the mucus. In the DSS

colitis model, an overt inflammation is observed after 3–5 days.

The DSS effect observed here already after 12 h precedes

inflammation and gives a relatively wide window during which

the more typical colitis inflammation can develop. Studies of how

the epithelial and immune systems are handling the bacteria

during this time window should cast further light on the

pathogenesis of colitis.

The DSS effects on the epithelium has been associated with

increased permeability and disruption of tight junctions, however

epithelial barrier dysfunction alone is not sufficient to cause disease

[23]. Disrupted epithelial junction barrier leading to inflammation

also results in adherent bacteria on the epithelial surfaces [24].

During the short times of DSS exposure investigated here we

explored if there were any toxic effects on the epithelium. Tissue

sections revealed normal histology at 12 and 24 h. The epithelial

cells had a normal function after 24 h of oral DSS administration

as the tissue was able to secrete and generate a mucus layer with

normal thickness. This mucus was secreted without being exposed

to DSS, further supporting that the initial effects of DSS is on the

mucus itself. The Muc2 mucin builds the structure of the mucus as

it is the major component and has the biochemical properties in its

oligomerized form to form net-like structures [8]. Analysis of the

Muc2 mucin by gel electrophoresis and proteomics did not reveal

any difference after 24 h of DSS intake. Thus we conclude that the

epithelial cells seem to be functional and that they secrete a normal

mucus layer after 24 h or less of DSS treatment.

In mice with a thinner or no functional mucus layer, as for

example germ-free mice, DSS treatment induces an acute and

massive bleeding long before any inflammation is observed

[20,25,26]. This effect is thus different from the one normally

obtained by DSS treatment in wild-type mice showing a chronic

inflammation that develops after several days. Why do then the

germ-free mice react differently? One possible explanation is that

these animals have a very thin inner mucus layer [2]. This might

give a faster and more direct access of the DSS to the epithelial

cells, thus exposing these for higher concentrations of DSS. This

might be related to the toxic effects of DSS observed on cells in

culture with 3% DSS in the culture media where the cells shrink

together and do not survive. A possible reason for this direct DSS

toxicity is that DSS is an effective calcium ion chelator.

Mice with different genetic backgrounds are different in their

susceptibility to DSS treatment, but here we only used C57/Bl6

mice [27]. Relatively large differences in inflammatory scores are

also observed when comparing different animal facilities [14,15].

These differences are most likely due to variation in the bacterial

flora. The animals in our facility show a relatively weak

inflammation compared to others and the signs of inflammatory

related alterations in the mucosa could not be observed at short

DSS exposure times. That DSS generated colitis involves reactions

to the enteric bacteria is suggested by studies showing that

antimicrobial treatment using Cathelicidin ameliorated inflamma-

tion and colitis [28]. Although the reason for DSS causing colitis

might be a direct toxic effect on the epithelium, it is more likely

that this is due to the currently observed alterations in the inner

mucus layer, and that DSS treatment allows bacteria to penetrate

this inner mucus layer. Once the bacteria are allowed to penetrate

the inner mucus layer, the situation will be similar to the one

observed in mice lacking the Muc2 mucin [2]. These animals have

a chronic inflammation with bloody diarrhea and will later

develop colon cancer. A similar type of inflammation is also

observed in two mouse strains with spontaneous mutations in the

Muc2 mucin that does not allow the biosynthesis of a functional

Muc2 mucin. These animals probably lack or have a defective

inner mucus layer that is unable to protect the epithelium [29].

Our observation suggest that an intact inner mucus layer is

instrumental for the protection of the colon epithelial cells and

suggests that bacteria in contact with the epithelium will trigger the

immune system to an inflammatory reaction. The cause of the

inflammatory bowel disease UC is not understood and probably

heterogeneous, but the importance of commensal bacteria is

evident. It is also evident that a strong adaptive immune response

is driving and maintaining the inflammation once started. Our

observations of an inner mucus layer that is normally devoid of

bacteria and that manipulations of this allow bacteria to reach to

the epithelium suggest a new model for the pathophysiology of

UC. As long as the massive amounts of bacteria are kept at a

distance from the colonic epithelium and the immune system, the

system is in balance. However, if bacteria come in contact with the

epithelial cells, enter the crypts and are taken up by epithelial cells,

the immune system will be triggered and start to react against also

relatively harmless commensal bacteria. The inflammation may be

detrimental to the normal homeostatic mechanisms of colon and

also affect the inner mucus layer. Defects in the inner mucus layer

is a possible new etiological mechanism behind UC.

Methods

Animals
All mice were inbred on the C57Bl/6 background from Taconic

(Ejby, Denmark). Experimental animals were 10–12 weeks old

males except for animals used for mucus permeability measure-

ments that were 11–14 week old male mice. The mice were kept in

individually ventilated cages under standardized conditions of

temperature (21–22uC) and illumination (12 h light/12 h dark)

under specific pathogen free conditions. They were given food

(Labfor R34, Lantmännen, Stockholm, Sweden) and water ad

libitum. Animal experimental procedures were approved by the

Swedish Laboratory Animal Ethical Committee in Gothenburg

was conducted in accordance with guidelines of the Swedish

National Board for Laboratory Animals (#358-2009).

Patients
Study subjects were recruited among patients referred to

colonoscopy at Sahlgren’s University Hospital, Gothenburg,

Sweden. Six patients were included (Female, 28 years, rectal

bleeding (haemorrhoids); Female, 44 years, abdominal pain.;

Female, 44 years, anemia; Female, 69 years, control after

diverticulitis; Male 84 years, rectal bleeding; Male 76 years, rectal

bleeding (haemorrhoids)). Biopsies were taken in the sigmoid

colon. All patients had a normal mucosa upon visual examination

by the endoscopist and were regarded as normal controls. Written

informed consent was obtained from the patients and approval
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was granted by the Human Research Ethical Committee of the

Medical Faculty, University of Gothenburg, Gothenburg, Sweden

(#040-08).

Chemicals
Dextran Sodium Sulfate (DSS, average Mr of 48,800, 17.1%

Sulfur substitution, 0.1% free Sulfate, pH 6.6), FITC-DSS (average

Mr of 41,000, 1.6 mg FITC/g) and Dextran 20 was obtained from

TdB Consultancy AB (Uppsala, Sweden). All other chemical were

from Sigma-Aldrich (St. Louis, MO).

Measurement of mucus thickness in vitro on explant
cultures of mouse and human colon

In vitro measurement of mucus alterations by DSS were done as

described here. Mice were anaesthetized with 3.7% isoflurane and

euthanized by cervical dislocation. The distal colon was dissected

and flushed with oxygenated ice-cold KREB [115.8 mM NaCl,

1.3 mM CaCl2, 3.6 mM KCl, 1.4 mM KH2PO4, 23.1 mM

NaHCO3 and 1.2 mM MgSO4]. The specimen was then opened

along the mesenteric border, stripped of the muscle layer and

mounted in the RC-50 image chamber (exposed area 1.77 mm2)

(Warner instruments, Hamden, CT). The basolateral side of the

chamber was constantly perfused (6 ml/h) with oxygenated KREB

solution with supplements [5.7 mM Na-Pyruvate, 5.13 mM Na-L-

Glutamate and 10 mM D-Glucose, pH 7.4]. The apical side of the

chamber was bathed in 100 ml oxygenated KREB solution with

supplents [5.7 mM Na-Pyruvate, 5.1 mM Na-L-Glutamate and

10 mM D-Mannitol, pH 7.4]. The temperature was kept at 37uC
throughout the whole experiment.

Biopsies obtained from sigmoid colon were instantly put into ice-

cold oxygenated KREB solution and kept on ice until mounting in

the RC-50 imaging chamber. The following procedure was

identical to the one described for mouse tissue.

The thickness of the mucus layer was assessed by measuring the

distance between the epithelial surface and the surface of the mucus

layer using a micropipette (Sutter instruments, CA) connected to a

micropuller (55u angle) (in-house made) and observed through a

stereomicroscope (Leica, Wetzlar, Germany). Digital recording of

the measurements was enabled by connecting the micropuller to a

digimatic indicator (Mitutoyo, Kawasaki, Japan). To visualize the

surface of the mucus layer a suspension of activated charcoal was

added. The thickness was measured with 15 min intervals for a total

time of 60 min. During each measuring event five recordings were

made and the calculated mean value was used as a single

measurement. The vertical distance between the epithelial surface

and the mucus surface was calculated by multiplying the obtained

value with cosin55u. At time 45 min the loose mucus layer was

removed by suction and the thickness of the firmly adherent mucus

layer was measured. To assess the effect of DSS and Dextran on the

thickness of the mucus layer the apical solution was replaced with

KREB mannitol solution containing either 3% DSS or 3% Dextran

and incubated for 15 min. After 15 min of incubation the loose

mucus layer was removed by suction and the thickness of the firmly

adherent layer was measured. Data is presented as mean 6 SEM.

Effects of the treatments were analyzed by using the student’s t-test.

A p-value,0.05 was considered as statistically significant.

Confocal microscopy of the effects of DSS on mucus
properties

The effects of DSS on mucus permeability were studied using

the RC-50 imaging chamber mounted onto an upright confocal

microscope. The protocol used for isolating the tissue, running the

chamber and the solutions used in these experiments were the

same as described for the mucus thickness measurements. The

colonic epithelium was labeled using CellTracer BODIPY TR

methyl ester (Invitrogen, Carlsbad, CA) added to the KREB

solution and the basolateral perfusate (2 ml/ml). An additional

incubation of 20 min in KREB-Bodipy solution was added after

removing the muscle layer. After 45 min incubation in the RC-50

imaging chamber yellow-green fluorescent beads (2 mm Fluo-

Spheres, Invitogen, Carlsbad. CA) were added to the apical

surface and allowed to sediment down to the mucus layer.

Confocal images were taken in a XY stack with an optical section

of 13.6 mm in 3 mm intervals using a BioRad Radiance 2000

imaging system and a 106objective. To assess the effects of DSS

on mucus permeability the apical solution was replaced by KREB

solution containing either 3% DSS or 3% Dextran as described

above. A second XY stack was taken after 15 min of incubation in

DSS or Dextran. Images were processed using the Laser sharp

2000 software and Image J. The Z-axis section was used to present

the results.

DSS treatment of mice
3% DSS or FITC-DSS was administered orally in the drinking

water for 12 to 120 h starting at 8.00 p.m. (dark) to assure activity

of the animals at the start of the experiment. The DSS had a

molecular mass of 49 kDa and had 17% sulfate substitution. The

FITC-labeled DSS had 1.6 mg FITC/g DSS. Each experimental

time point included 3 animals except for the 120 h control where

one animal was used.

In vivo mucus measurements after DSS treatment
In vivo measurements of the firm mucus were performed as

described previously on animals subjected to 3% DSS in the

drinking water for 24 h (n = 3) or controls (n = 6) [2,30]. During

the 1 h stabilization period spontaneous mucus secretion occurs

producing the full mucus layers in the measurement chamber. The

secreted mucus is not subjected to additional DSS.

Preparation and extraction of mucus
Loose and firm mucus from the in vivo measurements was

collected by suctioning (loose) or gentle scraping (firm) in PBS

supplemented with Complete EDTA-free protease inhibitor

(Roche, Basel, Switzerland) and the samples were frozen.

Total mucus from the distal colon of DSS treated animals was

removed by gentle scraping in PBS supplemented with Complete

EDTA-free protease inhibitor (Roche, Basel, Switzerland). The

mucus samples were extracted three times in guanidinium chloride

[6.0 M GuHCl, 5 mM EDTA, 0.1 M Tris-HCl, pH 8.0] by

rotation at +4uC over night and centrifuged for 20 min at

16,0006g. The resulting soluble and insoluble fractions were

separated and dialyzed against water. The soluble fraction

contained the luminal content including the DSS.

All samples were incubated with sample buffer [0.75 M Tris-

HCl pH 8.0, 2% SDS, 0.01% Bromophenol blue, 60% glycerol,

100 mM DTT] at 95uC for 10 min with continued reduction at

37uC for 2 h.

SDS-agarose composite gel electrophoresis for
separation of mucins

The reduced samples were analyzed by composite agarose-

polyacrylamide gel electrophoresis (AgPAGE) with a gel contain-

ing agarose (0.5–1% gradient), acrylamide (0–6%) and glycerol (0–

10%) [31]. The electrophoresis was performed on ice at +4uC for

16 h at 12 mA/gel. The gel was stained with Alcian blue

visualizing both glycosylated mucins and DSS.
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Histology and Immunostaining
Segments of the distal colon from mice were fixed in water-free

Methanol-Carnoy’s fixative [60% dry methanol, 30% chloroform

and 10% acetic acid]. The tissue was washed in methanol before

embedded in paraffin and sectioned, 4 mm. The sections were

dewaxed using Xylene substitute (Sigma, St. Louis, MO) and

hydrated. The antigens were retrieved by microwave heating in

0.01 M citric buffer pH 6 and the sections were stained with

Haemtoxilin/Eosin or by the anti-MUC2C3 antiserum [2]. FITC

conjugated goat anti-rabbit immunoglobulins (DAKO, Copenha-

gen, Denmark) or Alexa 546 conjugated goat anti-rabbit immuno-

globulins (Invitrogen, Carlsbad, CA) were used as secondary

antibodies and DNA was stained by DAPI or Sytox Green DNA

stain (Invitrogen, Carlsbad, CA). Pictures were obtained using an

Eclipse E1000 (Nikon, Tokyo, Japan) fluorescence microscope.

Fluorescent in situ hybridization
Paraffin sections were dewaxed with Xylene substitute and

hybridized with a general bacterial probe, EUB 338 conjugated to

Alexa 555 as described previously [2]. Immunostaining after

hybridizations was performed at +4uC without antigen retrieval.

Pictures were obtained in an Eclipse E1000 (Nikon, Tokyo, Japan)

fluorescence microscope.

Bacterial penetration score
The bacterial penetration score system was worked out from the

sections. 0 representing complete separation of bacteria and

epithelium by mucus and 5 indicates close contact between the

epithelium and a large amount of microbes. Pictures representa-

tive of the different scores are presented in Fig. S1. Colon sections

from 3 animals were stained with the Muc2-C3 antiserum and

DAPI DNA staining. Four separate areas from each animal were

scored by two individuals independently in a blinded fashion.

Mean values of the scores are presented.

Supporting Information

Figure S1 Scoring system for the evaluation of bacterial

penetration of the inner mucus layer. Sections of colon from the

DSS treated animals and controls were stained for Muc2 (green, left

panels) and DAPI (blue, middle panel) to visualize DNA including

bacteria. The right panel shows the merge. The scoring of bacterial

penetration of the mucus was from 0 to 5. No bacteria into the inner

mucus layer were set to score 0 and massive contact between

bacteria and epithelium was set to 5. Intermediate scores were set

according to the pictures.

Found at: doi:10.1371/journal.pone.0012238.s001 (0.91 MB

PDF)
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