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Abstract

The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal
fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected
targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/
noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion.
The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for
targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a
stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in
time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes
diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in
which few a priori assumption on the type, the extent and the variability of particle motions, can be done.
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Introduction

Fluorescence Microscopy with linear and non linear excitation

allows to follow cells within tissues and nanoparticles within the

cell cytoplasm [1,2]. Manual tracking of particles in a time series of

live cell images is a common approach to study the kinetics and the

dynamics of cellular and intracellular interactions. This technique

is extremely time-consuming and it is prone to some systematic

errors. A large effort is then currently under way to develop

efficient algorithms for the automatic detection of cells/particles

with a minimum action from the user [3–8]. Since a complete

automatic detection is rarely feasible, we would like to develop

general discrimination and tracking methods based on minimum a

priori requirements on the shape and the size of the objects,

followed by a close inspection of the results made by the user on a

compact, though complete, description (2D image) of the

trajectories. This is the main aim of the research reported here.

Several algorithms have been devised in the past to detect and

follow in time macroscopic objects on sonar, radar or astronomical

images. They have been also applied to ultrasound images of

human tissues and to the analysis of the microscopic character-

ization of biological specimens [9]. The first algorithms developed

in the ’60s for military purposes [9] were adapted to velocimetry

[10] and later gave the input to the first fluorescent particle

tracking methods [11]. These algorithms lost much of their power

when adapted to other studies since any assumption of a definite

shape or physical model for the object’s movements (for example,

minimum curvature radius, acceleration/deceleration range)

cannot be easily applied to the biological field even though

relevant advances in this direction have been recently reported

[7,12].

The tracking algorithms are always based on two steps:

segmentation, that aims to detect objects on each image of a time

series, and the actual tracking, that is devoted to follow the objects

in time on a sequential series of images. Required features are the

reliability of the image segmentation, the low number of false

positive assignments, the low number of mis-tracking (particularly

relevant for images with high density and interacting objects) and

fast tracking times. Not all these requirements can be simulta-

neously fulfilled and a compromise must be found for the specific

case under study. Most of the existing tracking codes have been

recently reviewed and tested on high signal to noise images [12].

The codes reviewed are based mainly on the threshold and the

edge detection segmentation algorithms [13]. The specific

algorithm proposed by Hand et al. [12] is based on the watershed

segmentation method [13], that allows to detect also interacting

targets, and the target tracking is obtained by image registration

[14]. This method is based on the assumption that the target

positions in subsequent images can be converted one into the other

only by translation/rotation/stretching of the frames. Regulariza-

tion requirements on the deformation of the objects to track

(evolving neural stem cells for example) and assumptions on the
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stochastic properties of their motion have been applied also in

other works such as the one reported recently by the Degerman’s

group [7]. The methods developed in [7] and based on the seminal

work by Chan and Vese [15], are extremely powerful for the cases

in which details on the shape of the targets and their deformation

in time must be retrieved. The widely used SpotTracker algorithm

[16], makes instead use of prefiltering of the images (Mexican Hat

filter) to enhance the signal/noise ratio and it is therefore

particularly suited for highly noisy images. The method adopted

by Sage et al. [16] makes a careful analysis of the noise on the

fluorescence image but stands then on the assumption that only

one target per frame must be retrieved. All these types of

assumptions seem not to be particularly suited for the analysis of

images taken on dense (more than one particle to be tracked per

frame) and low signal/noise sample of particles whose motion does

not fulfill any defined regularization property (average step length

or deviation angle per frame, etc.). Moreover a parallel

visualization method to treat a whole bunch of trajectories,

possibly on a single 2D image, would greatly help the user in the

biophysical analysis of the experiments.

The conditions and the requirements described above are

typical of a number of biomedical research areas. We focus in this

report on two such cases that play the role of examples of two

relevant issues in biomedical and pharmaceutical studies: the

interactions of nanoparticles (NPs) with cells and of their

intracellular (Brownian) motion, and the investigation of cell

dynamics and mutual interaction within tissues in immunology.

Despite the fact that fluorescent markers provide a high number

of photons per frame and would in this sense offer high signal/

noise images, a number of undesired signals arise from the NP

trapping matrix, cell cytoplasm or tissue [17]. Auto-fluorescence

is typically the most effective in raising the background level on

the image especially because it is easily primed in the visible

(around 500 nm, due to Flavin enzymes) and in the near infrared

with a broad excitation band [18]. The use of nonlinear

excitation is in fact particularly important in in-vivo imaging

studies where one wants to follow fluorescently labeled cells in

tissues. An example is given by the study of the interactions

between lymphocytes within the lymphoid organs, such as that

engaged within the framework of the EU project ENCITE

(http://www.encite.org). In the case of NPs carrying drugs and/

or fluorescent markers, on the other hand, undesired signals that

lower the signal/noise ratio may arise also from the presence of

unloaded or released markers.

The examples chosen here are particularly suited also to

illustrate some of the problems connected with the use of

regularization criteria for the motion of particles or cells. For the

example, the lymphocytes undergo an activation process, aided by

the interaction with dendritic cells [19], that involves many short

and long living contacts between lymphocytes. These events are

difficult to discern automatically on the images, even when

different staining is used for the various types of lymphocytes, due

to the presence of cross-talk between the image channels.

We are then interested in devising a specific algorithm that can

provide us with a batch of segmented targets that fulfill a minimal

requirement on the target size (or volume) and with the

corresponding trajectories displayed on a single 2D image for a

rapid and efficient user analysis. The algorithm that we present

and test here is based on the use of image filters that assume only

the average size of the targets, on the computation of a time series

of Accumulative Differential Images (ADI) and on the construction

from these and for each of the targets segmented on the first image

of the series, of a single 2D image in which the color of the pixels

codes for its passage time through the pixel.

Materials and Methods

Two-photon setup
The optical setup was built around a confocal scanning head

(FV-300, Olympus, Japan) mounted on an upright optical

microscope (BX51, Olympus, Japan) equipped with a high

working distance objective (N.A. = 0.95, wd = 2 mm, 206, water

immersion, XLUMPlan FI, Olympus, Japan). The laser source for

two-photon excitation was a mode-locked Ti:sapphire laser (Mai

Tai HP, Spectra Physics, CA). The images were collected either in

descanned, through the FV300 scanning head, or via a custom

made non-descanned head [20].

Lymphocyte extraction and labelling
Transgenic mice (BalbC mice) with DCs expressing wt-GFP

were injected with 3–4 millions of labeled Natural Killer (NK) or T

cells approximately 24 hours before the experiment. The mouse

lymph nodes were extracted from experimental animal and

immediately fixed at the bottom of a Petri dish filled with

physiological solution at 37uC. During the entire duration of the

experiment the temperature inside the box was maintained at

37uC and the physiological solution surrounding the lymph nodes

was continuously replaced by ‘‘fresh’’ solution at 37uC saturated

with a mixture of 95% O2 5% CO2 in order to keep the samples in

in vivo conditions. We acquired images on planes in the sub-

capsular region between 50 and 200 mm within the lymphonodes

for a total volume of 2566256610 pixels (step sizes Dx =Dy = 1.1–

2.76 mm and Dz = 5 mm) and a total acquisition time = 16–35 s.

The excitation wavelength was set to lTPE = 850 nm. We typically

followed the motility of the lymphocytes for 60–90 minutes.

Ethic Statement
We declare that all experiments were performed using protocols

approved by the University of Milano-Bicocca Animal Care and

Use Committee (also in agreement with the European rules, 86/

609/EEG and with the International Guiding Principles for

Biomedical Research Involving Animals, as developed by the

Council Organizations of Medical Sciences and the Guide for the

Care and Use of Laboratory Animals; http://ec.europa.eu/

environment/chemicals/lab_animals/revision_en.htm). Mice were

housed in containment facilities of the animal facility and

maintained on a regular 12:12 hour light:dark cycle with food

and water ad libitum.

Solid Lipid Nanoparticles and Cell Cultures
Solid Lipid Nanoparticles (SLNs) were a kind gift of

NANOVECTOR. The main component of the matrix of these

particles is tripalmitin (TPM) and SLN are conjugated with 3-(2-

Benzothazolyl)-7-(Diethylamino)coumarin (MW 146 D). A30 cells

were grown on Petri dishes in DMEM medium supplied with 10%

Fetal Bovine Serum (FBS), 1% of L-Glutamine and 1% of

Penicillin/Streptomycin and incubated in a controlled environ-

ment at 37uC with 5% CO2. During experiments cells were

incubated with medium supplemented with 1% FBS to prevent

NPs aggregation. The images were 2566256 pixels in size and

were acquired at a frequency of 0.85 s per frame.

Results and Discussion

Particle Tracking Algorithm
The algorithm is composed of a segmentation and a tracking step.

The implementation of the algorithm has been made here on the

MATLAB platform (with Image Processing Toolbox, by Math-

Works, Inc.) but it could be easily translated to other platforms. All

ADI Tracking Microscopy
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the routines and the procedures developed to analyze a time stack of

images and to display the results are described in detail in the

Supporting Information S1. The MATLAB sources (Matlab,

R2009a) are also uploaded as Supporting Information (Code S1).

The algorithm is divided in ten steps coded by corresponding

routines identified by an initial capital letters from A to K in the

routine name. Two sample copies of stack of images collected on

Solid Lipid Nanoparticels in cells and on lymphocytes in

lymphonodes can be downloaded from the site (http://moby.mib.

infn.it/,chirico/tracking.html) for testing the procedures.

Segmentation
The segmentation procedure (phase A, routine: A_Imagefilters.m)

consists of the application of four consecutive filters and provides a

binary image in which single saturated pixels correspond to the

discerned target positions. The action of the filtering sequence is

illustrated on an image (Fig. 1A) taken on epithelial cells during

the uptake of SLNs. At first a minimum spatial filter [13] (which

applies to the central pixel of a (2mm+1)6(2mm+1) mask matrix its

minimum value) reduces high frequency background components

(Fig. 1B), according to the procedure:

A
(1)
i,j ~min Ah,kf gh~i{mm::izmm;

k~j{mm::jzmm

ð1Þ

An outer frame of the size of mm pixels in each image

Ah,kf gh~1::N;
k~1::N

of the stack is excluded from the analysis. In

the example treated in Fig. 1, and throughout the results

reported here, a 363 mask matrix (mm = 1) has been used in

Eq.1.

The second step consists in applying iteratively an uniform

threshold over the image and is the most critical step in the

segmentation procedure. The user chooses an area in the first

image of the time series over which the number of the targets is

counted visually and the program starts an iterative procedure that

increases gradually the threshold level until the number of targets

are retrieved. This procedure can be performed by means of the

routine A_Threshold_Find.m (see Online Additional Material for a

detailed description of its use). The same value of the threshold, T,

is applied then to the whole stack of images according to the

algorithm:

Figure 1. SLNs in epithelial cells. The original image (2566256 pixels, 1006100 mm2) of SLNs interacting with epithelial cells is reported in panel
A. This image is subject to the minimum filter (panel B) and a threshold filter followed by the mean filter (panel C). All filter matrices (except the
threshold one) are based on a 363 matrix. Finally a maximum filter is applied to the image in order to reduce each target to single pixels (panel D). In
this panel the single pixels that corresponds to the position of the targets have been enlarged to 262 submatrices for display purposes. The jet
colormap used for the images in panels A to C is reported in the figure.
doi:10.1371/journal.pone.0012216.g001
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A
(2)
i,j ~

A
(1)
i,j if A

(1)
i,j §T

0 elsewhere

(
ð2Þ

The third step of the image segmentation consists in the image

normalization procedure obtained by applying the mean (Fig. 1C)

and the maximum filters (Fig. 1D) on a (2mb+1)6(2mb+1) mask

matrix in sequence [13], according to the algorithm:

A
(3)
i,j ~mean A

(2)
h,k

n o
h~i{mb::izmb;

k~j{mb::jzmb

A
(4)
i,j ~max A

(3)
h,k

n o
h~i{mb::izmb;

k~j{mb::jzmb

ð3Þ

This procedure allows to discern circular objects on the image.

In the case of the SLN particles (Fig. 1), we have adopted 363

mask matrices (mb = 1) for these filters: the actual size of these mask

matrices must be tailored to the size of the targets of interest.

The final output of this series of filters (see an example in

Fig. 1D) is stored in the matrix bw3(N,N,M) by the routine

A_Imagefilters.m (N is the size of the matrix and M is the number of

images in the time stack). The whole set of filters provides a single

pixel for each target independent of its size above 3 pixels. The

algorithm has also some tolerance on the actual target shape and,

being not based on the edge detection, is fairly robust even at high

density (small target-target distance) of the targets (Fig. 1D). The

percentage of accepted targets with respect to the ones visually

determined on the first image of a stack, is 9065% as determined

by the analysis of 30 stacks. The extension of the method to

variable shapes, for example by setting a constraint on the particle

volume, or to a non uniform background, by computing it on sub-

matrices of the original frame, can be easily obtained.

Tracking: non-entangled trajectories
Our strategy is simply to track each of the initially selected

particles through the whole set of M images in the time series,

Ah,k(j)f gh~1::N
k~1::N
j~1,::M

.To this purpose we built (phase B) a series of ADI

images in which the differences between one image and its

previous one is recorded according to the following algorithm:

Vh,k ið ÞDi~1,:::P~
j if DA(4)

h,k j{1ð Þ{A
(4)
h,k jð ÞDwS

0 otherwise

(
j~1,::::M

ð4Þ

In Eq. 4, M equals the number of images in the time series, P is

the number of times at which a motion has been detected in the

(h,k) pixel and the threshold value, S, is any positive value in the

range [0,1) since we are acting, after the segmentation routine, on

binary images. The set Vh,k(i)f gh~1::N
k~1::N
i~1::P

is a series of P ADI images

[13], and is provided by the routine B_dADI.m (see the Code S1).

The reconstructed stack is updated only when a target moves and

the time at which such a motion has occurred (passage time) is

then stored in the V matrix.

At this point the algorithm searches (phase C, routine

C_Coord_Vect.m, in the Code S1) for the connected trajectories of

all the segmented targets by working on the ADI matrix V. For low

density images with non-entangled trajectories of the targets, it is

sufficient to follow the motion of all the targets segmented on the first

image of the time stack that is taken as reference image. The basic

algorithm for this step selects a starting position of the target on the

reference image and searches, in its neighborhood (three concentric

shells up to three pixels size), the element of the subsequent V matrix

whose value corresponds to the lowest j index (see Eq.4). Through

this procedure, that is repeated until the end of the time stack, the

algorithm builds up a 3D matrix in which, for each target, are stored

the pixel position and the time value at which that pixel has been

occupied by the target. This matrix, called fine in the routine

C_Coord_Vect.m (see Supporting Information S1 for details on this

matrix; see also the Code S1 and the section ‘‘Important notes on the

color coding’’ in the Supporting Information S1), has the form

fine(traj_length,3,target), where target is an index that identifies the

specific target, traj_length is the length in frames of the reconstructed

trajectory and in the 3 cells of the second dimension of the matrix are

stored the passage time, the x and the y position in the corresponding

image of the stack, respectively. The matrix fine is particularly useful

since it allows the direct parallel inspection of the trajectories on a

single 2D image, which is not easily feasible on a movie or its

projection, and can also be stored as a list of positions and times at

which the selected target has been found for future data analysis. The

display of the whole set of retrieved trajectories on a single image is

obtained by color coding the passage time memorized in the matrix

fine (phase D, routine D_beta_add_label.m, see Supporting Information

S1 and Code S1) as shown for example in Fig. 2A (with dark to light

green color coding). By selecting the number of the target on this

image the user can then also mount a movie of its trajectory

superimposed on the original stack of images by means of the routine

G_create_movie.m (phase G). For example the target number 69 in

Fig. 2A corresponds to the trajectory reported in the sample frames

(from 09 to 609, white trace) at the bottom of Fig. 2 and in the SI

(Movie S1).

Regarding the D_beta_add_label.m routine it must be noted that

the location of the target indices on the image (Fig. 2) is made in

such a way that the most significant digit of the target index is

written at the center of the first pixel of the tracked (sub-)trajectory.

However, since MATLAB does not scale the text size while

zooming into an image, the user may find convenient to scale

down the size of the font size of the targets’ indices (T_F_size

parameter in the D_beta_add_label.m routine) and to zoom in the

interesting area of the image in order to avoid the superposition of

the texts. The text color of the targets’ number on the image is

coded from red to blue according to the occupancy time of the first

pixel of the sub-trajectory ((R,G,B) =
tk

T
,0,1{

tk

T

� �
, where tk is the

occupancy time of the first pixel of the k-th subtrajectory and T is

the total stack duration). Finally it is important to note that the

targets’ indices do not necessarily coincides with the magenta

pixels on the images (Fig. 2A). In fact these pixels correspond to

those targets with trajectories that start in the first frames (see the

colormap in Fig. 2 and the examples discussed in the Supporting

Information S1 and the movie S2).

Tracking: entangled trajectories
In order to treat dense images and to track entangled

trajectories, we apply iteratively the basic tracking algorithm

described above by selecting all the targets segmented on every

incrementostep image along the stack of images and tracing their

motion through the remaining part of the time stack. The

rationale for repeating the C phase of the algorithm starting from a

set of equally spaced images along the time stack, is that an

entangled trajectory cannot be fully and continuously retrieved by

ADI Tracking Microscopy
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our as well as by other sequential algorithms due to alternatives

found at the branching points that occur on the same (looping) or

between different trajectories (crossings). This possibility is sketched

in Fig. 3A. The basic algorithm follows the nearest occupied pixel

with larger (with respect to the current pixel position along the

trajectory) occupancy time. In the sketch (Fig. 3A) the basic

algorithm (incrementostep,M) takes the wrong route simply

because close to the crossing one of the positions has not been

segmented. This may occur close to the crossing in a loop or at the

intersection of crossing trajectories of different targets.

The possibility that we have then exploited is to follow different

portions of the same trajectory starting from different frames along

the stack. In this way the looping part of a loop can be tracked

starting from a position right after the loop (Fig. 3B) and reported

as a single sub-trajectory. After this procedure, additional specific

routines check for the possible crossings of a selected target’s

trajectory with all the other targets (phase E) and display all the

targets whose trajectories cross each other (phase F) on a single

image (color codes here for the passage time in the pixel as in

phase D) for inspection (see Fig. 2B). The evaluation of the

crossing between two trajectories is made by checking if the two

trajectories belong, at same frame along the stack, to the same

hyper-volume, DxDyDt (routine E_check_crossing.m, see AOM).

The final step for the reconstruction of a possible continuous

trajectory along the stack is performed then by building a vector

(the variable paragon) that contains, ordered by the increasing

Figure 2. Targets’ numbering on the ADI images. Panel A. Result of the superposition of the ADI images with color coding (from dark to light
green) for the occupancy time of each pixel. The original time stack (scan1.rar) can be downloaded from the site http://moby.mib.infn.it/,chirico/
tracking.html as multi-tiff file. The original image corresponds to the frame ‘0’ reported on the bottom row of the figure. The targets segmented (the
threshold parameter in A:image_filters.m is soglia = 0.022) on the first image of the stack were tracked through only the first 120 frames of the total
264 of this stack for display purposes. In this case the number of segmented images is 120 (parameter ‘‘numero’’ in the code), the parameter
incrementostep was set to incrementostep = 121. The color code indicates the time at which a pixel was occupied in the individual ADI images
according to the increasing green level (from dark to light green; the magenta pixels indicate the target position detected on the first image). Only
those trajectories longer than 3 frames have been reported (parameters ‘‘lunghezza’’ and ‘‘length_traj’’ = 3 in C_coord_vector.m and
D_beta_add_label.m, respectively). Image B. The same as in Image A but all the targets segmented on every 20 images along the stack
(incrementostep = 20) have been tracked. The different colors of the target numbers (from red to purple) corresponds to the frames on which the
specific target has first been segmented. The white colored text corresponds to those indices that were displaced by at most one pixel since they
otherwise superimposed on other indices (see also the Supporting Information S1). The white framed boxes in the image report the zoom of three
regions with high density of segmented targets. Notice that the text size is not rescaled while zooming, therefore making difficult to discern the exact
position of a target in the original size image (see also the Supporting Information S1; section ‘‘Important notes on the color coding’’). Bottom row
images: frames from the original time stack after 09, 159, 309, 459 and 609 superimposed with the reconstructed trajectory (green trace on the gray
images) of the target number 69 (panel A). The color bar for the trajectory color coding is displayed between panel A and B and refer to all the images
The corresponding movie, Movie S1, can be found on the SI and at the site http://moby.mib.infn.it/,chirico/tracking.html.
doi:10.1371/journal.pone.0012216.g002
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experimental time, all the crossing trajectories (phase I, routine:

I_Create_Cross_Matrix.m), together with the differences between

adjacent positions along the putative trajectory (Fig. 4, Dx and

Dy in the table). The user have now two choices. She/he inspects

the paragon vector built during this phase and, by evaluating

the continuity of the trajectory (typically one assumes

DDxDƒ2; DDyDƒ2), splits the whole vector in subvectors that

describe distinct, possibly crossing, trajectories. Alternatively, a

specific routine, K_prepare_paragon.m (see AOM), performs auto-

matically this test and trajectory splicing according to the threshold

value selected by the user (threshold_paragon in the K_prepare_par-

agon.m routine), who must then simply validate the splicing and

perform possibly the merging of different sub-trajectories in the

final complete trajectory, which is then stored in the table paragon

and used to mount the trajectory movie (see SI; K_final_movie.m

or K_beta_final_movie_traj.m routines in the Code S1 file).

An example is given here for the case of a looping trajectory of a

lymphocyte in a lymphonode (Fig. 4A and B). In panel A we

report the tracking performed with incrementostep = 30 frames, in

which the loop is assigned to four targets (two of them refer to the

loop). The subtrajectories assigned to these targets allow to build a

large fraction of the loop (see the rows referring to the targets 440,

677 and 771 in the table in Fig. 4 (the target 864 offered

redundant information). However in order to fully reconstruct the

trajectory and in particular the loop, it is necessary to run the C

phase of the algorithm with incrementostep = 10 frames. In this case

Figure 3. Sketch of the occupancy time for the case of a loop in a single trajectory. One of the positions close to the loop has not been
segmented and is missing (indicated as ‘‘miss’’ in the top left panel). In panel A we sketch the situation encountered by the basic tracking algorithm
(incrementostep is larger than the total number of frames in the stack, M). In such a case the algorithm takes a detour and skip the loop (bottom
panel A). In panel B we report the case incrementostep= 14,M. The tracking algorithm perform a search also starting from the frames 14, 28, …
In this case a large fraction of the loop is rebuilt in two distinct sub-trajectories (bottom B panel).
doi:10.1371/journal.pone.0012216.g003

ADI Tracking Microscopy
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five targets are assigned to the loop and by following these

subtrajectories it is possible to build the full table of motion

reported in the table in Fig. 4. The corresponding movie of the

lymphocyte motion is reported in the SI (Movie S3).

By tracking the targets from different frames along the stack, the

user is then able to reconstruct highly entangled trajectories as it

will be further illustrated in the Results section and in the SI by

examples.

The user must be aware that, for non entangled trajectories, the

same object in the image may correspond to different targets

retrieved by the C_Coord_Vect.m with incrementostep,M. For

example the target segmented as number 69 on the image

Fig. 2A (incrementostep = M+1), corresponds to four segmented

targets (number 69, 374, 725 and 1398) when the stack was

analyzed with incrementostep = 20. The trajectory of these targets can

be followed and built together in order to reconstruct the

trajectory reported in the bottom row images of Fig. 2.

In the case in which the experiment output is a 3D volume, the

above described tracking method can be in principle extended to

three dimensions. However it can also be implemented on the 2D

projection of the volume despite the decrease in the signal/noise

ratio of the projected images.

The algorithm described above produces the path of all circular

moving objects selected in the original time series of images even if

the target position cannot be segmented in all the frames. This

may occur because of large fluctuations of the target emission or

because the target temporarily exits from the field of view (in 2 or 3

dimensions). The reconstructed path is visualized by the user on a

single output image in which the colors (RGB or, as used here,

increasing levels of Green color) code for the time at which the

Figure 4. Construction of the trajectory in the case of entanglement. Example of the use of the output (the table paragon) of the I phase of
the algorithm (I_Create_Cross_Matrix.m) for the construction of the trajectory in the case of entanglement. The trajectory taken here as an example
presents a loop that can be split in several subtrajectories depending on the incrementostep variable (panel A, incrementostep = 30 frames; panel B,
incrementostep = 10 frames). The table reports the final assembling of the trajectory: different colors refer to different targets that are also reported in
the panels A and B. In the table the entries are: the frame number, the x and y position in pixels, the target number and the differences between
adjacent x and y positions, indicated as Dx and Dy. The corresponding movie of the lymphocyte motion is reported in the SI (the Movie S3).
doi:10.1371/journal.pone.0012216.g004
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given pixel was occupied (Figs. 2, 4). This image can be easily

built (routine: D_beta_add_label.m in Online Additional Material) by

plotting the V matrix.

The basic algorithm described in the above section does provide

an automatic reconstruction of a large fraction of the trajectories,

those not involved in looping or crossing-over with other

trajectories. It is worth noticing that this result can be obtained

due to the adoption of a segmentation algorithm that is not based

on the edge detection and of a tracking algorithm that follows all

the segmented targets along the time stack by working on the ADI

stack of images and adopts a simple nearest neighbors shell search

algorithm. All the information retrieved in this way are then used

by the user to build 2D visualization of the trajectories (as in

Figs. 2, 4). It is also noteworthy that no a priori knowledge or

request on the type of motion is made in the algorithm. Entangled

or looping trajectories and particle interactions are treated by

means of specific routines (phase E, F) that search for the targets

that may have interactions (i.e. trajectories that belong to the same

hyperspace volume DxDyDt) and build the corresponding

subtrajectories (phase G, H, I) for the subsequent mounting by

the user (phase K, see Supporting Information S1).

Intracellular tracking
We have first applied the tracking algorithm to the analysis of

time series of images of human lung epithelial cells that internalize

solid-lipid nanoparticles labeled with coumarin (c-SLN). The

internalization mechanism is not ascertained yet and probably

involves the fusion of the SLNs with the membrane phospho-

lipids. The coumarin dye carried by the SLNs is found in the

cytoplasm only and is characterized by a perinuclear accumulation

that has been the subject of further studies. An additional feature

of these samples, however, is that beside a relatively large

coumarin emission background, distinct bright spots of the size

of the microscope point spread function, are detected (Fig. 1A).

We are interested here in demonstrating the tracking capabilities

of our algorithm on the motion of these structures that are likely to

be endosomes containing a large number of c-SLNs. They appear

to cluster together and to have erratic motions characterized by a

wide variability of the displacement (direction and amplitude). The

background is relatively high probably due to the release of some

coumarin dyes from the c-SLNs once internalized by the cell. We

are able to track most (.90%) of the particles initially selected on

each time series of images even if the density of the particles in the

image is relatively large (>2 particles/mm2 in some regions of

interests) as visible from the image reported in Fig. 5A and from

the movie (Movie S4) reported in the SI. An example of the

tracking of one of the segmented particles is given in Figs. 5B, C
where the trajectory (target 11), in which the occupancy time is

color coded (in jet colormap as reported in the panels), is

superimposed on the first (Fig. 5B) and the last (Fig. 5C) image of

the time series stack. Although some of the positions along the

Figure 5. Identification of particles on the image and display of the corresponding trajectory. Panel A reports the initial (frame 1) image
of the time stack: the numbers in the image close to each spot are the identification number of the targets that have been segmented
(FOV = 22622 mm2). The panels B and C report, superimposed on the first (frame 1, B) and the last (frame 440, C) image of the time series, the
trajectory of one of the particle (number 11 in panel A) with a jet colormap that is reported in terms of occupancy time (frames from 1 to 440) in the
images. The white framed box report the spline interpolation of the reconstructed trajectory as a thick yellow line. The white circle in the B and C
images indicate the initial and the final position, respectively. The corresponding movie is reported, with different color coding of the trajectory, in
the Movies S10 and S11.
doi:10.1371/journal.pone.0012216.g005
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trajectory are missing, the whole motion can be clearly discerned

on the image. A sketch of the whole trajectory, interpolated by

spline functions, is reported in the bottom right boxes in panels B

and C of Fig. 5. as a thick yellow line.

Trajectory statistical data analysis
At short times, the motion of the SLNs appears to be erratic (see

the Movies S4 and S5) and it should therefore be analyzed in

terms of the Brownian statistics [21]. Actually, one notices that

possible interactions with the cellular matrix and/or with other

particles seem to induce some directional motion of the particles at

long time scales, as visible, for example, in Movie S1. For a

Gaussian Markov process the distribution of the displacement (Dx,

Dy) measured on the x and y axes in a time lag t, is Gaussian and

is described by the function exp { Dx2zDy2
� �

= 4Dtð Þ
� �

, where D

is the translational diffusion coefficient of the particle [21]. We are

not able to follow continuously the whole trajectory in the

experiments and therefore we compute the distribution of the

normalized displacements, Dx=
ffiffiffi
t
p

and Dy=
ffiffiffi
t
p

(Fig. 6). These

normalized displacements are evaluated only for subsequent

positions (short time behavior) assumed by each target and

averaged over all the targets (>20) selected in the images. These

cases do not always correspond to subsequent frames since in some

of the frames we do not detect a change in the particle position. As

it can be seen from Fig. 6, the histograms of the two normalized

displacements can be described by the trial function,

&exp {Dx2=D4DtD
� �

, with a global (for the x and y displacements)

best fit value D = 0.02260.003 mm2/s, in agreement with those

found in most cellular diffusion phenomena [22].

Cell tracking
It is not our aim to compare the algorithm presented here,

tailored for specific applications, with the variety of analysis

products existing on the market and available freeware. These

have been thoroughly reviewed recently by Hand et al. [12]. We

have only taken as a reference the software Volocity (Improvision,

Perkin Elmer, UK) [23]. Our choice is motivated only by the wide

use of this software in optical microscopy imaging laboratories.

The Volocity software does segment a large fraction of the c-SLN

particles in the epithelial cells. However, due to the close relative

proximity of the SLNs in most of the frames, Volocity is able to

provide only very short and fragmented trajectories, that should

then be recognized, coupled together and mounted in single longer

ones by the user with a lengthy procedure. This situation is mainly

the result of the low signal/noise ratio of the analyzed images

and the poor edge definition of the targets, that reduces the

performance of the edge detection algorithm.

On the contrary, Volocity does track efficiently cells on low

background images such as in the case of lymphocytes detected by

two photon excitation in ex-vivo lymphonodes [19,20,24]. This is

one of the main topics covered in the UE FP7 research project

ENCITE (http://www.encite.org), in which several European

groups are involved. The algorithm described here is able to

retrieve most (>80%) of the trajectories of the lymphocytes, as

shown in Fig. 7A. The only changes that we had to apply to our

procedure, with respect to the intracellular tracking of SLNs, was

to segment the targets on the 2D projection (sum) of the collected

volumes (the experiments provided us with volumes and Figs. 7,8
and 9 report their 2D projection), to perform this search on the

largest nearest neighbor shell and to enlarge the size of the mean

and maximum filter matrices to 11611 pixels, due to the different

optical magnification.

We have checked that the retrieved trajectories were very

similar to the ones obtained by the Volocity analysis (Fig. 7B; the

corresponding movie is the Movie S6). Therefore the algorithm

presented in this report seems to be suited to the lymphocyte

motion analysis at least as Volocity does.

When isolated cells with non-entangled trajectories are to be

followed, the algorithm can be applied by employing only phases

A to G. No need for the repeated segmentation on several equally

spaced images along the time stack is needed. These cases are

exemplified in Fig. 8 and in the Movies S7, S8 and S9.

In the case of the most entangled trajectories the segmentation

of the targets must be performed on several images along the time

stack by selecting a parameter incrementostep,M. In these cases, the

trajectory is built from the combination of the sub-trajectories

tracked from different starting images along the stack (phase H, I,

K). The procedure has been outlined in the description of the

algorithm and exemplified in Figs. 2, 3 and 4. Only the final

inspection of the trajectories superimposed on the image stack, can

offer the user the choice to keep the trajectory for subsequent

physical analysis or discard it because of the not unique assignment

to the cells on the image.

The capability of our algorithm to tackle with entangled and/

or crossing trajectories is exemplified by the sequence of images

reported in Fig. 9, where looping and crossing-over events are

visible. It must be stressed that in the reconstruction of a complex

trajectory the user is aided by a number of cross-checks

implemented in the phases K, I and G of the algorithm, as

explained in the Particle Tracking Algorithm section. However, it

must be noted that in most of the cases of highly entangled

trajectories and cell-cell interactions, is not possible to uniquely

assign a target to a specific trajectory and an arbitrary choice

must be taken or the trajectory discarded from the analysis. For

example, the trajectory reported in the top row of Fig. 9, has

been obtained by considering four different targets. The

trajectories of three of these targets intersect at different times

and might be in principle interchanged. In this example (the

Figure 6. Statistical analysis of the intracellular diffusion of
particles. Distribution of the x (sparse pattern) and y (dense pattern)
displacements normalized to the square root of the lag time between
frames measured on a time series of images of cSLN particles in
epithelial cells. Only subsequent detection of the particles have been
selected in the analysis. The solid lines are Gaussian functions,
&exp {Dx2= 4Dtð Þ

� �
, globally fit to both the data sets. The common

(globally fitted to the x- and y- displacements) best fit diffusion
coefficient of the cSLNs is D = 0.02260.01 mm2/s. We have employed
the non linear least square (Levenberg-Marquardt) fitting routine of
Origin 7.0 (OriginLab Corp.) with statistical (Poisson) weight on the data.
doi:10.1371/journal.pone.0012216.g006
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corresponding movie is found in the Supporting Information as

Movie S12), the tracked lymphocyte encounters a second

lymphocyte at the frame >60 and a third one at the frame

>76. The user should assign the trajectory and evaluate if

interactions are occurring and if the trajectory can be used for

further statistical analysis or disregarded due to the not unique

assignment.

The middle row of the Fig. 9 reports the trajectory of a single

isolated target in which a tight loop is recognized and followed to

large extent by the algorithm. In the bottom row of Fig. 9 two

Figure 7. Analysis of lymphocytes trajectories within a ex-vivo lymphonodes kept in physiological conditions. Panels A reports a wide
field (2566256 pixels, 2.76 mm pixel size, FOV = 7066706 mm2) of the first image of a section of the lymphonodes (LN) together with the trajectories
of all the targets that have been segmented. All the images were obtained by z-projection of the experimental volume. The trajectories were
recovered by a 2D search on the projected volumes. In the trajectories the experimental time is coded by increasing green levels. Panel B shows a
blow-up of the first image of the time series together with the trajectory of one of the visible lymphocytes obtained by the algorithm (the experiment
time is coded as increasing green levels and a small shift is applied to the image for display purposes) and of the same lymphocyte as obtained by
Volocity (plain blue curve). The resting lymphocytes are coded in red in the image. A white framed square in panel A indicates the position of the
trajectory whose blow-up is given in panel B.
doi:10.1371/journal.pone.0012216.g007

Figure 8. Example of lymphocytes tracking within an ex-vivo lymphonodes imaged under two-photon excitation (lexc = 800 nm).
Panels A to F report the first (A, C and E) and the last (B, D and F) images (FOV = 2306230 mm2) of the time series and the corresponding
superimposed trajectories in which the experiment time is encoded as green levels as outlined by the reported colormap. These trajectories (reported
here in increasing gray levels) have been reconstructed by following the targets segmented only on the first image on the time stack. The LUT of the
images have been inverted with respect to Fig. 7 for display purposes. The movies that correspond to these frames are reported in the SI (Movies S7,
S8 and S9).
doi:10.1371/journal.pone.0012216.g008
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closely spaced loops are reconstructed in the target trajectory.

From the corresponding movies reported in the Supporting

Information (Movie S13 for the bottom row and Movie S3 for

the middle row of Fig. 9), it can be seen that the missing stretches

in the trajectory (particularly in the bottom row of Fig. 9)

correspond indeed to frames in which the target is probably exiting

from the observation planes.

The algorithm presented here has a number of additional

useful features when compared to the chosen reference software,

Volocity, if applied to the lymphocyte motion analysis. In the case

of the images of lymphocytes within an ex-vivo lymphonodes, the

background is much less evident than that found for the c-SLNs

images, even after performing the 2D projection, and the most

difficult and immunologically relevant issue is the possibility to

detect contacts between lymphocytes of different types. During

the immunological response to an external stimulus these

interactions are triggered by cell-cell interactions and the

resulting lymphocyte trajectories can be entangled or crossing

each other. The cases in which two trajectories are intersecting

are the most difficult to be treated, but often the more relevant.

Intersection can also occur because we are measuring on a 3D

volume and two trajectories happen to have the same (x,y)

coordinate, though at different heights (z coordinate) in the

volume. However the limited z resolution of optical (even

confocal or non linear excitation) microscopes often induces

cross-talk between adjacent z planes. In other cases, the

trajectories are touching because two lymphocytes of the same

type (and staining) pass by each other by chance or because two

lymphocytes of different types (and staining) are recovered on the

same image channel because of cross-talk between the image

channels.

The algorithm presented here has the capability to segment

most of the cases related to cell interactions, and therefore

produces long trajectories approximately lasting one third of the

whole duration of the experimental observation (609–909). In this

crucial step the user is aided by specific routines that single out the

targets putatively involved in crossing-over and interactions and

evaluate the continuity of the corresponding sub-trajectories as

outlined in Fig. 4. The Volocity software, on the contrary, reports

entangled and touching trajectories as a collection of fragmented

and uncorrelated sub-trajectories that must be carefully inspected

by the user and possibly mounted in longer ones with lengthy

procedures.

It was not our aim to develop a fully automatic and general

purpose tracking algorithm and therefore we do not extend further

the comparison of our algorithm with other software packages. A

comparison to the recently published work by the Degerman

group [7] is however particularly useful. The algorithm presented

in [7] is devoted to the segmentation and tracking of neural stem/

progenitor cells in vivo and it is based on a highly sophisticated

iterative method. In this biological system the cells can fuse and

change in shape and the analysis of the motion can be extremely

complex. Degerman and coworkers [7] extend the algorithm

previously developed by the same group, starting from the Chan

and Vese algorithm [15], by taking into account also the growing

and pruning of the neural cells. This is a case in which a number of

assumptions on the type of the cell dynamics (both for the cell

shape and for the cell overall displacement) is needed and taken

Figure 9. Sample trajectories of lymphocytes within ex-vivo lymphonodes. The images in each of the three rows report a sequence of
images from a trajectories of lymphocytes. The field of view of these images is 2306230 mm2. The number in each image reports the frame along the
time stack. The movies that correspond to these frames are reported in the SI (the Movies S12, S3 and S13). The LUT of the images have been inverted
with respect to Fig. 5B and C and the occupancy time is coded in the trajectory as an increasing green levels (the colormap is the same as in Fig. 8).
doi:10.1371/journal.pone.0012216.g009
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into account by solving the propagator equation for a smooth

function [7,15]. In order to track the cell motion (and their shape

change) Degerman et al. [7] make use of a stochastic model

(hidden Markov model) in order to estimate the probability that

certain segmented targets belong to a specific track. This type of

approach is therefore complementary to ours in several point.

First, regarding the size of the cells that are, in our case, more or

less small (3–10 pixels) circular (or spherical in 3D) closed objects

whose shape cannot and should not be solved accurately from the

image, and whose volume is not dramatically evolving in time.

Second, the tracking is performed in our case at a low level, by

making no assumption on the type of motion and by following all

the segmented objects through the time series of images or

volumes. It is at the basis of our approach the assumption that the

user will then need to validate the reconstituted trajectories and to

apply models to analyze the target motion. Third, in the present

case the segmentation can be performed in almost any freeware

platform and the tracking algorithm needs a minimum of coding

(subtraction of subsequent normalized matrices).

Conclusions
We have described a simple algorithm for the segmentation and

the tracking of particles on time series of optical microscopy

images based only on a set of size sensitive filters and with no a

priori requirement on the exact shape of the objects to be

segmented and their type of motion. The procedure, implemented

here on the MATLAB (7.7) platform can be easily extended to

faster performing environments, such as ImageJ (http://rsbweb.

nih.gov/ij/) or CVI (NI, http://www.ni.com), and has been tested

on nanoparticles diffusing through cell cytoplasm and on

lymphotcytes diffusing through the lymphonode tissue. The

segmentation part of the algorithm can be further tailored by

changing or skipping some of the applied filters while the tracking

part of the algorithm, based on the application of the ADI

technology [13], allows to track the whole set of particles initially

selected by the user and to visualize all the corresponding

trajectories on a single 2D image.

In summary, the tests presented indicate that the method

adopted here to segment the targets on the images and to encode

time in the time series of images for a specific target, allows to treat

efficiently the most critical issues in the analysis of cell motion in

in-vivo studies, namely cell interaction and entangled trajectories,

even on low signal/noise images and provides the user with an

efficient visualization of the trajectories for further analysis.

Supporting Information

Supporting Information S1 This file provides all the Support-

ing Information. The two main sections are devoted to (1) a

detailed description of all the routines and of the linked use for

segmentation and tracking and (2) to some considerations on the

problems related to the position of the target numbers on the

images.

Found at: doi:10.1371/journal.pone.0012216.s001 (0.62 MB

PDF)

Code S1 This is an archive that contains all the matlab routines

(some of them in revised beta version) needed to analyze the time

stack of images. The sample stacks and this same zip archive can

be downloaded from http://moby.mib.infn.it/,chirico/tracking.

html.

Found at: doi:10.1371/journal.pone.0012216.s002 (0.02 MB ZIP)

Movie S1 This is a movie that reports the kinetics of SLNs

nanoparticles in cells. The corresponding image is a blow up

(15615 mm2) of Movie S4. The trajectory of the target is reported

in all the frames as a green track. The green colors of the trajectory

map the occupancy time as reported by the colorbar of Fig. 2.

Found at: doi:10.1371/journal.pone.0012216.s003 (5.91 MB

AVI)

Movie S2 This is an animated GIF file that visualize the effect,

on the positioning of the number of the specific target, of zooming

into an image with MATLAB.

Found at: doi:10.1371/journal.pone.0012216.s004 (0.60 MB GIF)

Movie S3 This movie shows the motion of a lymphocyte close to

the external capsule of the lymphonodes. The cell appears (coming

from above or below planes) in the image approximately at frame

99–101 and it is first segmented on frame 102 and tracked from

this frame on. An interaction between this cell and a cell coming

from the upper part of the image occurs between the frames 204

and 226, approximately. We cannot be sure that the trajectory

built from frames 226 on is the one that refers to the cell initially

segmented on the image at frame 102. The cell, in the frame 130–

180, performs a loop and inverts its motion. The trajectory green

colors code for the occupancy time as in Fig. 2.

Found at: doi:10.1371/journal.pone.0012216.s005 (12.99 MB

AVI)

Movie S4 The movie shows the kinetics of SLNs in cells on a

wide FOV (1206120 mm2).

Found at: doi:10.1371/journal.pone.0012216.s006 (89.08 MB

AVI)

Movie S5 The movie shows the kinetics of SLNs in cells on a

wide FOV (60660 mm2).

Found at: doi:10.1371/journal.pone.0012216.s007 (57.35 MB

AVI)

Movie S6 Movie reporting the motion of a lymphocyte within a

lymphonodes. Comparison between the trajectory retrieved by the

Volocity (green) software and our algorithm (blue). The mobile

lymphocyte is marked in red. A second immobile lymphocyte is

present in the movie.

Found at: doi:10.1371/journal.pone.0012216.s008 (0.88 MB AVI)

Movie S7 The target starts from the upper right end of the

trajectory. A second target happens to lie on the same trajectory in

the very first frames of the stack (on the bottom part of the

trajectory). The target assigned to the trajectory moves first to the

left performing two small loops at frame > 80 and > 100. The it

closes up turning to the right. The color map of the image is an

inverted gray colormap. The trajectory is reported in green levels

with the same colormap as in Figs. 8, 9.

Found at: doi:10.1371/journal.pone.0012216.s009 (12.99 MB

AVI)

Movie S8 The trajectory illustrates the motion of a lymphocyte

in which a large loop is present. There is no direct interaction with

other cells and no ambiguity in the trajectory assignment. The

color map of the image is an inverted gray colormap. The

trajectory is reported in green levels with the same colormap as in

Figs. 8, 9.

Found at: doi:10.1371/journal.pone.0012216.s010 (12.99 MB

AVI)

Movie S9 The trajectory reports the case of an isolated loop.

The target starts the loop at frames > 130. Between frames 150

and 180 the target has not been sesgmented, probably because it

exited the imaged volume. The color map of the image is an

inverted gray colormap. The trajectory is reported in green levels

with the same colormap as in Figs. 8, 9.
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Found at: doi:10.1371/journal.pone.0012216.s011 (12.99 MB

AVI)

Movie S10 The movies report the reconstruction of the

trajectory of one SLN in the cells (target 11 in Fig. 4). The

images are reported in direct gray levels (all the other movies are in

inverted gray levels). The trajectory lasts for 440 frames and

therefore two different color rendering is given here. In this movie

one every two frames are inserted in the movie and the whole

trajectory is rendered in jet(128) colormap on all the frames of the

movie. It is noteworthy that, despite the high density of targets in

the image and the several interactions between them

(20,frames,110, 180,frame,210; 320,frame,440) the tra-

jectory is fully reconstructed with a low level of ambiguity.

Found at: doi:10.1371/journal.pone.0012216.s012 (21.39 MB

AVI)

Movie S11 The movie reports the reconstruction of the

trajectory of one SLN in the cells (target 11 in Fig. 4). The

images are reported in direct gray levels (all the other movies are in

inverted gray levels). The trajectory lasts for 440 frames and

therefore two different color rendering is given here. In this movie

all the frames are inserted and the trajectory is reproduced in two

different parts, both rendered in the jet(128) colormap. For the first

220 frames only the first half of the trajectory is reported on the

movie. For the second 220 frames only the second half of the

trajectory is reported on the movie, in the same jet(128) colormap.

It is noteworthy that, despite the high density of targets in the

image and the several interactions between them

(20,frames,110, 180,frame,210; 320,frame,440) the tra-

jectory is fully reconstructed with a low level of ambiguity.

Found at: doi:10.1371/journal.pone.0012216.s013 (21.69 MB

AVI)

Movie S12 The movie represents one of the most entangled

trajectory found in the original image of lymphocyte in a mouse

lymphonodes. The choice of the connection between different sub-

trajectories is only indicative of the potential application of the

software. The cell is segmented on the very first image of the stack.

Up to the frame 60 there is no ambiguity on the assignment of the

trajectory. At this frame the original target meets a second target

coming from the third quadrant of the image. At the frame 73

these two targets encounter a third target coming from the upper

part of the image. From frame 80 to 190 the trajectory shows no

ambiguity in the assignment. At frame 190 a second lymphocyte

appears in the image and splits from the original one. This is

probably due to an interaction between lymphocytes on different z

planes. This trajectory is reported here only with the purpose of

showing the possibility of reconstruction of complex trajectories. In

the analysis of the cell interactions such a trajectory should be

discarded due to the large ambiguity in the assignment of the cells.

The color map of the image is an inverted gray colormap. The

trajectory is reported in green levels with the same colormap as in

Figs. 8, 9.

Found at: doi:10.1371/journal.pone.0012216.s014 (12.99 MB

AVI)

Movie S13 This movie reports the trajectory of a cell that

interacts partially (frames 80–180) with the cell reported in Movie

S12. Also in this case there is some level of ambiguity in the

assignment of the trajectory that must be settled by the user or the

trajectory should be discarded from the analysis. The motion of

the cell presents two adjacent loops (frames 70–90 and frames

150–200) and an inversion of the motion (frame 105). The color

map of the image is an inverted gray colormap. The trajectory is

reported in green levels with the same colormap as in Figs. 8, 9.

Found at: doi:10.1371/journal.pone.0012216.s015 (12.99 MB

AVI)
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