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Abstract

Background: Microarray experiments in mice have shown that high fat diet can lead to elevated expression of genes that
are disproportionately associated with immune functions. These effects of high fat (atherogenic) diet may be due to
infiltration of tissues by leukocytes in coordination with inflammatory processes.

Methodology/Principal Findings: The Novartis strain-diet-sex microarray database (GSE10493) was used to evaluate the
hepatic effects of high fat diet (4 weeks) in 12 mouse strains and both genders. We develop and apply an algorithm that
identifies ‘‘signature transcripts’’ for many different leukocyte populations (e.g., T cells, B cells, macrophages) and uses this
information to derive an in silico ‘‘inflammation profile’’. Inflammation profiles highlighted monocytes, macrophages and
dendritic cells as key drivers of gene expression patterns associated with high fat diet in liver. In some strains (e.g., NZB/BINJ,
B6), we estimate that 50–60% of transcripts elevated by high fat diet might be due to hepatic infiltration by these cell types.
Interestingly, DBA mice appeared to exhibit resistance to localized hepatic inflammation associated with atherogenic diet. A
common characteristic of infiltrating cell populations was elevated expression of genes encoding components of the toll-
like receptor signaling pathway (e.g., Irf5 and Myd88).

Conclusions/Significance: High fat diet promotes infiltration of hepatic tissue by leukocytes, leading to elevated expression
of immune-associated transcripts. The intensity of this effect is genetically controlled and sensitive to both strain and
gender. The algorithm developed in this paper provides a framework for computational analysis of tissue remodeling
processes and can be usefully applied to any in vivo setting in which inflammatory processes play a prominent role.
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Introduction

Consumption of a high fat diet is associated with obesity, insulin

resistance and the development of chronic health conditions, such

as atherosclerosis and Type II diabetes. The rising rates of obesity

in some populations have been referred to as an ‘‘epidemic’’, and

there is indication that current trends may worsen in the future

[1,2]. The deleterious health effects associated with obesity have

been linked to several metabolic abnormalities, but increasingly, it

has been recognized that inflammation is a key process that

contributes to negative health outcomes. High fat diets induce a

state of heightened inflammation, with elevated levels of C-

reactive protein, interleukin-6, and other systemic inflammation

markers [3,4]. Additionally, strong localized inflammation re-

sponses to obesity are known to occur within individual tissues. In

white adipose tissue, for example, high fat diet can increase

macrophage infiltration into fat depots [5], while also promoting

infiltration by T-lymphocytes and macrophages [6,7]. In cardiac

tissue, localized recruitment of monocytes is an initiating step in

the development of atherosclerotic plaques, which drives devel-

opment of heart disease in association with high fat diet [8]. In

other tissues, including liver, muscle and pancreas, high fat diet

can drive excessive accumulation of lipids and their derivatives,

leading to a state of lipotoxicity that augments pro-inflammatory

signals to promote accumulation and activation of macrophages

[9,10]. High fat diet and obesity are thus associated with systemic

inflammation as well as localized inflammatory responses that

affect both adipose and non-adipose tissues. This inflammation

response may represent a useful target for intervention strategies

aimed at combating deleterious health effects of high fat diet and

obesity [11]. Inhibitors of the monocyte chemoattractant protein 1

(MCP-1/CCR2) pathway, for instance, have been shown to

attenuate insulin resistance and other negative consequences of

excessive energy intake in laboratory rodents [12–14].

The inflammation response associated with high fat diet is

accompanied by shifts in tissue composition, activation of

apoptotic pathways, disruption of lipid metabolism, and altered

sensitivity to insulin. Recently, the investigation of these complex

effects has been facilitated by a large-scale study of hepatic gene

expression patterns in male and female mice of 12 mouse strains,
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in which whole-genome microarrays were used to profile

expression in mice that had been maintained on either a high

fat (30% fat) or control diet (6% fat) for a period of four weeks

[15]. This unique dataset, which includes whole-genome expres-

sion patterns from 144 mice, provides a valuable resource for the

investigation of gene expression patterns associated with a single

dietary intervention. Mechanistic studies of high fat diet in mice

have often focused on a single mouse strain, usually C57BL/6J,

which is known to exhibit a response to high fat diet that is at least

partly idiosyncratic [16]. The data resource provided by Shockley

et al. [15] have greatly expanded this focus, providing a tool for

identifying aspects of the response to high fat diet that are shared

among multiple strains, as well as aspects that are specific to

individual strains. An initial analysis of these data highlighted

salient features of the hepatic response to high fat diet, including

responses that are invariant among all strains and mice, regardless

of gender (e.g., increased Abcg5 expression) [15]. Interestingly, a

group of 557 immune-response genes was identified, which were

both induced by high fat diet in multiple strains and also

correlated with total cholesterol levels [15]. Such genes were

disproportionately associated with antigen processing and presen-

tation, and included a number of histocompatibility antigens (e.g.,

H2-Ab1, H2-Eb1, H2-Aa and Cd74). It is possible that, for some

immune-associated genes, elevated hepatic expression is a

localized response of hepatocytes to damage associated with high

fat diet. Alternatively, increased expression of such transcripts in

liver may reflect an influx of monocytes, macrophages, T-cells and

other white blood cells [17,18], which express at high levels genes

encoding antigens and proteins central to immune processes. This

latter possibility suggests that, in mice fed a high fat diet, hepatic

gene expression patterns can be used to gauge inflammation

intensity, and that targeted analytical methods can be developed to

exploit this information to gain insight into the tissue remodeling

that accompanies excessive intake of dietary fat.

This study provides a microarray-based characterization of

hepatic inflammation responses to high fat diet in male and female

mice of 12 different mouse strains. A data-mining algorithm is

developed and applied, which leads to the in silico calculation of

‘‘inflammation profiles’’ that highlight leukocyte subsets best able

to explain gene expression patterns associated with high fat diet.

The algorithm utilizes genome-wide expression profiles for

leukocyte populations, which are available in public microarray

data depositories, to identify sets of ‘‘signature transcripts’’ that

represent a molecular fingerprint for particular populations of

leukocytes (e.g., CD4+ T cells). For each set of signature

transcripts identified, the group-wise response of the set to high

fat diet in liver is evaluated, and this response is used to infer

whether the associated leukocyte population is likely to infiltrate

liver tissue of mice provided a high fat diet. This approach leads to

inferences with extremely strong statistical support, and in the

present context, generates mechanistic hypotheses useful for

building a model of hepatic response to high fat diet, and for

understanding how this response is similar and different among

mouse strains. The analytical approach developed in this study can

also be applied in other in vivo settings to better understand

inflammation processes on the basis of microarray data.

Results

Overview of the transcriptional response to high fat diet
in mouse liver

Microarray data from the Novartis strain-diet-sex survey

(GSE10493) was used to evaluate hepatic responses to high fat

(HF) diet in male and female mice of 12 mouse strains (129S1/

SvImJ, A/J, C57BL/6J, BALB/cJ, C3H/HeJ, CAST/EiJ, DBA/

2J, I/LnJ, MRL/MpJ-Tnfrs6lpr/J, NZB/BINJ, PERA/Ei, SM/J)

[15]. We compared transcript levels between HF-fed (n = 3) and

control-fed mice (n = 3) for each of 24 strain-gender combinations,

where HF-fed mice received 30% Kcal from fat over 4 weeks and

control-fed mice received 6% Kcal from fat over the same time

period [15]. Response to HF diet varied considerably in

magnitude among the 24 strain-gender combinations. In some

cases, following FDR adjustment for multiple hypothesis testing,

more than 1000 unique genes were either increased or decreased

by HF diet (e.g., NZB males and females, A/J females; see

Table 1). In other cases, fewer than 50 unique genes were

increased or decreased by HF diet (e.g., females of the SM, DBA,

B6 and 129 strains; see Table 1). Cluster analysis identified two

groups among the strain-gender combinations, with one group

exhibiting lower response to HF diet (mostly females; see Figure 1),

and the other group exhibiting a heightened response to HF diet

(mostly males; see Figure 1). In some cases, the ‘‘strain effect’’

appeared to dominate the ‘‘gender effect’’, and males and females

of the same strain clustered together (e.g., see NZB, A, PERA, I,

CAST in Figure 1), although this was not true for some strains

(e.g., see females from the BALB, 129 and MRL strains in

Figure 1).

Gene ontology analyses revealed that biological processes

associated with immune responses (e.g., antigen processing and

presentation, defense response to Gram-positive bacteria, activat-

ed T cell proliferation, chemotaxis and cell adhesion) were the

most frequently overrepresented gene ontology terms among the

genes increased by HF diet (Figures S1 and S2). For instance, in

males, genes increased by HF diet were disproportionately

associated with antigen processing and presentation in 9 of the

12 mouse strains (Figure S1). Among females, the trend was less

strong, and genes increased by HF diet were disproportionately

associated with antigen processing and presentation in 5 of 12

mouse strains, although other frequently overrepresented process-

es included neutrophil chemotaxis (7 of 12 strains) and

inflammatory response (7 of 12 strains) (Figure S2). These results

are in agreement with those presented by Shockley et al. [15], and

suggest that increased expression of genes involved in immune

system processes is a major feature of the hepatic response to HF

diet, which occurs robustly in male and female mice and among

multiple mouse strains.

An in silico hepatic inflammation profile associated with
high fat diet in B6 Males

We hypothesized that, among transcripts elevated by HF diet,

over-abundance of transcripts related to immune system processes

was at least partly due to an inflammatory response, in which

circulating leukocyte populations infiltrate hepatic tissue of mice

provided a HF diet, thereby driving increased expression of genes

that exhibit high expression in leukocytes. To evaluate this

possibility, we developed a data mining procedure, which searches

among gene expression profiles of leukocyte populations and their

subsets, identifies signature transcripts for each population, and

then evaluates whether such signature transcripts are dispropor-

tionately elevated in hepatic tissue of mice provided a HF diet

(Figure 2). The approach leads to the generation of an in silico

‘‘inflammation profile’’ associated with response to HF diet, which

provides indication of the degree to which effects of HF diet may

be attributable to leukocyte infiltration, and also points to

particular cell populations that are likely to be prominent

components of the inflammatory infiltrate.

The method was first applied to calculate an inflammation

profile associated with response to HF diet in B6 male mice, which

High Fat Diet and Leukocytes
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is perhaps the most commonly investigated strain and gender in

physiological studies of excessive dietary fat intake (Figure 3). This

revealed that, in B6 males, signature transcripts associated with

many leukocyte populations are disproportionately elevated in

hepatic tissue of B6 males provided a HF diet, including CD4+
and CD8+ T cells, B cells, NK cells, dendritic cells (DCs),

macrophages (Mw), neutrophils, monocytes, granulocytes and

natural helper cells (Figure 3). Among all cell types, however, those

from the monocyte- Mw and monocyte-DC lineages scored most

highly (Figure 3). For instance, the strongest trend was present

among signature transcripts associated with a population of

CD8A- myeloid dendritic cells (Gene Expression Omnibus

samples GSM258647 and GSM258648). With respect to this

population, the procedure identified a total of 454 signature

transcripts, and nearly all of these were elevated in mice provided

a HF diet relative to mice provided a control diet (Figure 4). In

particular, of the 454 signature transcripts, 446 were increased by

HF diet while only 8 were decreased (ratio = 446/8 = 55.7; FDR-

adjusted P = 7.156102161). Moreover, 37 of the 454 signature

transcripts were increased significantly (FDR-adjusted P,0.05),

while none were significantly decreased (FDR-adjusted

P = 7.71610224). Transcripts most strongly associated with this

dendritic cell population included H2-Aa, Cytip and Ms4a4c, and

each of these transcripts was elevated in hepatic tissue of mice

provided a HF diet (Figure 5). These results provided strong

indication that, as a group, DC-associated transcripts are

disproportionately elevated in liver of B6 males provided a HF

diet, consistent with the hypothesis that leukocyte populations,

particularly DCs, infiltrate hepatic tissue of B6 males as part of an

inflammatory response that accompanies excessive fat intake.

In silico hepatic inflammation profiles associated with
high fat diet in male and female mice of 12 mouse strains

The above analyses focus on B6 male mice, but the most

interesting aspect of the Novartis strain-diet-sex survey data is the

possibility of examining how patterns compare across a diversity of

mouse strains and between both genders. We thus calculated a

complete inflammation profile for each of the other 23 strain-

gender combinations (Figure S3). A summary of all inflammation

profiles is provided in Figure 6. This analysis revealed a number of

consistencies among the strain-gender combinations, as well as

certain aberrant patterns.

The most consistent pattern associated with HF diet was

increased expression of transcripts associated with bone-marrow

derived Mw (Figure 6). This effect was detected with respect to all

Table 1. Effect of high fat diet on gene expression in male and female mice of 12 mouse strains.

Strain (Gender) Increased Decreased Increased{ Decreased{ % Increased

129S1/SvImJ (F) 2351 (1699) 1510 (1183) 64 (54) 20 (17) 47.85

129S1/SvImJ (M) 3291 (2380) 2811 (2216) 627 (505) 70 (62) 39.56

A/J (F) 6210 (4171) 6018 (4356) 3315 (2346) 1646 (1234) 39.71

A/J (M) 4825 (3178) 5155 (3920) 1164 (862) 508 (393) 40.55

C57BL/6J (F) 1369 (1037) 1733 (1439) 37 (34) 45 (36) 47.15

C57BL/6J (M) 3284 (2408) 3203 (2316) 391 (328) 239 (205) 40.81

BALB/cJ (F) 3163 (2335) 2637 (1902) 461 (367) 223 (176) 47.18

BALB/cJ (M) 2622 (1944) 2730 (2239) 145 (125) 26 (24) 43.82

C3H/HeJ (F) 3511 (2711) 2414 (1830) 493 (397) 174 (134) 46.95

C3H/HeJ (M) 3393 (2459) 3317 (2409) 1228 (960) 745 (551) 45.1

CAST/EiJ (F) 4359 (2988) 4236 (3237) 1336 (1010) 566 (451) 42.15

CAST/EiJ (M) 2739 (1985) 2120 (1623) 660 (520) 133 (110) 43.21

DBA/2J (F) 2298 (1787) 1777 (1390) 24 (21) 13 (13) 47.08

DBA/2J (M) 2028 (1534) 1792 (1315) 202 (144) 123 (94) 50.15

I/LnJ (F) 2999 (2251) 2043 (1544) 547 (444) 208 (152) 45.31

I/LnJ (M) 2815 (2054) 2161 (1698) 241 (199) 152 (114) 43.84

MRL/MpJ-Tnfrs6lpr/J (F) 2953 (2285) 2897 (2050) 354 (287) 235 (179) 49.1

MRL/MpJ-Tnfrs6lpr/J (M) 2163 (1663) 2347 (1729) 207 (161) 239 (175) 51.63

NZB/BINJ (F) 4900 (3439) 4949 (3418) 2349 (1751) 1743 (1264) 41.65

NZB/BINJ (M) 5329 (3513) 6515 (4861) 2512 (1799) 1249 (991) 35.71

PERA/Ei (F) 3180 (2353) 2422 (1919) 451 (370) 102 (89) 44.32

PERA/Ei (M) 3600 (2671) 2849 (2116) 912 (723) 295 (238) 42.97

SM/J (F) 1297 (1020) 1156 (915) 19 (16) 27 (23) 49.6

SM/J (M) 5066 (3925) 4659 (3150) 477 (394) 1101 (818) 59.73

{Number of significantly increased and decreased transcripts is based upon p-values that have been adjusted using the Benjamini-Hochberg method to control the false
discovery rate.

For each strain and gender combination, the table lists the number of probe sets increased and decreased significantly for each comparison between mice maintained on a
high fat diet (n = 3) and mice maintained on a control diet (n = 3). The listed values correspond to the number of significantly altered probe sets (P,0.05). The number of
unique mouse genes associated with the significantly altered probe sets is given in parentheses. The fourth and fifth columns list the number of significantly altered probe
sets and transcripts, based upon p-values that have been adjusted using the Benjamini-Hochberg approach for controlling the false discovery rate (i.e., FDR-adjusted
P,0.05). The final column lists the global percentage of probe sets increased by high fat diet (including all probe sets, both significant and non-significant).
doi:10.1371/journal.pone.0011861.t001
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strain-gender combinations, with the exception of DBA males (see

below). Aside from bone-marrow derived Mw, HF diet also

increased transcripts associated with thioglycollate-elicited perito-

neal Mw, conventional DCs, regulatory T cells and white adipose

tissue (Figure 6). There was strong correspondence between the

magnitude of inflammation profile ratios (HF-increased/HF-

decreased) and the clustering patterns observed in Figure 1. In

particular, ratios were especially large for NZB mice (males and

females), A/J mice (males and females), 129 males and B6 males,

and in Figure 1, these strain-gender combinations clustered

together in a single group. This result suggests that the genome-

wide response to HF diet is correspondent with, and perhaps

partly dependent upon, the leukocyte-infiltration signatures

detected by inflammation profiles.

The single cell population that, across all strains and genders,

consistently scored most highly on inflammation profiles was a

population of thioglycollate-elicited peritoneal Mw (Gene Expres-

sion Omnibus samples 258701 and 258702) (Figure 7). For this Mw
population, 570 signature transcripts were identified (e.g., Mmp12,

Gpnmb, Bex1 and Il7r), and among the 24 strain-gender combina-

tions, HF diet usually increased 70–90% of these signature

transcripts in liver (Figure 7). For 23 of 24 strain-gender

combinations, the proportion of the 570 transcripts increased by

HF diet was statistically significant (Figure 7). An extreme case was

NZB/BINJ females, for which 553 of the 570 signature transcripts

(97.01%) were increased by HF diet, with 406 signature transcripts

exhibiting a statistically significant increase (FDR-adjusted P,0.05).

At the other end of the spectrum, transcripts associated with

thioglycollate-elicited peritoneal Mw were not strongly elevated by

HF diet in DBA mice (Figure 7). In DBA females, only 57.37% of

signature transcripts (327 of 570) were elevated by HF diet. In DBA

males, however, 61.2% of signature transcripts (349 of 570) were

decreased by HF diet, and this proportion of HF-decreased transcripts

was statistically significant (FDR-adjusted P = 1.5761028; Figure 7).

There was considerable variation in terms of the degree to

which inflammation profile results correlated between males and

females of the same mouse strain (Figure S4). For some strains,

leukocyte populations that scored highly in males and also tended

to score highly in females, with an overall correlation between

inflammation profile ratios that exceeded 0.90 (e.g., strains A,

C3H, I and K; Figure S4). On the other hand, for the DBA and

SM mouse strains, the correlation between males and females was

relatively low (0.16 and 0.36, respectively), suggesting potential

gender differences in the degree and type of hepatic inflammation

that develops in response to HF diet (Figure S4).

DBA mice exhibit resistance to inflammatory gene
expression patterns associated with high fat diet

The DBA mice were aberrant relative to other mouse strains

and, based upon inflammation profiles, there was little or no

indication that HF diet strongly elevated expression of leukocyte-

associated transcripts. With regard to the 570 transcripts

associated with thioglycollate-elicited peritoneal Mw (see above;

Figure 7), there was no correlation between DBA and B6 males in

terms of how these transcripts responded to HF diet (r = 20.051;

see Figure 8). A close inspection of inflammation profiles

calculated for DBA mice reveals further aspects of the strain that

are unique (Figure S3). In DBA females, ratios of HF-increased to

HF-decreased signature transcripts were much lower relative to all

other strain-gender combinations (HF-increased/HF-decreased

Figure 1. Association among transcriptional responses to high fat diet in male and female mice of 12 mouse strains. The tree diagram
was generated from a hierarchical cluster analysis of the 24 strain-gender combinations, where the distance between combinations is based upon the
Pearson correlation between fold-change estimates (HF diet/Control) among selected transcripts. The selected transcripts correspond to 17,927
probe sets that were significantly influenced by HF diet (FDR-adjusted P,0.05) with respect to at least one of the 24 strain-gender combinations. In
the heatmap, the 17,927 probe sets have been ordered according to the fold-change estimate observed for B6 male mice. The color code used in the
heatmap corresponds to the fold-change estimate (HF diet/Control), with red regions representing transcripts elevated by HF diet and green regions
representing transcripts decreased by HF diet (see color scale at bottom right). Strain-gender combinations involving male mice are represented by
blue labels, while strain-gender combinations involving female mice are represented by red labels.
doi:10.1371/journal.pone.0011861.g001
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ratio,2; Figure S3). In DBA males, trends were especially striking,

with leukocyte-associated transcripts exhibiting a response to HF

diet that was opposite to that in other mouse strains (Figure S3).

For instance, 282 signature transcripts were identified with respect

to one CD8+ T cell population, and 208 (73.8%) of these

transcripts were decreased in hepatic tissue of DBA males

provided the HF diet (FDR-adjusted P = 4.15610215; Figure

S3). These results suggest that DBA mice, and particularly DBA

males, exhibit resistance to the elevated expression of leukocyte-

associated transcripts with HF diet that is characteristic of other

mouse strains included in our analysis.

The gene expression phenotype of high-scoring cell
populations: Toll-like receptor signaling as a potential
mediator of hepatic infiltration

The ability of a cell population to infiltrate hepatic tissue may

depend upon expression of key receptors that facilitate homing to

liver, attachment to endothelial surface, or transendothelial migration

into the tissue [19]. We therefore characterized the gene expression

phenotype of high-scoring cell populations to identify potential

unifying characteristics (Figure 9). Populations with high scores on

inflammation profiles were more likely to highly express transcripts

associated with the toll-like receptor (TLR) signaling pathway,

degradation of glycan structures, leukocyte transendothelial migra-

tion, Jak-STAT signaling, cytokine-cytokine receptor interaction, and

cell adhesion molecules (Figure 9A). The most robust characteristic of

high-scoring cell populations was elevated expression of genes

associated with TLR signaling (e.g., Tlr2, Tlr13, Irf5, Myd88, Il10rb).

For 19 of the 24 strain-gender combinations that we evaluated,

transcripts associated with TLR signaling were overrepresented

among the 200 transcripts for which expression was most strongly

correlated with population scores on inflammation profiles

(Figure 9A). The Irf5 gene, for example, encodes a transcription

factor (interferon regulatory factor 5) that is activated downstream of

the TLR-Myd88 signaling pathway [20]. Our analyses revealed that,

with respect to C3H females as well as males of the 129, B6 and I

strains, expression of Irf5 in leukocyte populations was a better

predictor of inflammation profile score than any other single

transcript (Figure 9B). This trend was, in part, attributable to the

high expression of Irf5 in cell types usually assigned high scores on

inflammation profiles (e.g., Mw, DCs and monocytes; see Figure 9B).

Nevertheless, there were some Mw and monocyte populations with

low inflammation profile scores, and in these populations, Irf5

expression was comparatively low (Figure 9B). Likewise, among other

high-scoring populations, apart from those associated with the

monocyte-Mw and monocyte-DC lineages, expression of Irf5

expression was comparatively high (Figure 9B). These results indicate

that high expression of Irf5 (and other genes associated with TLR

signaling) is a common characteristic of cell populations that appear

to infiltrate hepatic tissue in mice provided a HF diet.

Expression of macrophage-associated transcripts is
correlated with total cholesterol and other phenotypic
characteristics

We hypothesized that leukocyte-associated transcripts associat-

ed with high scoring populations from inflammation profiles may

Figure 2. Procedure for calculation of inflammation profiles. The figure illustrates the computational procedure used to calculate
inflammation profiles for each of the 24 strain-gender combinations evaluated in this study (see Methods). A total of N = 200 leukocyte populations
were evaluated for each of the 24 strain-gender combinations. For a given leukocyte population j, a set of n signature transcripts are identified based
upon a two-sample comparison between treatments A and B. Treatment A consists of nA arrays that have been used to evaluate gene expression in
liver tissue of young mice maintained on a normal diet (Table S1). Treatment B consists of nB arrays used to evaluate RNA extracted from the jth
leukocyte population (Table S2). The n signature transcripts identified from this comparison represent those transcripts for which expression is
significantly higher in treatment B relative to treatment A (FDR-adjusted P-value,1024 and fold-change$16). In step 2, the n signature transcripts are
divided into the n1 transcripts increased by high fat diet and the n2 transcripts decreased by high fat diet, and the ratio between n1 and n2 is
calculated. The ratio n1/n2 serves as a score for the jth leukocyte population and provides an indication of whether signature transcripts associated
with population j are disproportionately elevated in hepatic tissue of mice provided a high fat diet. Steps 3 and 4 lead to the calculation of a second
ratio (Ratio* = n1*/n2*), which is used as secondary statistical significance criteria for each population (see Methods). In step 3, the n signature
transcripts are reduced to a subset of n* transcripts. This filtering step excludes transcripts that had been designated as signature transcripts for any
of the other j - 1 leukocyte populations that, in step 2, had been assigned a higher score (i.e., a higher n1/n2 ratio; see Methods). In step 4, the ratio
n1*/n2* is calculated based on the n* signature transcripts, in the same fashion as described in step 2.
doi:10.1371/journal.pone.0011861.g002
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be linked to certain phenotypic characteristics that are sensitive to

HF diet (e.g., cholesterol, triglycerides, glucose). For instance, as

shown in Figure 5, the transcript H2-Aa was a signature transcript

of CD8A- myeloid dendritic cells, and previously, Shockley et al.

[15] reported that this and other antigen-associated transcripts

exhibited a strong correlation with total cholesterol levels among

120 mice evaluated in the Novartis strain-diet-sex study. To

determine if this was a general characteristic of leukocyte-

associated transcripts, we focused on the 570 signature transcripts

associated with the consistently high-scoring population of

thioglycollate-elicited peritoneal Mw (see Figure 7), and evaluated

whether these transcripts tended to have a strong correlation with

total cholesterol levels. As predicted, there was an unusually large

correlation between the expression of these 570 signature

transcripts and total cholesterol levels (Figure S5). On average

among the 570 transcripts, the correlation with total cholesterol

was 0.556, which was significantly larger than correlations

observed for other probe sets represented on the array

Figure 3. Inflammation profile highlights infiltration of liver tissue by dendritic cells, macrophages and monocytes in C57BL/6J
male mice provided a high fat (HF) diet. For each of N leukocyte populations, signature transcripts were identified, and the ratio of HF-increased
to HF-decreased transcripts among these signature transcripts was determined (see Figure 2). Each symbol represents one of the N = 200 populations
evaluated, which have been categorized according to labels listed in the left margin. The placement of each symbol along the horizontal axis
corresponds to the ratio between the number of HF-increased and HF-decreased transcripts (among the n signature transcripts associated with a
given population; see Figure 2). The dotted vertical line indicates the ratio of HF-increased to HF-decreased transcripts among all probe sets
represented on the Affymetrix 430 2.0 Mouse Genome Array. Black symbols represent populations for which significance criteria were not satisfied,
while red symbols correspond to populations for which all significance criteria was satisfied (see Methods). The highest-scoring population is
represented by an asterisk symbol (*) (CD8A- myeloid dendritic cells). The figure corresponds to the inflammation profile calculated for C57BL/6J male
mice provided a high fat diet. Profiles calculated for each of the 23 other strain-gender combinations are included as Figure S3.
doi:10.1371/journal.pone.0011861.g003
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(r = 20.079; P = 7.716102291 based on t-test comparison; see

Figure S5). Correlations were especially strong for those transcripts

that were most increased by HF diet (Figure S5). We next

evaluated average correlations among the 570 transcripts with

respect to other phenotypic characteristics (mean r = 0.349, high

density lipoprotein; mean r = 0.314, glutamate dehydrogenase;

mean r = 20.280, triglycerides; mean r = 20.200, glucose; mean

r = 20.173, nonesterified fatty acids; mean r = 0.136, calcium;

mean r = 0.109, blood urine nitrogen; mean r = 0.097, body

weight), and in each case the average correlation differed

significantly relative to all those represented on the array platform

(P,2.07610256). These analyses indicate that hepatic expression

of Mw-associated transcripts is correlated with multiple phenotypic

measures that are linked to pathological aspects of the HF diet.

Greater than 50% of high fat-increased transcripts can be
explained by hepatic infiltration of monocytes,
macrophages or dendritic cells in some mouse strains

What proportion of transcripts elevated by HF diet in liver

might be attributable to infiltration by monocytes, Mw, or DCs as

part of an inflammatory response? To address this question, we

evaluated the 500 transcripts most strongly increased by HF diet

for each of the 24 strain-gender combinations (Figures 10 and S6).

For each strain-gender combination, we evaluated the top 500

transcripts individually, and for a given transcript, we determined

whether that transcript had been designated as a signature

transcript of a high-scoring (statistically significant) cell population

in the inflammation profile calculated for the corresponding strain-

gender combination (Figure S3). If the transcript was indeed a

signature transcript of a significant population, that transcript was

‘‘assigned’’ to that cell population, and this served as an

explanation for why that transcript was elevated by HF diet in

liver. In males, the proportion of HF-increased transcripts

explained by monocytes, Mw, or DCs varied between 12.4%

(MRL males) and 65.6% (CAST males) (Figure 10). An exception

was DBA males, for which none of the top 500 transcripts were

explained on this basis (because no significant cell populations

were identified in the inflammation profile for DBA male mice; see

Figure S3). In females, we estimated that between 7.2% (DBA

females) and 64.8% (CAST females) of the top 500 transcripts

were, potentially, explainable on the basis of monocytes, Mw, or

DC infiltration (Figure S6).

Discussion

High fat diets can promote systemic inflammation and may lead

to a metabolic state associated with negative long-term health

outcomes [3–7]. Microarray experiments have provided a systems-

level view of the major effects of high fat (HF) diet within

individual tissues, and have shown that HF diet often increases the

expression of genes disproportionately associated with immune

system processes, such as the processing and presentation of

antigens [15,21–24]. We hypothesized that, in liver, this effect of

HF diet is due to infiltration of hepatic tissue by white blood cells,

and we have applied an algorithm to test whether this hypothesis is

consistent with data from the Novartis strain-diet-sex survey

(GSE10493). This hypothesis was supported by our analyses and

we show that ‘‘signature transcripts’’ highly expressed in certain

leukocyte populations (e.g., thioglycollate-elicited peritoneal Mw)

are often overwhelmingly elevated in hepatic tissue of mice

provided the high fat diet. This effect, which appears to reflect the

degree of localized hepatic inflammation, has a genetic component

and differs in intensity among males and females of 12 mouse

strains. In some strains (NZB male and female mice, B6 males and

A/J females), we estimate that 50–60% of genes elevated by HF

diet can be explained on the basis of leukocyte infiltration. On the

other hand, in DBA males and females, there was little or no

indication that hepatic gene expression patterns associated with

HF diet were shaped by leukocyte infiltration. These results, taken

together, suggest that inflammatory processes and resultant tissue

remodeling partly explain genome-wide expression patterns

associated with HF diet, that microarray data can be exploited

Figure 4. High fat diet disproportionately increases expression of dendritic cell-associated transcripts in liver tissue from C57BL/6J
male mice. The inflammation profile calculated for C57BL/6J male mice (Figure 3) identified 454 transcripts associated with CD8A- myeloid dendritic
cells as disproportionately elevated within hepatic tissue of B6 males provided a high fat diet (see Gene Expression Omnibus samples GSM258647
and GSM258648). In part (A), each symbol represents one of these 454 transcripts, and the axes correspond to the average expression level in mouse
liver tissue (i.e., treatment A in Figure 2) or CD8A- myeloid dendritic cells (i.e., treatment B in Figure 2). In part (B), the 454 transcripts are plotted with
respect to their average expression level in hepatic tissue among B6 mice provided a high fat diet (vertical axis) and B6 mice provided a low fat diet
(horizontal axis). In both (A) and (B), red symbols correspond to transcripts that were significantly increased by high fat diet (FDR-adjusted P,0.05),
and the dashed blue line represents equal expression with respect to the vertical and horizontal axes.
doi:10.1371/journal.pone.0011861.g004
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to gain biological insights into these patterns, and that the intensity

of hepatic inflammation in response to HF diet is genetically

regulated and heterogeneous among inbred mouse strains.

The HF diet perturbs the hepatocyte-leukocyte balance that

normally exists within the liver microenvironment [17,25,26],

and there are multiple (non-mutually exclusive) models that may

explain how the inflammatory cascade is initiated by HF diet to

ultimately promote an influx of leukocytes into the liver [19].

Healthy liver contains a balance of hepatocytes and other

intrahepatic cell populations, including resident macrophages

(Kupffer cells), in addition to immune cells entering from

circulation. This balance can be altered by triggers that increase

generation of chemoattractant compounds by hepatocytes to

enhance the recruitment of immune cells, or by cellular

modifications intrinsic to circulating leukocyte populations that

increase their capacity for adhesion or migration into endothelial

tissues [19]. In the present context, in silico inflammation profiles

have provided a tool for gauging the relative intensity of

inflammatory gene expression in different mouse strains, and

also provide an unbiased method for identifying populations that

appear most likely to explain observed effects of HF diet on

hepatic gene expression. For most mouse strains, there was strong

evidence that HF diet increased the hepatic expression of

transcripts highly expressed in bone marrow-derived cells from

Figure 5. High fat diet increases hepatic expression for each of the 40 transcripts most highly expressed in dendritic cells relative to
liver tissue (C57BL/6J males). The inflammation profile calculated for C57BL/6J male mice (Figure 3) identified 454 transcripts associated with
CD8A- myeloid dendritic cells as disproportionately elevated within hepatic tissue of B6 males provided a high fat diet (see Gene Expression Omnibus
samples GSM258647 and GSM258648). The chart lists the top 40 signature transcripts that were associated with this dendritic cell population. These
transcripts have been ordered according to values listed on the right side of the chart, which represent the expression ratio between the dendritic
cell population and liver tissue (i.e., ratio between average expression of treatments B and A in Figure 2). Within the chart, red symbols indicate the
average expression of each transcript among male B6 mice provided a high fat diet (n = 3), while black symbols represent average expression of
control mice provided a standard laboratory diet (n = 3). The error bars associated with each average expression estimate spans 6 one standard error.
doi:10.1371/journal.pone.0011861.g005
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the monocyte- Mw and monocyte-DC lineages (Figure 7). This

inference is based upon marked and statistically significant

patterns in the data (e.g., see Figure 4; FDR-adjusted P-value

less than 102150), and is also in agreement with previous

immunohistochemical investigations, which have shown that

HF diet increases abundance of these cell types in mice of

multiple genetic backgrounds [17,25,27]. We characterized a

gene expression phenotype associated with high-scoring cell

populations, with the expectation that the capacity of cells to

home to liver tissue and attach to endothelial substrates would

depend upon expression of receptors or key cellular components.

This analysis revealed that a unifying characteristic of cell

populations assigned high scores on inflammation profiles was

high expression of genes encoding components of the toll-like

receptor (TLR) signaling pathway (e.g., Irf5 and Myd88) (Figure 9).

Our findings, therefore, add to the growing recognition of this

pathway as a contributor to obesity-associated inflammation

[11,17,28–36], and suggest that heightened expression of TLR

genes in several mouse strains may predispose leukocytes to

respond to in vivo signals that arise due to excessive fat intake (e.g.,

elevated fatty acids). This possibility is consistent with findings

from recent studies, which have shown that deletion of toll-like

receptor 4 (Tlr4) in hematopoietic cells abrogates HF diet-

associated inflammation in liver and adipose tissue [29], and that

liver damage due to adoptive transfer of immature myeloid cells

(CD11b+Ly6ChiLy6G2) from HF-fed mice occurs only when

Figure 6. Summary of inflammation profiles calculated for each of 12 mouse strains and both genders. This figure provides a summary
of the inflammation profiles calculated with respect to each of 24 strain-gender combinations (see Figure 3 and Figure S3). The N = 200 cell
populations evaluated by our analysis were categorized into classes listed on the side of the chart. For each strain-gender combination (columns), the
largest ratio (HF-increased/HF-decreased; see Figure 2) among cell populations associated with a given class was identified. The color-code in the
chart corresponds to this largest ratio (see legend), where darker colors provide indication that a cell population associated with the row label
infiltrates hepatic tissue with HF diet. Black dots indicate that, for a given strain-gender combination and class of cell populations, there was at least
one population for which statistical significance criteria was satisfied (i.e., see red symbols in Figure 3; see Methods for explanation of statistical
significance criteria).
doi:10.1371/journal.pone.0011861.g006
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donor cells carry the gene encoding the Myd88 intracellular

adaptor protein [25].

Development of hepatic inflammation depends upon several

parallel mechanisms and the interplay between circulating

cytokines and concurrent processes in both hepatocytes and

nonparenchymal cells. For instance, HF diet may stimulate

hepatocytes to increase local production of monocyte chemoat-

tractant protein-1 (MCP-1/CCL2), which serves as a chemoat-

tractant signal that would draw monocytes from circulation, which

could then differentiate locally into Mw or DC progeny cells [37].

Indeed, inspection of the Novartis strain-diet-sex database reveals

that, on average among all 24 strain-gender combinations,

expression of Mcp-1/Ccl2 is increased by 58% (range: 4% decrease

in SM females; 3-fold increase in NZB males and A females;

significant increase in 16 of 24 cases). This strengthening of a

chemoattractant gradient could, moreover, be accompanied by

increased fractional abundance of the circulating inflammatory

Ly-6Chi monocyte subset [38], which express specialized ligands

that facilitate tethering of monocytes to endothelial substrates [39].

Hepatic inflammation may also be heighted by damage to liver

tissue associated with HF diet [15]. The hepatic blood supply from

the portal vein, for example, is highly sensitive to alterations in the

absorption capacity of the intestinal mucosa. Along these lines,

systemically high cytokine levels associated with HF diet may

disrupt tight junction complexes in the intestine to compromise

intestinal permeability, ultimately leading to elevated endotoxin

levels in the portal blood supply, which may damage liver tissue

and promote release of inflammatory compounds by hepatic

stellate cells and Kupffer cells [40]. Lastly, given a HF diet,

inflammatory signals emitted by interstitial fat deposits in hepatic

tissue may be enhanced, which would serve to tighten the

association between such fat deposits and white blood cells.

Figure 7. Effect of high fat (HF) diet on expression of macrophage-associated transcripts in male and female mice of 12 strains.
Inflammation profiles calculated for each of the 24 strain-gender combinations (Figure 3 and Figure S3) revealed that 570 signature transcripts
associated with thioglycollate-elicited peritoneal Mw (Gene Expression Omnibus samples 258701 and 258702) were most consistently elevated by HF
diet in all strain-gender combinations. For each strain-gender combination, the bar graph indicates the percentage of the 570 Mw-associated
transcripts that increased or decreased in hepatic tissue of mice provided with a high fat diet. The asterisk symbol (*) indicates that the percentage of
increased or decreased transcripts is significantly large or small (P,0.05; hypergeometric test).
doi:10.1371/journal.pone.0011861.g007
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Inflammation profiles, for instance, suggested increased presence

of T cell-associated transcripts in liver of HF-fed mice of most

strains (Figure 6), and this could arise from a closer association

with intra-hepatic adipose tissue and T lymphocytes [6,7,41–43].

At the same time, signature transcripts of white adipose tissue were

also disproportionately elevated by HF diet, suggesting that some

degree of fat expansion occurred with HF diet, which could

augment still further the abundance of adipose-associated T cell

subsets and proinflammatory signals derived from adipose, leading

to accelerated lymphocyte recruitment and an overall reinforce-

ment of the inflammatory cascade [44].

It is increasingly recognized that genotype is an important factor

shaping response to dietary intervention in mice [45–51]. To

understand such genotype-by-environment interactions, the diver-

sity of existing mouse strains provides a valuable research tool [49].

Following 4 weeks of the HF diet, nearly all strains exhibited

increased abundance of leukocyte-associated transcripts in liver,

indicative of localized inflammation, but this response was markedly

attenuated in DBA mice. In DBA males, transcripts associated with

certain leukocyte populations were disproportionately decreased by

HF diet (e.g., CD8+ T cells, B cells, DCs and Mw), providing

evidence that the diet had possible anti-inflammatory effects in mice

of this strain and gender. This observation is supported by an

independent analysis recently reported by Zhu et al. [50], which

showed that after 1–21 weeks of HF diet (0.5% cholic acid, 1.25%

cholesterol, 15% fat), hepatic tissue of female DBA mice exhibited

decreased expression of genes associated with ‘‘immune response

and inflammation’’, while the opposite pattern was observed in B6

mice. Additionally, Zhu et al. [50] noted that, relative to B6 mice,

apoptosis of hepatic cells was reduced in DBA females. The present

study, therefore, in combination with the results of Zhu et al. [50],

suggests that for HF diets of 1–21 weeks in duration, DBA mice of

both genders exhibit some level of resistance to hepatic inflamma-

tion. It is uncertain whether this response of DBA mice to HF diet is

strictly liver-specific, or whether it is indicative of an aberrant

pattern by which systemic inflammation progresses in this mouse

strain. Previously, Kirk et al. [52] compared nine inbred mouse

strains and showed that, in DBA mice, plasma cholesterol levels

were unusually hyporesponsive to multiple HF diets, which may

have been due to decreased absorption of dietary cholesterol

[48,52]. In other studies, however, in which slightly different HF

diets were evaluated, plasma cholesterol levels have been observed

to increase in DBA mice [49]. DBA mice also appear susceptible to

increased body weight when provided a HF diet. A recent study, in

fact, evaluated 42 inbred mouse strains provided an atherogenic diet

for 18 weeks, and showed that DBA mice gained more body weight

than any other strain [53,54]. Lastly, DBA mice may exhibit a

differential response to healthy diets, such as caloric restriction,

which is a well-studied anti-inflammatory diet known to increase

lifespan in most inbred mouse strains [55]. In particular, Forster

et al. [46] reported a series of experiments in which long-term

caloric restriction increased lifespan in B6 mice and B6D2F1

hybrids, but led to a slight lifespan decrease in mice of the DBA strain.

The present analysis indicates that, following 4 weeks of HF

diet, inflammatory gene expression patterns in hepatic tissue of

different mouse strains can vary. It is important to note, however,

that these observations correspond to a fixed time point following

the start of HF diet (i.e., 4 weeks), and that development of hepatic

inflammation may proceed along a time course, with a more acute

short-term phase followed by a longer-term chronic phase in

which inflammation is partly attenuated [21,22]. A recent study of

hepatic gene expression data in Apo3Leiden mice (B6 back-

ground), for example, has indicated that an acute inflammatory

response to HF diet develops in the short-term (1 day–1 week), but

that this response partly attenuates between 8 to 16 weeks with the

progression of steatosis [21]. In our analysis, the 4 weeks of HF

diet is neither a short-term or long-term response, but can be

viewed as an intermediate time point, which may lie at the

transition between distinct phases of the hepatic or systemic

responses to HF diet. Potentially, differences between mouse

Figure 8. Macrophage-associated transcripts exhibit disparate responses to high fat diet in C57BL/6J relative to DBA/2J male mice.
A population of thioglycollate-elicited peritoneal Mw was identified, on the basis of inflammation profiles (Figures 3 and S3), as the most consistently
high-scoring population among the 24 strain-gender combinations. The 570 signature transcripts associated with this population were
disproportionately elevated by HF diet in most strains, with the exception of DBA male mice (see Figure 7). In part (A), the effects of high fat diet on
expression of these 570 transcripts in C57BL/6J male mice (horizontal axis) is shown relative to the effects of high fat diet in DBA/2J male mice
(vertical axis). Note that both the horizontal and vertical axis correspond to log2 scales. The dotted red line represents a least-squares regression
estimate, and the correlation (r) value displayed in the figure is the Pearson correlation between fold-change estimates (HF Diet/Control) from the
two mouse strains. In part (B), the same relationship between fold-change estimates is shown, except the figure is based on all 45,101 probe sets
represented on the Affymetrix 430 2.0 array, where the density of shading indicates the number of probe sets associated with a given region in the
plotting area.
doi:10.1371/journal.pone.0011861.g008
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Figure 9. Shared characteristics of gene expression phenotypes associated with infiltrating cell populations. It was hypothesized that
high-scoring cell populations may share common characteristics (e.g., elevated expression of genes that facilitate homing to liver or attachment to
endothelial surfaces). All transcripts were therefore evaluated to determine if their expression in leukocyte populations correlated with the scores
assigned to populations based upon inflammation profiles (i.e., HF-increased/HF-decreased ratios; see Figures 3 and Figure S3). The analysis was
repeated for each strain-gender combination, and in each case, transcripts were ranked to identify the 200 transcripts for which expression most
strongly increased among cell populations assigned high scores on the inflammation profile associated with each strain-gender combination. In part
(A), a summary of all results in shown, based upon KEGG pathway terms. For the 200 transcripts identified with respect to each strain-gender
combination, significantly overrepresented KEGG terms were identified (P,0.05). In the chart, a red asterisk symbol indicates that the corresponding
KEGG term (rows) was overrepresented with respect to analyses performed for a given strain-gender combination (columns). Part (B) shows an
example of a transcript (Irf5) for which expression levels were generally elevated among cell populations assigned high inflammation profile scores
(C3H female mice; Figure S3). Each point corresponds to a data sample (i.e., array hybridization) associated with one of the 200 leukocyte populations
evaluated (Table S2). The horizontal axis indicates the inflammation profile score for the population associated with each data sample (i.e., HF-
increased/HF-decreased ratios; C3H female mice; see Figure S3; log2 scale). The vertical axis corresponds to Irf5 expression (log2 scale). Red, green and
blue points represent data samples associated with DCs, Mw and monocytes, respectively. The dashed line corresponds to a least squares regression
estimate (P = 9.16102118).
doi:10.1371/journal.pone.0011861.g009
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Figure 10. Monocyte, macrophage and dendritic cell infiltration explains gene expression patterns associated with high fat (HF)
diet in multiple mouse strains (males). The 500 transcripts for which expression was most strongly increased by HF diet were identified for each
strain. The 500 transcripts were first identified on the basis of FDR-adjusted p-values and then ranked according to the fold-change estimate
associated with HF diet (i.e., HF diet/control). Panels correspond to male mice of the following strains: (A) 129S1/SvImJ, (B) A/J, (C) C57BL/6J, (D) BALB/
cJ, (E) C3H/HeJ, (F) CAST/EiJ, (G) DBA/2J, (H) I/LnJ, (I) MRL/MpJ-Tnfrs6lpr/J, (J) NZB/BINJ, (K) PERA/Ei and (L) SM/J. Each panel plots ranked fold-change
estimates associated with the top 500 HF-increased transcripts. Of the top 500 transcripts, some were signature transcripts of dendritic cells,
macrophages or monocytes, and in such cases, increased expression with HF diet was explainable on the basis of leukocyte infiltration. In each panel,
those HF-increased transcripts that were explained by dendritic cell, macrophage or monocyte infiltration are represented by red, green and blue

High Fat Diet and Leukocytes

PLoS ONE | www.plosone.org 13 July 2010 | Volume 5 | Issue 7 | e11861



strains with respect to inflammation intensity that we observed

may not represent variations in the intensity of hepatic

inflammation developing in each strain, but rather HF-response

patterns that are temporally out-of-step between strains. In the

case of DBA mice, one possibility is that hepatic inflammation

occurs more rapidly relative to other strains, such that after 4

weeks of HF diet, DBA mice are at an advanced and less acute

inflammatory stage and thus falsely appear to exhibit resistance to

hepatic inflammation. However, the study of Zhu et al. [50] (see

above) argues against this possibility, since Zhu et al. [50] showed

that inflammatory gene expression in DBA females was hypo-

responsive to HF diet across a range of time points between 1 and

21 weeks. Nevertheless, we note that data analyzed in this analysis

are specific to the 4-week time point, and thus do not permit

evaluation of the temporal progression of HF-associated inflam-

matory gene expression patterns among the 12 inbred strains

evaluated. The generation of a more comprehensive dataset,

involving a diversity of strains and a time series of gene expression

profiles, would be a challenging task, but would provide a basis for

understanding how progression of hepatic inflammation in

response to HF diet may differ among inbred mouse strains.

This study has provided a targeted analysis of hepatic gene

expression patterns in HF-fed and control mice, and results are

consistent with the hypothesis that hepatic infiltration of white blood

cells is a robust response to HF diet in mice that occurs in multiple

strains and both genders. These findings provide a reference point for

future studies investigating effects of HF diet in various mouse strains

and both genders. Further work should be directed at evaluating

whether HF diet promotes a similar microarray-based inflammation

signature in non-hepatic tissues, evaluating how strongly inflamma-

tion signatures correlate with results generated from immunohisto-

chemical analyses, and determining whether supplementation of HF

diets with cholic acid augments inflammatory processes [16]. While

our results indicate that development of hepatic inflammation is a

robust response to 4 weeks of HF diet, we have also shown that this

response is not universal and appears attenuated in DBA mice. This

result highlights the strain-specificity of dietary responses, which

challenges efforts to construct general models of dietary response that

will have applicability to multiple mouse strains, to other species, and

potentially, to humans. For this reason, further generation of

comprehensive multi-strain datasets is needed to ensure that

conceptual models of dietary response are not genotype-specific or

dependent upon the properties of a single mouse genotype. Finally,

findings from this study demonstrate that a complex inflammatory

process, involving shifts in cellular composition combined with altered

transcription within cells, is indeed amenable to computational

analysis guided by a biological rationale. This in silico strategy is likely

to be equally useful in other contexts in which gene expression

patterns are the cumulative product of intracellular processes and a

broader inflammatory response (e.g., cancer, neurodegeneration,

psoriasis, atherosclerosis, aging).

Methods

Novartis strain-diet-sex microarray database
The effects of high fat (HF) diet were analyzed using the

Novartis strain-diet-sex survey database, which can be obtained

from Gene Expression Omnibus under accession number

GSE10493. The complete dataset, consisting of 144 CEL files,

was downloaded and expression scores were subsequently

calculated using the robust multichip average (RMA) method.

We note that a web-based query tool for exploring these data has

been made available online at http://cgd-array.jax/org/Diet-

StrainSurvey [15]. The experimental procedures associated with

animal care and tissue processing have been described by Shockley

et al. [15]. In brief, for HF treatments, mice were provided a diet

with 30% Kcal from dairy fat, which contained 1% cholesterol by

weight and 0.5% cholic acid. For control treatments, mice were

provided with a standard diet containing only 6% fat (Cat.

No. 5K52, Lab Diets, St. Louis, MO). Animals were housed in

specific pathogen free facilities prior to sacrifice at 10–13 weeks of

age (20–55 weeks of age in the case of CAST/EiJ and PERA/Ei

mice). Mice were fasted approximately 5 hours before sacrifice

and perfused with saline before dissection. Phenotypic data

collected from mice utilized in these experiments can be accessed

and downloaded from http://cgd.jax.org/datasets/expression/

10strain.shtml. Further details regarding general phenotypic

characteristics of each mouse strain can be obtained from the

Mouse Phenome Database (MPD) [56] and a convenient webpage

with MPD links for each of the 12 mouse strains considered in our

analysis is available (see: http://phenome.jax.org/db/q?rtn=

projects/strainlist&projsym=GX-Shockley1).

Algorithm for calculation of inflammation profiles
Inflammation profiles were calculated for each of 12 mouse

strains and both genders (i.e., 24 strain-gender combinations).

Inflammation profiles are an in silico device that can be used to

interpret gene expression patterns, and in the present context, are

used to gauge intensity of inflammation in response to HF diet,

and to infer which types of leukocytes best explain hepatic gene

expression differences between HF-fed and control mice. The

overall process is summarized in Figure 2. In step 1, a set of n

signature transcripts is identified for each of j = 1,…, N leukocyte

populations. This step required two sets of reference microarray

data (i.e., treatments A and B in Figure 2), both of which

correspond to data obtained from Gene Expression Omnibus,

which are further described in Tables S1 and S2. All data samples

listed in Tables S1 and S2 were generated using the Affymetrix

430 2.0 oligonucleotide microarray, which is the same platform

utilized in the Novartis strain-diet-sex survey. The first set of

reference data (i.e., treatment A) corresponds to a batch of nA = 65

CEL files obtained from GEO, where each CEL file was generated

from an array hybridization with source material isolated from

mouse liver (Table S1).The second set of reference data (i.e.,

treatment B) corresponds to a batch of nB CEL files from the jth

leukocyte population (Table S2). For each leukocyte population

evaluated, there were at least two replicate samples available (i.e.,

nB$2), and on average, there were 2.80 replicates available per

population. To identify n signature transcripts for any one

leukocyte population, nB CEL files associated with that population

were jointly normalized with the liver reference dataset (i.e., the

nA = 65 CEL files). The LIMMA algorithm (linear models for

microarray data) was then used to identify transcripts differentially

expressed between the leukocyte population and the liver

reference data. We utilized a high threshold for the identification

of transcripts with significantly higher expression in the leukocyte

symbols, respectively. HF-increased transcripts not associated with these cell types are represented by black symbols. Pie charts indicate the
proportion of HF-increased transcripts for which increased expression by high fat diet appeared to be explained by dendritic cell infiltration (red),
macrophage infiltration (green), or monocyte infiltration (blue), with the black region corresponding to the fraction of transcripts explained by some
other cell type or for which no explanation appeared likely.
doi:10.1371/journal.pone.0011861.g010
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population (i.e., FDR-adjusted P-value,1024 and fold-

change$16), with FDR-adjustment of p-values carried out using

the Benjamini-Hochberg method [57]. Given this threshold, there

was, on average, n = 594 signature transcripts identified for each

leukocyte population evaluated in our analysis (range:

152#n#1311). The set of n signature transcripts is then analyzed,

in step 2, to determine if the set is disproportionately elevated by

HF diet in liver tissue. If a leukocyte population invades hepatic

tissue with HF diet, the n1 signature transcripts increased by HF

diet should greatly exceed the n2 signature transcripts decreased by

HF diet, and the ratio n1/n2 should be large (where n = n1+n2).

Inflammation profiles show, for each strain-gender combina-

tion, the ratio n1/n2 generated from steps 1 and 2 (as shown in

Figure 2). However, it is expected that, for any given population,

some of the n signature transcripts will also be signature transcripts

of other populations. For instance, there were 19,900 pairwise

combinations among the N = 200 cell populations evaluated in our

analysis. For each pairwise combination, we evaluated the overlap

of signature transcripts and found that the median level of overlap,

among all pairwise combinations, was 25.39% (1st quartile:

19.54%; 3rd quartile: 32.41%). Such overlap of signature

transcripts can be problematic, since it may be that a given cell

population does not invade hepatic tissue of HF-fed mice, but

nevertheless, the cell type shares many signature transcripts with

another population that actually does invade hepatic tissue of HF-

fed mice. In this case, the non-invading population may have a

large n1/n2 ratio, and thus appear to invade hepatic tissue, when in

fact it does not. To address this potential problem, we also evaluate

a second ratio for each population, n1*/n2*, which is generated

from steps 3 and 4 (see Figure 2). The ratio n1*/n2* is calculated

based upon a reduced set of n* signature transcripts, which for

each population, is obtained by filtering the n signature transcripts,

in order to exclude any transcripts that are also signature

transcripts for another population with a larger n1/n2 ratio (i.e.,

step 3 in Figure 2). The n* signature transcripts therefore represent

transcripts highly expressed in a particular leukocyte population

(relative to liver), which are uniquely expressed in that population

relative to any other populations for which the ratio n1/n2 is larger.

For nearly all populations, therefore, the value of n* is less than n,

with the exception of the highest-ranked population (with the

largest n1/n2 ratio), for which no sub-setting can be performed and

n = n* (see Figure 2). The advantage of considering both n1/n2 and

n1*/n2* ratios is that, for populations not invading hepatic tissue

but sharing many signature transcripts with other populations that

do invade hepatic tissue, the ratio n1/n2 would be large but the

ratio n1*/n2* would not be. The consideration of both n1/n2 and

n1*/n2* ratios to evaluate statistical significance (see below) thus

serves to de-correlate patterns of statistical significance and to

reduce the chance that some populations will spuriously emerge as

significant because their signature transcripts overlap with those of

another high-scoring population.

Leukocyte populations evaluated in inflammation
profiles

Most of the N = 200 populations evaluated in our procedure

were white blood cell populations. For convenience, we have

collectively referred to these as ‘‘leukocyte populations’’ through-

out this paper. We note, however, that not all populations

represented among the 200 we evaluate are in fact leukocytes

(Table S2). Some populations correspond to RNA extracted from

certain types of progenitor cells isolated from bone marrow, which

are precursors to circulating blood cells (e.g., hematopoietic stem

cells, common lymphoid progenitors, erythroblasts; see Table S2).

In other cases, populations correspond to RNA extracted from

whole organs (e.g., thymus, spleen, white adipose tissue; see Table

S2). These populations were evaluated in parallel with true white

blood cells subsets because of their role in leukocyte development

(e.g., thymus, spleen, progenitors). In the case of adipose tissue, it

was suspected that HF diet could augment adipose tissue deposits

in liver, and thus promote elevated expression of adipose-

associated transcripts by a mechanism comparable to the elevated

expression of immune-associated transcripts due to white blood

cell infiltration.

Statistical significance criteria for inflammation profiles
The inflammation profiles presented in our analysis (e.g.,

Figure 3 and Figure S3) include red symbols that correspond to

populations for which statistical significance criteria were satisfied,

along with black symbols, which represent populations for which

significance criteria were not satisfied. There were two criteria for

statistical significance. First, the ratio n1/n2 needed to be

significantly large, as compared to the ratio of HF-increased to

HF-decreased transcripts observed among all 45,101 transcripts

represented on the Affymetrix 430 Mouse Genome 2.0 array. The

significance of this ratio was evaluated using a hypergeometric test

to determine the likelihood of observing n1 HF-increased

transcripts within a sample of n1+n2 transcripts sampled from all

those evaluated on the Affymetrix 430 Mouse Genome 2.0 array.

P-values generated from this test were then adjusted for multiple

testing among all 200 populations using the Hochberg method

[58], which is a conservative p-value adjustment method that is

valid for the case in which p-values are non-negatively correlated.

We note that, while the value n1 is the test statistic considered by

the hypergeometric test, the value of n1 is directly proportional to

n1/n2, and thus we view this approach as a test of the n1/n2 ratio.

The second criteria for statistical significance was the same test,

except applied to the ratio n1*/n2* rather than n1/n2. For this test,

the hypergeometric distribution was used to determine, for each

population, whether the observed value of n1* was significantly

large, given the null scenario in which a random sample of n1*+n2*

transcripts are chosen from all those evaluated on the array

platform. As above, p-values generated from this test were adjusted

using the conservative Hochberg correction to account for

multiple testing among the 200 leukocyte populations. For

inflammation profiles presented in this study (Figure 3 and Figure

S3), red symbols correspond to populations for which both

hypergeometric tests (as applied to n1/n2 and n1*/n2*) are

significant (FDR-adjusted P,0.05). The main advantage of using

the hypergeometric distribution to evaluate significance of n1/n2

and n1*/n2* ratios is that the approach is straightforward and does

not require the repeated simulation of a null distribution for every

leukocyte population considered, which would have been

computationally expensive in the present context. We note,

however, that our algorithm could be adapted to utilize alternative

statistical measures of correspondence between leukocyte-associ-

ated and HF-associated gene expression patterns, such as the test

statistic used in the gene set enrichment analysis (GSEA) algorithm

proposed by Subramanian et al. [59].

Supporting Information

Figure S1 Gene ontology biological processes overrepresented

among transcripts increased by high fat diet in males of 12 mouse

strains. Transcripts significantly increased by high fat (HF) in

males were identified with respect to 12 mouse strains (see Table 1;

FDR-adjusted P,0.05). For each set of genes exhibiting

significantly increased expression with HF diet, significantly

overrepresented gene ontology (GO) terms were identified (see
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Falcon and Gentleman 2007, Bioinformatics 23:257–58). GO

terms have been clustered according to a similarity measure based

upon the number of GO ancestor terms shared between any two

GO terms. Terms overrepresented with respect to 9+, 8 or 7

mouse strains are shown as red, blue and green font, respectively.

All other terms, overrepresented with respect to fewer than 7

mouse strains, are shown as standard black font.

Found at: doi:10.1371/journal.pone.0011861.s001 (0.03 MB

PDF)

Figure S2 Gene ontology biological processes overrepresented

among transcripts increased by high fat diet in females of 12

mouse strains. Transcripts significantly increased by high fat (HF)

in females were identified with respect to 12 mouse strains (see

Table 1; FDR-adjusted P,0.05). For each set of genes exhibiting

significantly increased expression with HF diet, significantly

overrepresented gene ontology (GO) terms were identified (see

Falcon and Gentleman 2007, Bioinformatics 23:257–58). GO

terms have been clustered according to a similarity measure based

upon the number of GO ancestor terms shared between any two

GO terms. Terms overrepresented with respect to 9+, 8 or 7

mouse strains are shown as red, blue and green font, respectively.

All other terms, overrepresented with respect to fewer than 7

mouse strains, are shown as standard black font.

Found at: doi:10.1371/journal.pone.0011861.s002 (0.02 MB

PDF)

Figure S3 Inflammation profile associated with high fat diet in

24 strain-gender combinations. The procedure illustrated in

Figure 2 was used to calculate inflammation profiles associated

with high fat diet for each of 24 strain-gender combinations. In

each profile, symbols correspond to individual cell populations,

where large ratios (HF-increased/HF-decreased) indicate that

signature transcripts of a given population are disproportionately

elevated in hepatic tissue of mice provided a high fat diet. The

dotted vertical line corresponds to the ratio of HF-increased to

HF-decreased transcripts observed among all 45,101 transcripts

on the Affymetrix 430 2.0 array platform. Black symbols represent

cell populations that did not meet criteria for statistical significance

(i.e., the HF-increased/HF-decreased ratio was not larger than

expected by chance alone). Red symbols represent cell populations

for which statistical significance criteria were satisfied (i.e., the HF-

increased/HF-decreased ratio was significantly large; see Methods

for description of statistical criteria). The highest-scoring popula-

tion is represented by a red asterisk symbol rather than an open

circle.

Found at: doi:10.1371/journal.pone.0011861.s003 (0.11 MB

PDF)

Figure S4 Association between male and female inflammation

profile results for 12 mouse strains. The procedure illustrated in

Figure 2 was used to calculate inflammation profiles for both

genders of 12 mouse strains (see Figure S3). For each strain, it was

expected that inflammation profile results would be similar

between genders; such that, for a given leukocyte population,

the ratio of HF-increased to HF-decreased signature transcripts

would be similar between males and females. To evaluate this

expectation, we compared inflammation profile ratios between

male and female mice of a given strain with respect to the 200

leukocyte populations considered in this study. In figures (A)–(L),

each point represents an individual leukocyte population. The

horizontal axis corresponds to inflammation profile ratios (HF-

increased/HF-decreased signature transcripts) calculated with

respect to males of the indicated strain, while the vertical axis

corresponds to ratios calculated with respect to females of the

indicated strain. Both horizontal and vertical axes are log2 scales.

The red dashed line is a least-squares regression fit and the

Pearson correlation coefficient is listed in the lower right of each

figure (A)–(L). Blue symbols are used to indicate leukocyte

populations for which statistical significance criteria were satisfied

with respect to both males and females (all other leukocyte

populations are represented by black symbols; see Methods for

description of statistical significance criteria).

Found at: doi:10.1371/journal.pone.0011861.s004 (0.18 MB

PDF)

Figure S5 Transcripts associated with thioglycollate-elicited

peritoneal macrophages exhibit hepatic gene expression patterns

that are correlated with total cholesterol. A population of

thioglycollate-elicited peritoneal macrophages was identified, on

the basis of inflammation profiles (Figure 3 and Figure S3), as the

most consistently high-scoring population among the 24 strain-

gender combinations. For each of 570 signature transcripts

associated with this population, the vertical axis corresponds to

the correlation between hepatic gene expression and total

cholesterol among 120 mice evaluated in the Novartis strain-

gender-diet survey. The horizontal axis corresponds to the fold-

change associated with hepatic gene expression levels in liver of B6

males provided a high fat diet (n = 3) relative to controls (n = 3).

The dotted horizontal line represents the average correlation value

calculated among all 45,101 probe sets included on the Affymetrix

430 2.0 Mouse Genome array (r = 20.079), and the gray region

corresponds to this value plus/minus one standard deviation (i.e.,

20.07960.001). The solid red line indicates the average

correlation value among the 570 macrophage-associated tran-

scripts (r = 0.55660.009). The dotted vertical line represents the

average fold-change value (HF-diet/Control) among all Affymetrix

430 2.0 transcripts (i.e., 1.0060.001).

Found at: doi:10.1371/journal.pone.0011861.s005 (0.12 MB TIF)

Figure S6 Monocyte, macrophage and dendritic cell infiltration

explains gene expression patterns associated with high fat diet in

most mouse strains (females). The analysis described in Figure 10

was applied to each of the 12 mouse strains, except the top 500

transcripts increased by high fat diet in females were evaluated.

Panels correspond to male mice of the following strains: (A)

129S1/SvImJ, (B) A/J, (C) C57BL/6J, (D) BALB/cJ, (E) C3H/

HeJ, (F) CAST/EiJ, (G) DBA/2J, (H) I/LnJ, (I) MRL/MpJ-

Tnfrs6lpr/J, (J) NZB/BINJ, (K) PERA/Ei and (L) SM/J.

Found at: doi:10.1371/journal.pone.0011861.s006 (0.38 MB TIF)

Table S1 Data samples used to construct reference database for

liver tissue (i.e., Treatment A from Figure 2). The procedure

described in Figure 2 indicates that nA arrays were used as a

reference set to identify signature transcripts associated with a

given cell population. A total of nA = 56 arrays were obtained from

Gene Expression Omnibus and assigned to this reference set

treatment. These 56 hybridizations are listed below. As indicated

in the table, each sample corresponds to a hybridization that

involves RNA extracted from liver of young male or female mice

(#16 weeks of age).

Found at: doi:10.1371/journal.pone.0011861.s007 (0.04 MB

PDF)

Table S2 Data samples used to identify signature transcripts for

leukocyte populations (i.e., treatment B in Figure 2). In total,

N = 200 cell populations were evaluated, and the procedure

carried out for the jth leukocyte population is described in Figure 2,

where j = 1, …, 200. This table lists all 200 cell populations for

which the procedure was applied. Most cell populations represent

leukocytes, although some correspond to progenitor cells, thymus,

spleen, or white adipose tissue. For each population, the samples
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listed correspond to replicate CEL files obtained from Gene

Expression Omnibus. These samples were used as the nB

biological replicates in Treatment B (see Figure 2) in order to

identify signature transcripts for each population.

Found at: doi:10.1371/journal.pone.0011861.s008 (0.10 MB

PDF)
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1. Berghöfer A, Pischon T, Reinhold T, Apovian CM, Sharma AM, et al. (2008)
Obesity prevalence from a European perspective: a systematic review. BMC

Public Health 8: 200.

2. Wang YC, Colditz GA, Kuntz KM (2007) Forecasting the obesity epidemic in
the aging U.S. population. Obesity (Silver Spring) 15: 2855–65.

3. Florez H, Castillo-Florez S, Mendez A, Casanova-Romero P, Larreal-

Urdaneta C, et al. (2006) C-reactive protein is elevated in obese patients with
the metabolic syndrome. Diabetes Res Clin Pract 71: 92–100.
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