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Abstract

Background: Breast cancer is the second most frequent type of cancer affecting women. We are increasingly aware that
changes in mRNA splicing are associated with various characteristics of cancer. The most deadly aspect of cancer is
metastasis, the process by which cancer spreads from the primary tumor to distant organs. However, little is known
specifically about the involvement of alternative splicing in the formation of macroscopic metastases. Our study investigates
transcript isoform changes that characterize tumors of different abilities to form growing metastases.

Methods and Findings: To identify alternative splicing events (ASEs) that are associated with the fully metastatic phenotype
in breast cancer, we used Affymetrix Exon Microarrays to profile mRNA isoform variations genome-wide in weakly
metastatic (168FARN and 4T07) and highly metastatic (4T1) mammary carcinomas. Statistical analysis identified significant
expression changes in 7606 out of 155,994 (4%) exons and in 1725 out of 189,460 (1%) intronic regions, which affect 2623
out of 16,654 (16%) genes. These changes correspond to putative alternative isoforms—several of which are novel—that
are differentially expressed between tumors of varying metastatic phenotypes. Gene pathway analysis showed that 1224 of
genes expressing alternative isoforms were involved in cell growth, cell interactions, cell proliferation, cell migration and cell
death and have been previously linked to cancers and genetic disorders. We chose ten predicted splice variants for RT-PCR
validation, eight of which were successfully confirmed (MED24, MFI2, SRRT, CD44, CLK1 and HNRNPH1). These include three
novel intron retentions in CD44, a gene in which isoform variations have been previously associated with the metastasis of
several cancers.

Conclusion: Our findings reveal that various genes are differently spliced and/or expressed in association with the
metastatic phenotype of tumor cells. Identification of metastasis-specific isoforms may contribute to the development of
improved breast cancer stage identification and targeted therapies.
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Introduction

In breast cancer patients, tumor metastases at distant sites are

the main cause of death [1]. However, the molecular mechanisms

of metastasis of breast cancer remain unclear. It is thought that

changes occurring at the level of RNA processing contribute to

cancer. Alternative splicing (AS) of pre-mRNA, a key post-

transcriptional mechanism allowing for the production of distinct

proteins from a single gene, affects over 90% of human genes

[2,3]. Such splicing events are responsible for generating mRNAs

that encode protein isoforms that can have very different biological

properties and functions. A well-studied example is the BCL-X

gene, whose two major transcript isoforms produce two proteins

having antagonistic functions [4]: the short form (BCL-XS)

promotes apoptosis while the long form (BCL-XL) is anti-

apoptotic. Moreover, overexpression of BCL-XL has been

reported to enhance the metastatic potential of breast tumor cells

in patients [5]. Another interesting example is CD44, a multi-

functional cell adhesion protein for which many splice variants

have been associated with the growth and progression of multiple

tumor types [6,7,8]. CD44 shows an unusual pattern of splice

variants in mammary tumorigenesis, which arises from the

differential usage of 10 internal exons. In breast cancer metastases,

CD44 isoforms with variable inclusion of these 10 exons are

expressed; whereas preneoplasias show a more restricted exon

inclusion pattern [9]. The CD44v5 isoform has been identified to

enhance tumor cell invasiveness [10], and tumor cells expressing

the CD44v4-10 variant form larger volume primary tumors and

more metastases compared to tumors expressing wild-type CD44

[11]. Moreover, changes in splicing during cancer appear to alter
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cell morphology, adhesion, migration, apoptosis and proliferation

processes which are hallmarks of metastasis [12]. Cancer

metastasis is a progressive process and thus transcript isoforms

associated with specific metastatic phenotype may serve as

potential biomarkers for aggressive disease and may be relevant

in the development of targeted treatment strategies of breast

cancer patients.

The Affymetrix GeneChip Exon 1.0 ST (Exon Array), a tool for

exon-based transcriptome profiling, can be used to detect

differences in isoform-level expression and has been applied

successfully in several studies [13,14,15]. It allows the expression

profiling of over a million individual exons, both those that are

known and predicted. In this study, we used this technology in a

murine breast cancer model to identify changes in splicing that are

associated to metastatic phenotypes. We simultaneously analyzed

exon and transcript expression in tumor tissues derived from three

murine mammary carcinoma cell lines (168FARN, 4T07 and

4T1), each possessing different metastatic phenotypes [16]. The

criterion used to assign the metastatic potential of these cell lines is

based on their ability to form lung metastases. 168FARN tumor

cells can be detected in lymph nodes but fail to extravasate and are

rarely detected in the lungs. Cells from 4T07 tumors reach the

lung via the blood, but are unable to develop into macroscopic

metastatic nodules. Lastly, 4T1 cells possess the ability to

spontaneously metastasize to distant sites, including the lung,

bone and liver [17]. By performing statistical analysis of the Exon

Array data, transcript isoforms associated with metastatic

phenotypes of these different tumors were identified. Nearly

16% of genes display at least one differently expressed exon across

the panel of murine breast tumors. Additionally, gene pathway

profiling was performed with candidate genes using the Ingenuity

Pathway Analysis software. Half of these genes are known to be

associated with cancer hallmarks and genetic disorders, while the

remaining candidates have no established link with cancer

progression and metastasis and may constitute novel candidates

for metastasis diagnosis and therapy.

Results

To seek transcriptome changes at the exon scale during

metastasis progression, we measured global exon expression in

murine breast tumors that have differential metastatic behaviors.

The breast carcinoma cell lines were individually injected into the

mouse mammary fat pads as previously described [18] and total

RNA was purified from the resulting tumors once they reached a

volume between 100 and 125 mm3. Samples were then labeled

and hybridized to GeneChip Mouse 1.0 ST arrays that provide

multiple probes (probe sets) per exon and target over a million

known and predicted exons. The microarray data has been

deposited in the Gene Expression Omnibus Database (accession:

GSE21994). We analyzed the full probe set annotation (493,710

probe sets), interrogating 345,454 exons and introns. In addition to

the core probe sets, we extended our analysis to the non-core

probe sets, which are those supported by EST and predictive

evidence not present within RefSeq and full-length mRNA

GenBank records. Concurrent with exome profiling, we estimated

the gene-level intensity by summarizing, for each gene, the signal

values of all the probe sets belonging to the gene (meta-probe set).

Hence, the full dataset was summarized into 16,654 unique well-

annotated transcripts. We applied several filtering steps to discard

genes and exons with expression values close to background in an

effort to minimize the false positive rate (see Methods). We

obtained 183,610 expressed probe sets, corresponding to 137,950

exons or introns belonging to 11,082 genes. To determine

differently expressed exons and genes across tumor samples, we

simultaneously performed either a one-way ANOVA test on probe

set logarithmic intensities or a one-way ANOVA test on meta-

probe set logarithmic intensities. At the probe set level, we

performed two concurrent analyses: a probe set expression-

intensity analysis and a probe set gene-level normalized intensity

analysis. The gene-level normalized intensity is the ratio of the

probe set expression intensity to the expression intensity of the

meta-probe set that the probe set belongs to. The splicing index

(SI) for a probe set is then defined as the ratio of gene-level

normalized intensities in one sample relative to another.

Subsequent to ANOVA tests, we applied a 0.05-level FDR (False

discovery rate) correction to determine the P-value threshold to

identify significant exons (P,6.3661024 for the probe set

expression analysis; P,7.1061024 for the SI analysis) and the

significance of whole gene expression (P,8.4661023: over-

expressed in a sample). Differentially expressed exons between

paired samples were located by performing pairwise T-test

comparisons (168FARN and 4T07 against 4T1). The log2

transformed expression fold-changes (4T07/4T1 and

168FARN/4T1) between paired sample comparisons were also

computed.

Gene expression and isoform variations specific to tumor
metastatic phenotype

We obtained 10,744 probe sets targeting 9331 (2.7%) introns or

exons showing significant expression changes belonging to 2623

(15.7%) genes. Of these, 1772 (10.6%) genes displayed expression

changes at the whole transcript level while 851 (5.1%) showed

isoform changes without corresponding whole gene expression

changes. To visualize ASEs in the context of EST/mRNA or

genome annotation, we uploaded our data as a track in the UCSC

Genome Browser [19]. For each gene, we plotted the paired T-test

P-values and the expression fold-changes of each individual exon

(examples shown in Figure 1). Using this visualization, we

manually curated the results and selected 203 genes (143 from

the expression intensities analysis and 60 from the SI analysis;

Details reported in Supplementary File S1 and Supplementary File

S2) for which the transcript variation pattern was clearly

interpretable and confidently classifiable into the gene expression

change category or into the standard ASE categories. These 203

candidates showed evidence for differential promoter usage,

polyadenylation site usage, ASE and whole gene expression

changes. We calculated the proportion of each isoform variation

type among our classified candidate genes, which revealed that

26.1% of these genes showed whole gene expression changes with

some of them showing additional splicing changes. A large

proportion of genes showed only isoform changes (examples in

Table 1), namely intron inclusion or inclusion of cryptic,

unannotated exons (46.4%) and cassette exon usage (13.5%).

Furthermore, 7.2% of isoform changes occurred at the level of

transcript initiation or transcript termination. Thirteen genes

showed changes within the UTR regions: three genes had

differential 59 UTR changes and 10 presented 39 UTR changes.

We found only one gene showing an alternative 59 splice site.

However, the remaining significant genes (2420) presented

complex variation patterns that were difficult to categorize. Below,

we describe some potentially interesting examples detected by the

analysis.

The process of pre-mRNA splicing is regulated by a large

number of ‘‘splicing-factors’’ and the misregulation of such genes

may be particularly detrimental to many downstream splicing

events. HNRNPH1 and CLK1, two trans-acting splicing regulator

factors, are predicted by our computational analysis to be
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differentially spliced between tumor cells. HNRNPH1 is a

member of the hnRNP family and retains an intronic sequence

between exons 9 and 10 in 168FARN and 4T07 mammary tumors

compared to 4T1 tumors. This splice-form causes a reading

frameshift and a protein truncation. The hnRNP proteins are

required for pre-mRNA processing and maturation and bind to

newly synthesized RNA in the nucleus until they are exported to

the cytoplasm. Interestingly, a frameshift mutation in HNRNPH1

has been previously identified in gastric cancer [20]. The second

example, CLK1, shows a retained intronic sequence in 4T1-

derived mammary tumors, situated between exons 5 and 6. This

intron retention leads to a reading frameshift and the disruption of

a kinase domain in the protein product. This gene codes for a

member of the CDC2-like family. Expressed in the nucleus, this

protein phosphorylates other serine/arginine-rich (SR) proteins,

which has been show to be involved in the regulation of splice site

selection during pre-mRNA maturation [21].

We also found isoform variants of several genes involved in cell

growth, cell movement, cell proliferation and apoptosis, including

CD44, PHB and MAPK14. CD44 isoform variations in cancer

have been associated with the metastatic ability of tumor cells,

being involved in numerous processes, including cell proliferation,

adhesion and invasion [22]. This protein increases the adhesion

and invasion of breast cancer cells [7,23] and decreases cell death

and apoptosis of colon cancer cells [24]. We identified a novel

isoform of CD44 showing retention of intronic sequences with no

previous RefSeq or full cDNA evidence in publicly-available

sequence databases (Figure 1C). In this variant, two introns – one

between between exons 5 and 6 and the other between exons 9

and 10 were retained in 4T1-derived fully metastatic mammary

tumors. These result in reading frame-shifts in the transcript. We

also noted a high inclusion rate of exons 8, 11 and 13 within CD44

from 4T1-derived tumors compared to 168FARN and 4T07-

derived tumors.

Another example includes PHB-exon 4, which was found to be

predominantly expressed in 4T1-derived mammary tumors

compared to those arising from the injection of 168FARN or

4T07 cells. The lack of PHB-exon 4 caused a reading frameshift

and the removal of 26% of SPFH, an integral membrane domain.

Prohibitin (PHB) is an evolutionary conserved gene that is highly

Figure 1. Examples of visualization of gene expression patterns showing isoform variations. A: Visualization of the expression pattern of
MED24 gene showing an alternative start in 4T1. In the top panel, the horizontal scale corresponds to each probe set within the gene from the 59 to
39 ends. The blue bars indicate the comparison between 168FARN and 4T1 samples. From top to bottom we plotted the log2(fold-change) in
expression, between the samples compared, and the statistical significance, 2log10(p-value). The bottom panel shows the log10(expression intensity)
of individual probe sets (from the top panel) in samples 168FARN and 4T1. Note that the seven last probe sets and the 39 UTR region that are over-
expressed only in 4T1 indicate an additional isoform in 4T1 starting from exon 20 start. B: Visualization of the expression pattern of SRRT gene
showing an intron inclusion. In the top panel, the horizontal scale corresponds to each probe set within the gene from the 59 to 39 ends. The blue
bars indicate the comparison between 168FARN and 4T1 samples. From top to bottom we plotted the the log2(fold-change) in gene-level normalized
intensity between the samples compared and the statistical significance, 2log10(p-value). The bottom panel shows the log10(gene-level normalized
intensity) of individual probe sets (from the top panel) in samples 168FARN and 4T1. We note an intron inclusion between exons 5 and 6 in samples
168FARN. C: Visualization of the expression pattern of CD44 gene showing several internal cassette exons and three novel intron inclusions. In the top
panel, the horizontal scale corresponds to each probe set within the gene from the 59 to 39 ends. The blue bars indicate the comparison between
4T07 and 4T1. From top to bottom we plotted the log2(fold-change) in expression, between the samples compared. The bottom panel shows a close-
up of the CD44 region containing the differentially expressed exons and introns. The first custom track displays the fold-changes and the second
custom track displays the sequencing alignment of the three retained introns. We note that in this example, exons 8, 11 and 13, two intronic
sequences between exons 5 and 6, and one intronic sequence between exons 9 and 10, are over-expressed in the 4T1 sample.
doi:10.1371/journal.pone.0011981.g001
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expressed in different tissues. It is a cell proliferation regulator and

also a tumor suppressor gene. It has been shown that the silencing

of prohibitin function increases tumor cell cycle progression in

prostate cancer [25]. PHB protein decreases colony formation of

T47D breast cancer cells by repressing E2F, a complex of growth

regulatory proteins [26]. Moreover, mutations in PHB gene have

been associated with sporadic breast cancer [27].

Finally, we found that within MAPK14, preferential retention of

intron 2 occurred specifically in 4T07-derived mammary tumors.

MAPK14-intron 2 retention shifts the reading frame and disrupts

a kinase domain in the protein product. MAPK14 is a member of

the MAPK complex whose controlled regulation plays a part in

cell proliferation and differentiation, whereas uncontrolled activa-

tion can lead to oncogenesis [28].

Strikingly, we also observed some novel transcript isoforms that

were not previously annotated. Representative examples are

MED24 and SRRT which were subsequently confirmed by

qRT-PCR (see below). Our exon array data showed an alternative

start of MED24 with the last seven exons of the transcript

predominantly expressed in 4T1-derived tumors (Figure 1A). The

wild-type MED24, expressed in all our samples, encodes a subunit

of the mediator complex TRAP, a transcriptional coactivator

complex necessary for the expression of almost all genes. The

truncated isoform found in 4T1-derived tumors could potentially

create a protein with deleterious activities. Additionally, an

intronic sequence in SRRT located between exons 5 and 6 was

differentially expressed between tumor samples. This intron

showed a strong over-expression in 168FARN and 4T07 cells

when comparing to 4T1 mammary tumor cells. SRRT, also

known as ARS2, is important for miRNA biogenesis during

miRNA-mediated gene silencing in proliferating cells [29].

Non-coding genic regions are widely retained in breast
cancer metastasis

A large number of the differences we detected are represented

by non-core probe sets, which targeted intronic regions. We

determined that 277,346 of the 493,710 (56.2%) analyzed probe

sets were non-core and we decided to interrogate 189,460 intronic

regions.We note that 49,588 of these non-core probe sets satisfied

the expression filtering criteria, including 2037 which showed

expression variations between tumor samples and mapping to

1725 intronic regions. This proportion represents 18% of the total

statistically significant introns and exons obtained. Besides the

expression variations of known coding regions, cancer cells are

susceptible to express such predominantly non-coding regions

because of general misregulation of gene expression and splicing.

Therefore, the inclusion of non-core probe sets in our analysis was

relevant. This enabled us to enrich the novel ASE proportion,

mainly the intron retention/cryptic category. Remarkably, the

proportion of tumor-specific over-expressed introns (Figure 2)

showed that 4T1 mammary tumors, which represent the highest

metastatic potential, had the greatest degree of intron inclusion

(775 over-expressed intronic regions) followed by 4T07-derived

mammary tumors and finally 168FARN samples (671 and 408

over-expressed intronic regions, respectively). However, probe sets

outside of annotated transcripts (518,024 probe sets) were

excluded from our investigation. We note that some of these

excluded probe sets, representing about half of total probe sets on

the array, were differentially expressed between tumors. They may

form new genes or produce new isoform variants by elongating the

ends of known transcripts; however this was not investigated in our

analysis.

Ontology and pathway analyses of differentially spliced
and expressed transcripts: candidate genes are mainly
involved in cancer hallmarks and genetic disorders
pathways

To identify biological pathways and functions enriched in our

significant genes, we conducted gene ontology and pathway

analyses with the set of genes that presented whole-gene expression

changes and/or isoform differences between the tumor samples

using the Ingenuity Pathways Analysis (IPA version 6.0) software

package (Ingenuity Systems, Mountain View, CA). The IPA

software compares its knowledge base - made up of all annotated

Table 1. List of some alternatively expressed probe sets.

Gene name1 PS2 PS location3 168FARN vs. 4T1 4T07 vs. 4T1 ASE6 Evidence7

P-value4 FC5 P-value FC

CD44 4534496 E13 3.14610204 2.81 3.38610204 2.64 CE Yes

4740112 E11 6.39610204 2.77 6.39610204 2.72 CE Yes

4461784 I (E9-E10) 1.94610204 2.06 1.55610203 1.46 CE No

5425762 E8 1.02610205 1.50 2.42610204 0.96 CE Yes

4423264 I (E5-E6) 3.61610205 1.51 2.28610203 0.82 II No

4622064 I (E5-E6) 9.18610205 1.18 8.16610203 0.52 II No

Itgb1 5044002 I (E9-E10) 2.00610205 1.58 1.12610203 0.89 II Yes

Slc25a29 4968317 39 UTR 9.56610205 22.17 9.56610205 22.15 39 UTR Yes

MAPK14 4487560 I (E2-E3) 1.47610201 20.18 2.05610204 20.79 II No

Msx1 4993066 39 UTR 2.81610203 0.88 5.22610204 1.19 39 UTR No

Srrt 5382632 I (E5-E6) 2.54610205 21.12 7.90610206 21.36 II No

MFi2 5508279 E13 1.25610204 21.88 1.54610206 23.37 CE No

I(Ex-Ey): Intron between exon x and exon y.
The gene name1, the probe set ID2 and the relative probe set location3 in the gene are indicated. For each pairwise comparison, the T-test p-value4 and the log2(fold-
change)5 are given. The nature of the isoform change6 is shown (CE: cassette exon, II: intronic sequence inclusion, 39 UTR: differential 39 UTR). An existing RefSeq, mRNA,
or EST supporting the event is also mentioned7.
doi:10.1371/journal.pone.0011981.t001
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genes in the genome - to the user gene data set uploaded into in

the application. For each biological function or disease assigned,

IPA uses the right-tailed Fisher’s exact test to calculate a p-value

determining the probability that the user dataset has more

molecules associated with the biological function or disease than

the reference set of molecules is due by random chance. Among

the 2623 differentially expressed and/or spliced genes, 1224 have

known molecular and cellular functions. This proportion includes

genes previously reported to be involved in human diseases. We

observed several differentially expressed and/or spliced genes that

are implicated in cellular growth and proliferation, cellular death,

tissue development, cell to cell signaling and interaction, cellular

movement pathways, as well as in genetic disorders and cancers

(Tables 2, 3). Some of the most interesting gene candidates in

pathway interactions are described in detail below.

The CD44 gene in normal biological conditions is involved in

regulation of cell adhesion, proliferation and migration. It has

been previously reported to present an inclusion of 10 internal

variable exons (from exons 6 to 15) in mammary tumorigenesis

[9]. CD44 is known to interact with MAPK1, a member of the Erk

(extracellular signal-regulated kinase) complex, and also to a

complex of collagen proteins (Figure 3). Collagens are the most

abundant proteins in the extracellular matrix where it plays an

essential function in the organization of cells. Many candidate

genes, including several 4T1-overexpressed collagen subunit

genes, interact with Erk which is a complex consisting of MAP

kinase proteins and playing a role in cell division, growth and

proliferation (Supplementary Figure S1). Erk phosphorylates many

cytoplasmic and nuclear substrates required for the transcription

of several genes to pass from the G1 stage to the S stage in the

cellular division process [30]. There is evidence that in breast

cancer, the inhibition of ERK enhances the anti-estrogenic

treatment [31].

Another interesting example is CDH1, a tumor suppressor gene

[32] from the cadherin superfamily that encodes an epithelial cell-

cell adhesion protein. CDH1 acts on NF-kb, F-Actin and Mapk

Figure 2. Proportions of tumor-specific over-expressed intronic regions. The tumor samples are plotted on the x-axis, and the number of
tumor-specific intron inclusion on the y-axis.
doi:10.1371/journal.pone.0011981.g002

Table 2. Top height over-represented biological functions
and diseases for genes with isoform variations or
whole-transcript expression differences.

Function or disease1 # genes2 P-value3

Genetic disorder 567 5.45610247

Cancer 611 5.51610243

Cellular growth and proliferation 467 5.00610233

Cellular death 423 1.90610229

Tissue development 282 7.75610228

Cell-to-cell signaling and interaction 239 1.05610221

Cellular development 314 1.11610220

Cellular movement 254 5.14610220

The gene pathway analysis retrieved biological functions and/or diseases1 that
were most significant to the candidate genes. For each function or disease, the
number of significant genes2 involved is mentioned. The right-tailed Fischer’s
exact test p-value3 associated with a biological function or disease determines
the likelihood that our set of significant genes has more molecules associated
with the biological function or disease than the reference set of molecules is
due by random chance. A gene could be involved in more than one function or
disease.
doi:10.1371/journal.pone.0011981.t002
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complexes (Supplementary Figure S2), all of them greatly

implicated in cell-cell interactions, development and cell move-

ment. This candidate gene encodes a protein that facilitates

calcium-dependent homophilic interactions at cell-cell contact sites

known as adherens junctions. Mutations in this gene are related to

tumor cell growth and invasion in gastric, thyroid, colorectal and

ovarian cancers [33,34,35]. The low expression level or the loss of

E-Cadherin function is thought to contribute to cancer progression

by increasing proliferation, invasion and metastasis [33,34]. In

4T1 tumor cells, CDH1 was highly expressed compared to

168FARN or 4T07 cells (Additional file 1). This finding conflicts

with the expected low CDH1-expression level in highly metastasis

tumor. Given that primary tumor cells require adhesion within the

vasculature to invade distant organs via the bloodstream

[36,37,38], we hypothese that E-Cadherin could support tumor

cell attachment to the vessel wall to spread to distant sites via the

blood flow which is the main route by which primary tumor cells

invade to distant sites. Besides CDH1, several other significant

genes (such as LGALS7, ZFAND5, LSP1, MAPK14 and HSF1)

interact with the NF-kB complex that is involved in autoimmune

response, inflammation, cell proliferation and cell death by

controlling the expression of genes implicated in these processes

[39]. The supplementary Figure S2 shows a sub pathway

highlighting some of these interactions. Misregulation of NF-kB

has been associated with cancer, autoimmune diseases and

inflammatory responses [40,41]. Hence, the gene pathway analysis

identified differentially spliced and/or expressed candidate genes

during breast cancer metastasis that may have biological and

pathological relevance.

However, there were many highly significant genes showing

novel isoforms in our data that were not previously associated with

cancer. Some examples are IFT172, ACSBG1, MED24, AGRN

and CPXM2. The MED24 (mediator complex subunit 24) gene

acts indirectly on VDR [42], a 4T1-upregulated gene in our data,

which functions to inhibit p38 activity – a known mediator of

tumor cell death in colon cancer [43]. Hence, the gene pathway

investigation identified genes of which the functional relevance to

pathologies is not currently known and that could potentially be

linked to the process of breast cancer metastasis.

qRT-PCR validation of selected candidate genes confirms
the predicted alternative splicing events

In order to verify the presence of alternative splicing events that

emerged from our analysis, we performed RT-PCR assays of ten

selected candidate ASEs in MED24, SLC39A14, MFI2, SRRT,

CD44, CLK1 and HNRNPH1, (see Additional files 1 and 2 for

expression patterns of candidates). We amplified the differentially

spliced regions in the various tumor samples by RT-PCR using

primers pairs flanking and/or inside these regions (Supplementary

Table S1). The expected PCR products were readily obtained for

all candidate ASEs except for the SLC39A14 ASE and the SRRT-

intron inclusion between exons 13 and 14. For these two cases, we

Table 3. Examples of significant genes, in the gene pathway, having important implications in normal biological processes and
cancer.

Gene symbol
(RefSeq ID)1 Biological function2 Expression pattern3 pathological implication4

CD44 (NM_009851) regulation of cell growth; cell adhesion;
cell-matrix adhesion; cell-cell adhesion

High inclusion of three
novel introns in 4T1.

Increases adhesion [23] and invasion [7] of breast cancer
cells. Decreases cell death and apoptosis of tumor cells
[24]. Increases cell death of normal cell [61]. Increase cell
migration [6], movement [62] and binding [8] of tumor cells.

High inclusion of exons
8, 10, 11 and 13 in 4T1

PHB (NM_008831) apoptosis, growth, proliferation, colony
formation, cell cycle progression, migration,
transmembrane potential, binding

Cassette exon: exon 4
over-expressed in 4T1

Negative regulator of cell proliferation and tumor
suppressor [25,26]

BTG1 (NM_007569) proliferation, apoptosis, differentiation,
growth

Differential 39 UTR:
the 39 UTR region
over-expressed in 4T1

Anti-proliferative gene that regulates cell growth and
differentiation [63]

ITGB1 (NM_010578) G1/S transition of mitotic cell cycle; cellular
defense response; cell adhesion; positive
regulation of cell proliferation; germ cell
migration;

Intron inclusion
between exons 9 and
10 in 4T1

Decreases cell death of tumor cells [64,65]. Increases
cell death of normal cells [66,67]. Increases migration [68],
cell adhesion [68] and cell binding [69] of tumor cells.

ANGPT2 (NM_007426) angiogenesis; signal transduction; multicellular
organismal development; cell differentiation

Alternative
termination in 4T1

Increases cell death of normal cells [70].

HPRT1 (NM_013556) purine nucleotide biosynthetic process;
nucleoside metabolic process; protein
homotetramerization

Cassette exon: exon
1 over-expressed in 168FARN
and 4T07

Increases cell death of normal cells [71].

CCNT2 (NM_028399) differentiation, apoptosis, proliferation Intron inclusion
between exons 6 and
7 in 168FARN and 4T07

Decreases apoptosis of tumor cells in colon cancer [72]

MAPK14 (NM_011951) protein amino acid phosphorylation; cell
motion; chemotaxis; response to stress;
cell surface receptor linked signal
transduction; protein kinase cascade;

Intron inclusion between
exons 2 and 3 in 4T07

Increases cell death of normal cell [73,74]. Increase
developmental process of tumor cells [75].

SLK (NM_009289) nucleotide-excision repair; protein amino
acid phosphorylation; apoptosis

Cassette exon: exon 13 highly
expressed in 4T1

Increases cell death of normal cells [76].

For each gene, the symbol and the RefSeq accession number1, the biological function2, the type of splicing event3 and the pathological implication4 are given3.
doi:10.1371/journal.pone.0011981.t003
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obtained very little to no amplified product. To further quantify

the products, we performed quantitative real time RT-PCR using

tumor samples from 168FARN and 4T1 for six candidate ASEs

that displayed positive qualitative RT-PCR results: MED24

(alternative start from exon 20 in 4T1), CD44 (from 59 to 39

ends, first retained intron in 4T1), CD44 (intron inclusion between

exons 9 and 10 in 4T1) and SRRT (intron inclusion between

exons 5 and 6 and CLK1 - intron inclusion between exons 7 and 8

in 4T1). The RT-PCR results across samples for the differentially

spliced gene regions of MED24, CD44 and SRRT were in

agreement with the corresponding expression data from the exon

array (Supplementary Figures S3, S4, S5).

MED24: We quantified the amplification of four distinct

genomic regions within the MED24 gene to assess the alternative

start event. (1) To quantify the constitutive region of MED24

expressed in all three tumor samples (region from exons 1 to 19),

we designed a primer pair spanning the region from exon 16 to

exon 18. Since all the exons in the constitutive region were

Figure 3. A network of molecular interactions containing differentially spliced or expressed genes between breast cancer tumors of
varying metastatic phenotype. Over- or under- expressed genes in 4T1 compared to 168FARN and 4T07 are respectively indicated by a green or a
red color of the gene-product icon. The over- or under-expression rate is proportional to the color intensity. Genes that are not colored are those that
are not differentially expressed or spliced in our data. The top functions or diseases where the gene-product are involved are cancer, tissue
development, cell-to-cell signaling and interaction.
doi:10.1371/journal.pone.0011981.g003
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approximately equally expressed, the confirmation of some of

them can be extended to the rest of the region. The region covered

by this primer pair was amplified at roughly equal levels in both

samples 168FARN and 4T1 (Supplementary Figure S3-A); that

was expected since the exon array showed no expression variation

between samples for this region. (2) We amplified the region

spanning the breakpoint between the constitutive block and the

alternative block (region from exons 20 to 26) of the transcript

predominantly expressed in 4T1. The primers pair designed for

this purpose covered the region from exons 19 to 20. The

quantitative real time RT-PCR results showed that this region was

roughly amplified at the same level in both 4T1 and 168FARN

(Supplementary Figure S3-B) and therefore proved that there was

an expression continuity between the constitutive block and the

alternative in both 168FARN and 4T1. This observation led us to

conclude that the whole transcript of MED24 is expressed in both

168FARN and 4T1. (3) We set a pair of primers (from exon 21 to

exon 23) to measure the alternative region which was over-

expressed in 4T1. The quantitative real time RT-PCR clearly

confirmed that the alternative block is abundant in 4T1

comparatively to 168FARN (Supplementary Figure S3-C). (4)

We wanted to exclude the hypothesis that the over-expression of

the alternative block in 4T1 compared to 168FARN signified an

alternative end of the transcript in 168FARN by the lack of the

alternative block. We found in public sequence databases mRNA

evidence (Genebank id: AK020269) that supports an early end of

MED24 and fully maps to the constitutive block from our study.

Therefore, we quantified the region corresponding to the end of

this mRNA. We observed much product variance between and

within replicate samples (Supplementary Figure S3-D), suggestive

of very low expression of that region. Given that the results of this

amplification assay were not convincing and that additionally this

region had no probe coverage in the exon array, we had no

evidence for an alternative end of MED24. Moreover, an

alternative end in 168FARN would show a higher expression of

the constitutive block than the alternative block, but the exon

array showed that the constitutive block and the alternative block

are expressed at the same level in sample 168FARN (Figure 1A,

bottom panel). Altogether, the quantitative real time RT-PCR

results for MED24 reproduced the corresponding expression data

from the exon array and gave strong evidence that the whole

transcript was expressed in all the samples, but the alternative

block was enriched in 4T1 compared to 168FARN and 4T07 and

is expressed as an additional independent transcript, most likely

using a novel, unnanotated promoter.

CD44: We measured two of the three novel CD44 intron

inclusions in the quantitative real time RT-PCR experiment (the

first intron retained in 4T1 and the intron inclusion between exons

9 and 10 in 4T1). The qRT-PCR products obtained were

consistent with our prediction (Supplementary Figure S4).

Additionally, we successfully sequenced the RT-PCR products of

these three introns, mapped the sequence to the mouse genome

using BLAT [44], and displayed it in the UCSC Genome Browser

(Figure 1C). The novel identified intron inclusions do not overlap

any coding mRNA or EST sequences and public sequence

databases have extremely weak unspliced EST evidences showing

splicing events involving these regions, but no observation for the

introns themselves. Therefore they are novel splicing events and

elongate the list of the ten CD44 cancer-specific variable exons.

Discussion

In this work, we used a splicing-sensitive microarray technology

to investigate changes in pre-mRNA splicing that are associated to

the formation of macroscopic metastases. Thus we focussed on

tumor cells that could escape the primary site but fail to form

macroscopic metastases (4T07, 168FARN) and those that can

leave the primary site and form growing metastases (4T1). Using

several stringent statistical selection criteria and filtering steps on

probe sets (exons) and meta-probe sets (transcripts), we obtained a

confident set of 2623 candidate genes that undergo isoform or

whole gene expression variations specific to metastatic character-

istics. Due to the inherent difficulty of unambiguously interpreting

statistically significant expression changes in Exon Array data [45],

only 7.7% of gene variations were classified into the gene-

expression change or known splicing change categories. The

remaining changes (92.3%) were difficult to interpret and may

reflect the complexity of gene expression variation in cancer. For

example, a single isoform may arise from multiple ASEs, which

makes interpretation of the expression pattern of such a transcript

very difficult to interpret. Isoform differences occurring in cancer

cells are not always crystalline and explained by standard known

changes. Although the Exon Array is a powerful tool, some ASEs

may be missed or misinterpreted by Exon Array. For example, a

fundamental limitation of Exon Array, or any other approach to

measure gene expressions changes, is the reality that splicing

events can introduce aberrations in the transcript such as

premature stop codons. If these transcripts are degraded at a

high rate by the RNA surveillance mechanisms (nonsense-

mediated decay), their expression levels may be detectable only

partially or not at all since they are unstable in the cell. Hence, the

analysis presented here uncovers only a part of the transcriptional

and post-transcriptional aberrations that distinguish mammary

tumors of differing metastatic phenotype. As a first step to

understanding the biological significance of alternatively spliced

genes, we carried out a global gene pathway analysis. We found

that nearly half of the significant genes have previously been

reported to be involved in cellular functions for which deregula-

tions are related to cancer. We also identified strongly significant

genes that have not previously linked to pathogenesis. It is

tempting to speculate that these genes may represent novel

oncogenes or specific modifiers of breast cancer metastasis.

Importantly, we have validated some predicted ASEs by qRT-

PCR and a high validation rate (80%, eight validated events out of

ten) demonstrated the efficiency of the exon array and our data

mining approach to identify gene regions that are significantly

enriched in one tumor type relative to another.

Additionally we compared our outcome with a recent study

(Dutertre et al, 2010 [46]) that used tumors derived from the same

cell lines (168FARN, 4T07 and 4T1), with the addition of the non-

metastatic 67NR cell line, which forms primary tumors but fail to

form distant metastases. This study assayed the tumor RNA

expression profiles on the exon array platform to implement a

prognostic classifier for breast cancer clinical outcome based on

splicing variants in breast cancer metastasis. They obtained a total

of 679 differentially spliced genes, including 209 genes with at least

one annotated alternative exon. Importantly, 62 of these 209 genes

had significant evidence for alternative splicing in our study. Of

these, 20 showed at least one consistent ASE between the two

studies while the remaining had different predicted events (Table

S2). Some of the consistent genes have been previously described

to be strongly related to cancer. An example is BCL2L11 that

encodes a protein belonging to the BCL-2 family, which is

composed of several pro- or anti–apoptotic regulators [47].

BCL2L11, which plays a crucial role in apoptosis initiation, is

frequently mutated in various human tumors leading to the loss of

its function [48,49]. In both independent studies, the analyses

showed that intron 2 is differentially expressed between tumor
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samples. This intron disrupts a BCL-X interacting domain in the

protein product. Another common example is SPINT2, a protein

that is over-expressed in pancreatic cancer and participates in

tumor cell invasion and metastasis [50]. Both studies found

SPINT2-exon 4 differentially expressed, a part of a Kunitz/Bovine

pancreatic trypsin inhibitor domain in the protein. The confident

set of common candidate genes between the two independent

studies strongly suggests that they may have essential roles in

breast cancer metastasis.

We used the Dice similarity coefficient [51] to evaluate the

closeness of our results with those (209 genes) from Dutertre’s

study. We obtained a Dice coefficient of 0.044 (2662/209+2623) -

with measure ranges from 0 (2260/209+2623) to 0.148 (26209/

209+2623) in this case – indicating an overlap of 30% (0.044/

0.1486100) between the two outcomes. The estimation of

statistical significance revealed a significant overlap between the

two studies (One-tailed Chi-square test p-value = 1.1761022),

providing further evidence that many of the significant genes that

are common to both studies may be implicated in breast cancer

metastasis – as they were detected by independent groups, using

slightly different experimental approaches. It should be noted that

larger outcome size in our study, as compared to Dutertre’s study,

resulted from our additional profiling of non-annotated gene

regions that were not considered in Dutertre’s study and that

revealed several intronic regions which were differentially

expressed between tumors with different metastatic potential.

However the candidate genes shared by both studies but with

different predicted outcome led us to hypothesize that one of the

confounding factors that affect tumor behaviors across labs may be

the age, the volume, the growth rate of the primary tumors at the

time of removal, the experiment conditions, the genetic instability

of the cell lines, the injection site and the computational analysis

for data mining. These factors alone or combined could influence

the expression profile of gene.

In conclusion, the connection between breast cancer and gene

splicing alteration is becoming increasingly compelling based both

on prior published data and our present work. Our data suggests

that, during breast cancer metastasis, numerous genes display

expression variations and/or splicing defects whose encoded

protein products could disturb normal biological processes.

Compared to other approaches based on DNA microarrays that

interrogate single whole genes, studying the transcriptome at the

exon level provides an accurate detailed knowledge about the

variations occurring within the genes and this could lead to

improved and more specific diagnostics or therapies. Moreover,

we demonstrate that non-coding gene regions, which are not

normally expressed can be differentially incorporated into

transcripts within breast cancers of differing metastatic phenotype.

We also observe that the proportion of intron inclusion was higher

in breast cancer cells with the greatest metastatic potential. Thus,

we suggest that aggressively metastatic breast cancer cells are

prone to splicing misregulation of non-coding gene regions. By

establishing which genes actively participate during different stages

of metastasis, it is possible that metastasis-specific isoforms may

emerge as breast cancer biomarkers [52]. Indeed, identified novel

isoforms or known isoforms that are not currently implicated in

any disease can be investigated as novel therapeutic targets [53,54]

in mammary tumors. For instance, a therapeutic small interfering

RNA (siRNA) [55,56] approach can be used to specifically target

and silence a gene isoform that disrupts a normal biological

process critical to breast cancer. Further functional characteriza-

tions of gene regions alternatively spliced have the potential to

improve the understanding of the complicated biological processes

connecting isoform variations and the metastasis machinery.

Materials and Methods

Cell Culture
The 4T1 murine mammary carcinoma cell line was obtained

from the American Type Culture Collection. Non-metastatic

168FRNA and 4T07 were kindly provided by Dr. Fred Miller

(Barbara Ann Karmanos Cancer Institute, Detroit, MI). All cell

lines were grown in DMEM supplemented with 10% fetal bovine

serum, 10 mmol/L HEPES, 1 mmol/L sodium pyruvate, 1.5 g/L

sodium bicarbonate, penicillin/streptomycin, and fungizone.

Mammary gland injection
Female BALB/c mice (4–6 weeks) were purchased from Charles

River Laboratories. The mice were housed in facilities managed

by the McGill University Animal Resources Centre, and all animal

experiments were conducted under a McGill University–approved

Animal Use Protocol in accordance with guidelines established by

the Canadian Council on Animal Care. Four mice were injected

(161025 cells) with 168FARN, five mice with 4T07 and four mice

with 4T01. Tumor volumes were calculated using the following

formula: pLW2/6, where L is the length and W is the width of the

tumor. Tumors were surgically removed, using a cautery unit,

once they reached a volume between 100 and 125 mm3. Tumor

tissues were frozen to avoid RNA degradation.

RNA extraction and microarray hybridization
Tumor tissues were disrupted in a specific buffer, homogenized,

and then RNA was purified using Rneasy Mini kit (Qiagen)

following the manufacturer’s instructions. RNA 6000 Nano Chips

with the Agilent 2100 Bioanalyser (Agilent) were subsequently

used, following the manufacturer’s instructions, to verify the RNA

quality, integrity and the lack of gDNA contamination. Tumors

were hybridized independently at the functional genomics facility

of McGill University and Genome Quebec Innovation Centre

(Montreal, Quebec, Canada). Biotin-labeled target for the

microarray experiment were prepared using 1mg of total RNA.

We subjected the RNA to a ribosomal RNA removal process with

the Ribo/Minus Human/Mouse Transcriptome Isolation kit

(Invitrogen). cDNA was synthesized using the GeneChipH WT

(Whole Transcript) Sense Target Labeling and Control Reagents

kit as described by the manufacturer (Affymetrix). Then, the sense

cDNA was fragmented by UDG (uracil DNA glycosylase) and

APE 1 (apurinic/apyrimidic endonuclease 1) and biotin-labeled

with TdT (terminal deoxynucleotidyl transferase) using the

GeneChipH WT Terminal labeling kit (Affymetrix, Santa Clara,

USA). Hybridization was performed using 5 micrograms of

biotinylated target, which was incubated with the GeneChipH
Mouse Exon 1.0 ST array (Affymetrix) at 45uC for 16–20 hours.

Subsequently to hybridization, non-specifically bound material

was removed by washing and detection of specifically bound target

was performed using the GeneChipH Hybridization, Wash and

Stain kit, and the GeneChipH Fluidics Station 450 (Affymetrix).

The arrays were scanned using the GeneChipH Scanner 3000 7G

(Affymetrix) and raw data was extracted from the scanned images

and analyzed with the Affymetrix Power Tools software package

(Affymetrix). The microarray data has been deposited in the Gene

Expression Omnibus Database (accession: GSE21994).

Data pre-processing and analysis
Signal estimation. Signal estimates were derived from the

CEL files of the 13 arrays. The Affymetrix Power Tools software

package (Affymetrix) was used to quantile normalize the probe

fluorescence intensities and to summarize the probe set (represent-

ing exon expression) and meta-probe set (representing gene
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expression) intensities using a probe logarithmic intensity error

model (PLIER [57]) for probe set and ITER-PLIER for meta-

probe set. Presence or absence of probe set expression was

determined by the Detection Above BackGround (DABG)

statistics. For the probe set-level analysis we used the full set of

probe sets from the Exon Array including core and non-core

probe sets.

Filtering signal data. The filtering steps and parameters

described in this paragraph come from the Affymetrix technical

note for the identification of ASE using the exon array [58]. One

outlier biological replicates from 4T07 which didn’t cluster with

the replicates within the tumor type it belonged to, was identified

and removed following the Principal Component Analysis (PCA).

In order to be considered as expressed and included in the analysis

each exon had to satisfy the following four criteria (Supplementary

Figure S6): (1) the exon is called as Present in at least 50% of the

sample replicates of at least one tumor type. An exon is called as

‘‘present’’ if its probe set DABG p-value is less than 0.05; (2) the

probe set must have a low cross-hybridization potential (equal to 1)

to discard false positives. The signal intensities of probe sets having

a high cross-hybridization potential may come from a different

gene sequence; (3) the probe set must have a gene-level normalized

intensity lower than 5 (very large gene-level normalized intensity

may also implicate cross-hybridization to other genomic se-

quences); (4) the probe set must have a gene-level normalized

intensity greater than 0.20 (very low gene-level normalized

intensity probe sets were removed to discard features that may

have non-linear signal response.) For each gene containing the

previously filtered exons, two filtering criteria were used: (1) the

gene had at least 50% of core exons called as ‘‘present’’ in at least

50% of sample replicates in at least two tumor types; (2) the ITER-

PLIER gene intensity is greater than a threshold of 30.

We performed two concurrent analyses: AS analysis with the

probe set intensities and AS analysis with the gene-level normal-

ized intensities. There is no optimal method to analyze isoform

level data, and the relative merits of each approach are described

in some detail by Bemmo et al. [45]. For each analysis, a one-way

ANOVA-test was done on probe set scores to retrieve probe sets

that have a statistically significant change of expression between

tumor groups. We selected probe sets having an ANOVA P-value

lower than the P-value threshold (6.3661024 for probe set

intensity analysis and 7.1061024 for SI analysis) established by

the Benjamini-Hochberg FDR (False discovery rate) correction

[59] at a 0.05 level. 168FARN and 4T07 were compared against

4T1 by pairwise Student’s t-tests on probe sets scores. Logarithmic

fold-changes were computed between groups (168FARN/4T1 and

4T07/4T1). The genes expression intensities of meta-probe sets

were analyzed by the same way as probe sets. The statistical

significance of a whole gene expression was determined by an

FDR P-value threshold of 8.4661023 computed from Anova-test

P-values. Since the SI analysis performs best when a gene has a

large number of constitutive exons comparatively to alternative

exons, we restricted the SI analysis to genes whose overall gene

expression does not change. Fold-changes and P-values of exons

within each gene have been uploaded and visualized in the UCSC

Genome Browser environment.

The visualization enabled us to classify ASEs (Supplementary

Figure S7). We examined the exon expression fold-changes within

the gene: if the whole gene expression changed (P,8.4661023),

we categorized it as a gene expression change and determined the

possibly additional ASEs within the gene. If the whole gene

expression didn’t change (P$8.4661023), we looked at the exon-

level: if an exon expression within the gene changed

(P,6.3661024 for probe set intensity analysis or P,7.1061024

for SI analysis), we categorized the ASE. Subsequently, we

performed a gene pathway analysis of significant genes with the

Ingenuity Pathways Analysis (IPA) software, version 6.0 (Ingenuity

Systems, Mountain View, CA).

Validation of alternative splicing events by RT-PCR and
qRT-PCR

We used a different RNA batch of the same tumors for the PCR

experiments. Total RNA was treated with 4U of DNAase I

(Ambion) for 30 minutes to remove any remaining genomic DNA.

First strand complementary DNA was synthesized using random

hexamers (Invitrogen) and Superscript II reverse transcriptase

(Invitrogen). All the candidate probe sets were internal and

possessing flanking exons in known RefSeq and mRNA isoforms.

We designed locus specific primers within the adjacent flanking

exons for the RT-PCR reaction (supplementary Table S1) by

using the Primer3 v. 0.4.0 software [60]. For MED24 gene for

which we predicted an alternative start in 4T1, additional primer

pairs were designed to amplify products corresponding to the

adjacent probe sets and which were not statistically significant.

Approximately 20 ng of total cDNA was then amplified by PCR

using Hot Start Taq Polymerase (Qiagen, Mississauga, Canada)

with an activation step at 95uC (15 min) followed by 35 cycles at

95uC (30 s), 58uC (30 s) and 72uC (40 s) and a final extension step

at 72uC (5 min). Amplicons were visualized by electrophoresis on a

2.5% agarose gel.

We performed a quantitative real time PCR in 168FARN and

4T1 for the primers pairs for which the qualitative RT-PCR

product were positively conclusive. Real-time analysis was carried

out using Power SYBR Green PCR Mix (Applied Biosystems)

following the manufacturer’s instructions on an ABI 7900 HT

(Applied Biosystems) instrument. The reaction was set up in 10ul

final volume applying the following conditions: 8ng of total cDNA

and 0.32 uM of gene specific primers, and cycling, 95C (15min),

95C (20s), 58C (30s), 72C (45s) for 40 cycles. Relative quantifica-

tion of each amplicon was evaluated in RNA from the tumor

samples in biological duplicates each in technical triplicates. For

each amplicon, including the mouse GAPDH used as endogenous

control, a standard curve was established using dilution series of a

mix of cDNA samples with known total cDNA concentration in

order to determine if the amplification reactions had the same

PCR efficiency. The cycle threshold (Ct) values for each replicate

were transformed to relative concentration using the estimated

standard curve function (SDS 2.1, Applied Biosystems) and

normalized based on GAPDH real-time data from the same

samples to account for well-to-well variability. Furthermore, CD44

RT-PCR products for two intron inclusion events were purified

and cloned for sequencing.

Supporting Information

Figure S1 A network of molecular interactions containing

differentially spliced or expressed genes between breast cancer

tumors of varying metastatic phenotype. Over- or under-

expressed genes in 4T1 compared to 168FARN and 4T07-derived

breast cancers are indicated by a green or a red color of the gene-

product icon, respectively. The degree of over- or under-

expression is proportional to the color intensity. Genes that are

not colored are those that are not differentially expressed or

spliced in our data. The top biological functions/processes or

diseases where the gene-products are involved are cancer, cell

cycle and cell death.

Found at: doi:10.1371/journal.pone.0011981.s001 (0.15 MB

PDF)
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Figure S2 A network of molecular interactions containing

differentially spliced or expressed genes between breast cancer

tumors of varying metastatic phenotype. Over- or under-

expressed genes in 4T1 compared to 168FARN and 4T07-derived

breast tumors are indicated by a green or a red color of the gene-

product icon, respectively. The degree of over- or under-

expression is proportional to the color intensity. Genes that are

not colored are those that are not differentially expressed or

spliced in our data. The top biological functions/processes or

diseases where the gene-products are involved are cancer, cell

morphology, cell-to-cell signaling and interaction.

Found at: doi:10.1371/journal.pone.0011981.s002 (0.18 MB

PDF)

Figure S3 Quantitative RT-PCR validation of MED24 alter-

native start. In each panel, tumor samples are plotted on the x-axis

and real time RT-PCR GAPDH-normalized quantities on the Y

axis. We plotted the real time RT-PCR quantities for (A) the

constitutive block (region from exons 1 to 19), (B) the region

spanning the break point between the constitutive block and the

alternative block (from exon 16 to exon 18), (C) the alternative block

(region from exons 20 to 26) and (D) the end of the constitutive block

(region from exons 21 to 23). We evaluated each tumor sample in

two biological replicates each ran in three technical replicates.

Found at: doi:10.1371/journal.pone.0011981.s003 (0.21 MB

PDF)

Figure S4 Quantitative RT-PCR validation of CD44 4T1-intron

retentions. In each panel, tumor samples are plotted on the x-axis

and real time RT-PCR GAPDH-normalized quantities on the Y

axis. We plotted the real time RT-PCR quantities for the first

retained intron between exons 5 and 6 (A) and the intron inclusion

between exons 9 and 10 (B). We evaluated each tumor sample in

two biological replicates, each ran in three technical replicates.

Found at: doi:10.1371/journal.pone.0011981.s004 (0.14 MB

PDF)

Figure S5 Quantitative RT-PCR validation of SRRT

168FARN-intron retention between exons 5 and 6. The tumor

samples are plotted on the x-axis and real time RT-PCR GAPDH-

normalized quantities on the Y axis. We conducted qRT-PCR in

two biological replicates (two independent tumors), each per-

formed in triplicate.

Found at: doi:10.1371/journal.pone.0011981.s005 (0.09 MB

PDF)

Figure S6 Workflow summary of the probe set and meta-probe

set signal filtering steps. Signal estimates were derived from the CEL

files. The probe logarithmic intensity error (PLIER) model was used

to summarize the probe set (representing exon expression)

intensities while the ITER-PLIER was used for meta-probe set

(representing gene expression) intensities. The Presence or absence

of probe set was determined by the Detection Above background

(DABG) p-value. In order to be considered as expressed and

included in the analysis each exon had to satisfy the following three

criteria: (1) expressed in at least one sample; (2) the cross-

hybridization potential equals to 1; (3) the gene-level normalized

intensity greater than 0.2 and lower than 5. For each gene

containing the previously filtered exons, two filtering criteria were

used: (1) the gene is expressed in at least two samples; (2) the gene

intensity is greater than a threshold of 30. We simultaneously

performed either a one-way ANOVA test on probe set intensities or

a one-way ANOVA test on meta-probe set intensities. Subsequent

to ANOVA tests, we applied a 0.05-level FDR (False discovery rate)

correction to determine the p-value threshold to identify significant

exons (P,6.36*10^24 for the probe set expression analysis;

P,7.10*10^24 for the SI analysis) and the significance of whole

gene expression (P,8.46*10^23: over-expressed in a sample).

Differentially expressed exons between paired samples were located

by performing pairwise T-test comparisons (168FARN and 4T07

against 4T1). The log2 transformed expression fold-changes (4T07/

4T1 and 168FARN/4T1) between paired sample comparisons

were also computed.

Found at: doi:10.1371/journal.pone.0011981.s006 (0.07 MB

PDF)

Figure S7 Workflow summary of the gene visualisation and the

manual curation for gene variation pattern classifications. The

probe set p-values and the probe sets fold-changes of T-test

pairwise comparisons are visualised in the context of gene

belongings to categorize transcripts variations.

Found at: doi:10.1371/journal.pone.0011981.s007 (0.06 MB

PDF)

Table S1 List of primers for validation. List of primers used in

the qualitative and quantitative RT-PCR validation. Probe sets in

blue are the target amplification probe sets whereas probe sets in

black are flanking probset spanned or containing the primers.

Found at: doi:10.1371/journal.pone.0011981.s008 (0.01 MB

PDF)

Table S2 Common significant differently expressed exons

between our study and Dutertre’s study. The gene symbol, the

gene name, the differentially spliced regions in our study and the

differentially spliced regions in Dutertre’s study are given. The

records highlighted in bold represent common genes with at least

one common predicted spliced regions.

Found at: doi:10.1371/journal.pone.0011981.s009 (0.03 MB

PDF)

File S1 UCSC browser links illustrating probe set level

expression differences (fold-change and p-values) for the top 143

isoforms differentially expressed between the samples, obtained

from the probe set level analysis.

Found at: doi:10.1371/journal.pone.0011981.s010 (0.15 MB

PDF)

File S2 UCSC browser links illustrating the probe set level

expression differences (fold-change and p-values) as well as the

normalized (SI) differences for the top 60 isoforms differentially

expressed between the samples, obtained from the Splicing Index

analysis.

Found at: doi:10.1371/journal.pone.0011981.s011 (0.10 MB

PDF)
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