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Abstract

Commensal bacteria comprise a large part of the microbial world, playing important roles in human development, health
and disease. However, little is known about the genomic content of commensals or how related they are to their
pathogenic counterparts. The genus Neisseria, containing both commensal and pathogenic species, provides an excellent
opportunity to study these issues. We undertook a comprehensive sequencing and analysis of human commensal and
pathogenic Neisseria genomes. Commensals have an extensive repertoire of virulence alleles, a large fraction of which has
been exchanged among Neisseria species. Commensals also have the genetic capacity to donate DNA to, and take up DNA
from, other Neisseria. Our findings strongly suggest that commensal Neisseria serve as reservoirs of virulence alleles, and that
they engage extensively in genetic exchange.
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Introduction

The genus Neisseria is a large group of b-Proteobacteria that are

obligate symbionts of humans and animals. At least eight species of

commensal Neisseria colonize human mucosal surfaces [1,2]. These

sites are also infected by two pathogenic Neisseria: Neisseria

meningitidis, which causes epidemics of meningitis and septicemia,

and Neisseria gonorrhoeae, a sexually transmitted bacterium. Because

of their importance to global public health, research has focused

mainly on the two pathogens, leading to the identification of many

virulence factors that are important for infection in humans.

Recent reports indicate that commensal Neisseria also possess

virulence genes [3,4,5]. However, these studies focused either on a

limited number of virulence genes or on only one commensal

genome, that of Neisseria lactamica. The total virulence gene content

of the Neisseria genus is unknown.

The rich diversity of Neisseria species at human mucosal surfaces

raises the possibility of genetic exchange among these bacteria

[6,7]. Indeed, interspecies exchange of antibiotic resistance genes

can occur in vitro [8]. These considerations, combined with the

limited glimpse of the virulence gene content of commensals, led

us to undertake a comprehensive analysis of commensal Neisseria

genomes and to determine the extent of interspecies genetic

exchange.

Results

We generated high quality draft genome sequences of eight species

of human commensal Neisseria, and compared them to 11 published

N. meningitidis, N. gonorrhoeae and N. lactamica genomes (see Table S1 for

all strains used and their corresponding accession numbers).

Commensal genomes were sequenced using a combination of the

Roche 454 and Illumina platforms. Commensal genomes range

between 1.8 and 2.8 Mb and contain 2,000 to 2,842 predicted genes.

In contrast, pathogen genomes are ,2.2 Mb and encode ,2,000

predicted genes (Table S2). Genes for common metabolic processes,

DNA replication, recombination, transcription and translation are

conserved in all commensals (Data Set S1 and Text S1).

The core Neisseria genome – the set of genes present in all

Neisseria species – consists of 896 genes, mostly with housekeeping

function assignments. To determine the phylogenetic relationship

of Neisseria species, we concatenated the DNA sequences from a

subset of 636 Neisseria core genes that are shared with

Chromobacterium violaceum, the outgroup used to root the tree. The

N. meningitidis and N. gonorrhoeae genomes form a distinct

monophyletic clade that is derived from the commensal genomes

(Figure 1A). The topology of this tree is consistent with that

generated by concatenating all 896 Neisseria core genes (Figure 1B),

and with previously derived single gene phylogenies [2].
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Repetitive elements are important features of pathogenic

Neisseria genomes, playing key roles in genetic transformation,

gene expression and genome rearrangements [9,10]. The 10 bp

DNA Uptake Sequence (DUS) GCCGTCTGAA is essential for

genetic transformation of N. meningitidis and N. gonorrhoeae. As in

pathogenic Neisseria, the DUS is the most prominent repetitive

element in commensals, occurring over 2,000 times in most species

(Figure 2A). Intriguingly, Neisseria sicca and Neisseria mucosa, which

form a distinct clade on the Neisseria species tree (Figure 1), have far

fewer copies of the canonical DUS. Instead, they have .3,400

copies of a variant DUS (DUS1) with a one base mismatch:

GtCGTCTGAA. This DUS1 functions in DNA uptake/transfor-

mation in N. meningitidis and N. gonorrhoeae, albeit less efficiently

than the canonical sequence [11,12]. Thus, all commensals appear

to have functional DNA uptake sequences.

Correia and dRS3 elements [13] are the second most abundant

repeats in commensal Neisseria. These elements function in gene

regulation and sequence variation in pathogenic Neisseria [14,15].

Commensals have fewer Correia and dRS3 elements than the

pathogens. The only exception is N. sicca, which has more Correia

elements than either of the pathogens (Figure 2A, 2B and 2C; Text

S1). Moreover, commensal dRS3 elements are not arranged into

large Intergenic Mosaic Element arrays, unlike their counterparts

in pathogenic Neisseria (Figure 2B and 2C). This suggests that

expansion of dRS3 elements occurred more recently in the

pathogens.

In pathogenic Neisseria, repetitive elements facilitate two

important immune evasion mechanisms: phase and antigenic

variation. Many N. meningitidis and N. gonorrhoeae genes for

outermembrane proteins undergo high frequency ON/OFF

(phase) switching that results from intragenic recombination of

repeat sequences in or near the coding sequence. Over 70% of the

genes (52/72) known or hypothesized to be phase variable in

pathogenic Neisseria [14,16,17] are present in commensals (Table

S3). However, many of these (26/52) do not have tandem repeats,

indicating that recombination-based phase switching of surface

proteins occurs less frequently in commensals.

Studies of a few handpicked genes and whole genome

microarrays centered on N. lactamica detected virulence genes in

commensals [3,4,5]. To examine virulence gene content in the

newly sequenced commensal genomes, we determined the

distribution of 177 genes that have been reported to play a role

in Neisseria virulence (Table S4) [4,18,19]. Seventy-five percent of

these genes (133/177) are present in one or more commensals

(Figure 3A), and 40% (70/177) are in all of them (Data Set S2). A

large subset of Neisseria virulence genes is therefore present in the

commensals.

Among the virulence genes found in all commensal species are

those encoding the Type IV pilus (Tfp), a surface structure that in

pathogenic Neisseria promotes twitching motility, DNA uptake/

genetic transformation, attachment, and host cell signaling [20].

Commensals have a complete set of Tfp biogenesis genes (Figure

S1), including: pilE, encoding the Tfp structural subunit; pilD,

encoding a pilin peptidase; pilF, encoding a pilin assembly

ATPase; and pilT, encoding an ATPase required for Tfp retraction

and DNA uptake. Commensals also have one or more pilin

modification genes. The four commensals closest to the pathogen

clade, N. lactamica, Neisseria polysaccharea, Neisseria cinerea, and

Neisseria flavescens, have a pilC ortholog. However, the function of

commensal pilC cannot be deduced due to sequence differences

from pathogenic Neisseria pilC1 and pilC2. Commensals therefore

have the genetic capacity to produce Tfp. The functions of

commensal Tfp, if expressed, remain to be elucidated.

Tfp systems of commensal and pathogenic Neisseria differ in one

major respect. In pathogenic Neisseria, pilin antigenic variation

results from recombination of pilE with a silent variant pilin

pseudogene, or pilS [21]. Pathogenic Neisseria have as many as 19

copies of pilS, while commensals have only 2–5 copies (Table S5).

Moreover, in commensals the region upstream of pilE lacks the

guanine-repeat element that is essential for pilE/pilS recombina-

Figure 1. Phylogenetic relationship of human Neisseria species. (A) Rooted maximum likelihood Neisseria species tree (GTR + I + c) based on
concatenating the DNA sequences of a subset of 636 core Neisseria genes that are shared with the outgroup C. violaceum. A dagger denotes a
bootstrap value of 100. The three N. meningitidis carrier strains are denoted by asterisks. (B) Maximum likelihood Neisseria species tree (GTR + I + c)
based on concatenating the DNA sequences of all 896 core Neisseria genes.
doi:10.1371/journal.pone.0011835.g001
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tion [22]. Pilin antigenic variation is therefore unlikely to occur in

commensals, at least via the guanine-repeat element mechanism.

As pseudogenes lacking a function are rapidly lost from the

population [23], the presence of pilS in commensal genomes is

curious. The phylogeny of Neisseria (Figure 1) indicates that

commensals are basal to the two pathogenic species, which form a

single, derived monophyletic clade. The most parsimonious

explanation for these observations is that pilE/pilS antigenic

variation is a novel function that arose in the pathogens from a

system originally evolved for another, yet unidentified purpose.

The Opa family of outermembrane proteins promote N.

gonorrhoeae and N. meningitidis attachment, invasion, immune cell

signaling and inflammation. Pathogen genomes harbor multiple

variant opas; N. meningitidis has 3–4 opas, while N. gonorrhoeae has

approximately 11 [24]. Most commensals lack opa genes and thus

do not interact with host cells via this virulence factor. However,

N. polysaccharea, N. flavescens and N. lactamica have 1, 2 and 3 variant

opas, respectively (Table S5). All of these contain variable numbers

of the CTCTT pentameric repeat that, in pathogenic Neisseria,

undergoes slip-strand misrepair resulting in Opa phase and

antigenic variation [25,26]. Commensal Opas are therefore likely

to undergo phase switching, but limited antigenic variation.

Iron scavenging from the host is an important virulence

attribute of bacterial pathogens [27]. Commensal Neisseria have

a diverse arsenal of iron acquisition genes (Figure 4). N.

lactamica and N. cinerea have genes for acquiring iron from

human transferrin and lactoferrin (tbpA/tbpB and lbpA/lbpB,

respectively) [28]. These loci are important for N. gonorrhoeae

infection and fitness [28]. Commensals also have hmbR and

hpuAB, which are required for acquiring hemoglobin iron [28].

In N. meningitidis, HmbR promotes replication in the blood [29].

All commensals have the tonB/exbB/exbD iron transport locus,

and fur, the iron-responsive regulatory element. Notably,

commensals most distal to the pathogens have iron uptake

genes that are missing from pathogenic Neisseria. These include

genes for transport of hemin, Fe+3 and Fe+2, and for

siderophore receptors and transport (Figure 4). Because Fe+2

is often complexed with protein in foodstuff, the Fe+2 uptake

system, if expressed, may allow oral commensals to absorb iron

from the host diet [28]. Thus, Neisseria species possess a diverse

array of iron uptake genes. This diversity may help different

Neisseria species to colonize the same niche without being

affected by antibodies directed against the iron acquisition

components of other species [30].

Figure 2. Prevalence of repetitive elements in human Neisseria genomes. (A) Numbers of repeat sequences (RS), insertion sequences (IS),
Correia elements, and DNA Uptake Sequences (DUS) are given for each Neisseria species, with complete copies in parentheses. DUS refers to the
canonical DNA uptake sequence GCCGTCTGAA. DUS1 refers to the DUS variant GtCGTCTGAA. Note the high copy number of DUS1 in N. sicca and N.
mucosa, highlighted in bold. (B) Absence of repeat elements in the pgd/lpxC locus region in commensals. Nel: N. elongata; Nsi: N. sicca; Nmu: N.
mucosa; Nsu: N. subflava; Nfl: N. flavescens; Nci: N. cinerea; Npo: N. polysaccharea; Nla: N. lactamica 23970; Nme: N. meningitidis MC58. Black bars
represent dRS3 elements; blue bars represent Correia elements. Orthologous genes are the same color; orange represents a c-glutamyltranspeptidase
present in four commensal genomes; grey represents hypothetical proteins unique to each genome. (C) Absence of large repeat arrays in the murI-
tbpA/B-potD-1 locus in commensals. Ngo: N. gonorrhoeae FA1090. Forward slashes (//) represent a break in chromosome contiguity. Orthologous
genes are the same color; light blue denotes a hypothetical protein. All other features are the same as in (B).
doi:10.1371/journal.pone.0011835.g002
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Several genes are found uniquely in commensals. Only four

genes - encoding hypothetical proteins - are present in all

commensals, while several are present in one or more commensals.

Intriguingly, some commensal-specific genes encode proteins that

function as hemolysins, adhesins or invasins in other bacterial

pathogens (Data Sets S3 and S4). Others encode components of

the Type IV and Type VI Secretion Systems and lipooligosac-

charide modification enzymes (Text S1). Commensal-specific

genes are generally smaller, have a lower %G+C content than

Neisseria core genes, and have homologs in other bacterial genera,

indicating that they were acquired recently via horizontal gene

transfer.

We also identified several pathogen-specific genes (Data Set S5).

Only 16 genes are present in all sequenced N. meningitidis genomes,

and 81 in all sequenced N. gonorrhoeae genomes. Genes for

biosynthesis of the polysaccharide capsule, which confers resis-

tance to complement killing and phagocytosis, are unique to N.

meningitidis (Figure S2). The ctrABCD and lipAB loci, encoding

polysaccharide transporters, are found in some commensals (Text

S1). However, the siaABC locus, which is required for capsule

production, appears only in N. meningitidis. The tdfF locus which is

essential for intracellular iron acquisition and thus for Neisseria

intracellular replication, is found only in pathogen genomes

(Figure 4) [31].

Some genes were found in all sequenced N. meningitidis and/or

N. gonorrhoeae genomes, but only rarely in commensal species. For

example, iga, encoding an IgA protease that cleaves human IgA

and lysosomal membrane protein Lamp1 [20], is present only in

pathogenic Neisseria genomes with one exception: an intact iga2

allele is found in both N. lactamica genomes. The 57 kb Gonococcal

Genetic Island (GGI) [32] is largely absent from commensals.

However, genes with varying degrees of nucleotide sequence

identity to GGI encoded dsbC, topB, and parA are present in all

commensal genomes (Text S1). In N. gonorrhoeae, dsbC and parA play

roles in genetic transformation by secreting DNA [32]. Nf, an

M13-like filamentous phage, is the only feature that distinguishes

hyperinvasive N. meningitidis isolates from noninvasive ones [33,34].

Nf genes are detected in N. flavescens and N. lactamica. N. flavescens

has only a subset of Nf genes, while N. lactamica contains all the

major M13-like life cycle genes.

Finally, it should be noted that NMB1646, encoding a putative

hemolysin, was proposed to be specific to pathogenic Neisseria.

Microarray studies found NMB1646 in N. meningitidis and N.

gonorrhoeae, but absent from N. lactamica [4]. In our study,

NMB1646 is also missing from N. lactamica. However, it was

found in all other commensal genomes. Thus, NMB1646 is

present in both commensal and pathogenic Neisseria.

Our study shows that commensals have a large number of

virulence genes, as well as genes for DNA secretion and uptake,

and an abundance of DUS. Additionally, previous work has

demonstrated gene exchange among Neisseria species [8,35,36,37].

Combined, these results suggest that genetic exchange among

Neisseria may be more widespread than previously thought. We

therefore determined the extent of genetic exchange among

Neisseria species, using a phylogenetic method to analyze 69

virulence genes shared by all 19 Neisseria genomes (Data Set S2).

This method relies on the phylogenetic congruence of individual

gene trees: a gene tree that does not match the species tree

indicates the gene in question has been transferred laterally. We

generated individual gene trees for each of the 69 virulence genes

using PhyML [38] and looked for the rejection of a set of these

topologies by the 69 genes using an Approximate Unbiased (AU)

test [39]. The p-value heatmap (Figure 3B) indicates that most

gene trees showed divergent histories (depicted as groups of

topologies with dissimilar p-value patterns) that are most likely due

to horizontal gene transfer. A small group of topologies (topologies

58–69) were rejected by all the genes. Consistent with these

findings, 45% (31/69) of the virulence genes rejected the

concatenated tree, compared to 34% of the core genes (average

of three replicates of 69 randomly selected core genes). These

results suggest that there is widespread genetic exchange among

Neisseria species, with virulence genes being exchanged at a slightly

higher frequency than core genes.

The AU test relies on the rejection of a tree by a gene, rather

than on its acceptance, and less divergent or saturated alignments

may result in false predictions [40]. Moreover, high rates of

Figure 3. Virulence gene exchange among human Neisseria
species. (A) Number of genes present in different Neisseria species, out
of the 177 genes known or hypothesized to be important for virulence
(see methods for details). (B) Heatmap of AU test p-values obtained by
comparing individual virulence gene tree topologies. The map is a
69669 matrix of 69 virulence genes that are present in all Neisseria
species (y-axis) and their corresponding topologies (x-axis). Blue
indicates a p-value of 1 (trees are similar); red indicates a p-value of 0
(trees are significantly different).
doi:10.1371/journal.pone.0011835.g003
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recombination between N. meningitidis strains can also result in

conflicting phylogenies. Therefore, we also looked for evidence of

horizontal gene transfer using the program RDPv3.18 [41] to

detect homologous intragenic recombination in the 69 virulence

genes mentioned above. Evidence of recombination was detected

in 53 of the 69 genes, and over half of these events (31/53)

involved at least one commensal genome (Table S6). The

intragenic recombination and AU tests provide strong evidence

of genetic exchange among commensal and pathogenic Neisseria,

suggesting that commensals act as reservoirs of new virulence

alleles.

Discussion

In this comprehensive analysis of human commensal Neisseria

genomes, we have identified the gene content of commensal

Neisseria species, generated an extensive phylogenetic tree of this

genus, and determined the distribution of virulence genes in its

members. Commensal Neisseria have an extensive repertoire of

virulence alleles from pathogenic Neisseria as well as other bacterial

genera. Moreover, they have the genetic machinery for exchang-

ing DNA with each other, and nearly half of Neisseria virulence

genes have undergone intra- and interspecies recombination. High

frequency horizontal gene transfer can increase pathogen fitness,

accelerate host adaptation, and affect bacterial virulence. The

prevalence of numerous Neisseria species in the same niches in the

human body provides an opportunity for DNA exchange. The

repertoire of virulence genes in Neisseria populations is therefore

likely to be dynamic.

The large virulence gene set in commensal Neisseria raises an

intriguing question: why are these bacteria generally not

pathogenic? Although there are no ready answers to this question,

we can offer possible explanations. First, a productive infection is

determined by multiple factors, including the immediate environ-

ment of the infection site and host immune status. Commensals

may not be able to express the entire constellation of virulence

genes necessary for initiating infection under these circumstances.

In this context, it is interesting to note that N. lactamica, which

occasionally causes infections, has the largest set of virulence alleles

of all the commensals. Secondly, there may be additional factors

governing commensalism that have yet to be defined. N. meningitidis

can cause asymptomatic infections in humans [42]. Yet, there is

very little difference between the genomes of carrier and invasive

strains [18]. This suggests that the ON/OFF phase switching of

genes may be an important pathogenesis determinant. Indeed,

many commensal orthologs of phase-variable genes lack the repeat

elements that participate in phase variation. Third, a virulence

allele in a commensal may differ from its pathogenic counterpart

in its ability to cause disease. For example, N. gonorrhoeae expressing

the N. lactamica porB allele is less able to invade cells [43]. Finally,

our results add to the growing body of evidence that suggests the

definition of virulence factor needs to be reassessed. Virulence

Figure 4. Iron utilization genes in human Neisseria species. Species and strain names are listed in the phylogenetic tree. N. meningitidis carrier
strains are marked with asterisks. Each box represents an individual gene. Genes of the same color belong to the same iron utilization system. Genes
connected by a horizontal line are contiguous in the chromosome. Loci confirmed by sequencing to be pseudogenes have a forward slash (/). N.
meningitidis and N. gonorrhoeae gene names appear below each column. Genes are listed as locus tags if their iron utilization functions were deduced
from other bacteria. General functions appear below the gene names.
doi:10.1371/journal.pone.0011835.g004
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factors have been defined as components whose absence

attenuates bacterial virulence but not viability [44]. For example,

Tfp is considered a virulence factor because it promotes

attachment [45]. However, recent studies demonstrate that Tfp

activates pro-survival pathways in epithelial cells [46,47], a

situation that benefits both host and microbe. The presence of

Tfp biogenesis genes in commensals supports this idea. Thus, some

virulence factors may be more appropriately termed ‘‘host

adaptation’’ factors, as they allow bacteria to interact with and

adapt to the host environment, but do not specifically promote

virulence. The distinction between a true virulence factor versus a

host adaptation factor will be clarified as the genomes of more

commensal bacteria are sequenced and characterized.

Accession Numbers
Genome sequences generated in this study were deposited in

GenBank. See Table S1 for the GenBank accession numbers for

all genome sequences discussed in this paper. Updated versions of

the eight commensal Neisseria genome sequences generated in this

study are available at http://www.u.arizona.edu/̃pradeepm/data.

html.

Materials and Methods

Bacterial strains
The following strains were obtained from the American Type

Culture Collection (ATCC): N. lactamica (ATCC 23970), N.

polysaccharea (ATCC 43768), N. cinerea (ATCC 14685), N. sicca

(ATCC 29256), N. mucosa (ATCC 25996), and Neisseria elongata

subsp. glycolytica (ATCC 29315). Neisseria subflava (NJ9703) was

provided by J.B. Kaplan [48]. N. flavescens (NRL30031 or H210)

was a gift from E.L. Aho [49,50]. All commensal Neisseria strains

were grown on chocolate agar with 3.6% GC agar base (BD), 1%

Isovitalex (BD), and 1% hemoglobin (Oxoid) for 18–24 hours in

5% CO2 at 37uC.

DNA isolation
Chromosomal DNA was isolated as described previously [51].

Briefly, cells from half of a 10 cm diameter petri dish were

harvested with a sterile Dacron swab into 0.5 ml of 50 mM Tris-

Cl, 20 mM EDTA, 50 mM NaCl (pH 8). SDS (1% final

concentration) and RNAse A (Qiagen, 1 mg/ml) were added,

and cells were lysed for five minutes. Two extractions with phenol-

chloroform-isoamyl alcohol (25:24:1) and one with chloroform

were used to remove proteins. DNA was precipitated by adding

two volumes of isopropanol followed by suspension in TE (10 mM

Tris, 1 mM EDTA, pH 8). Ammonium acetate was added to 2.5

M followed by precipitation with two volumes of ethanol.

Following 70% ethanol washes and drying, DNA was suspended

in water or 10 mM Tris, 0.1 mM EDTA (pH 8).

Genome sequencing and assembly
454 sequencing was performed using the Titanium platform

(Roche) according to the manufacturer’s instructions. Paired-end

sequencing was completed using the Illumina Genome Analyzer II

following protocols specified by the manufacturer. Draft genomes

were assembled using the Newbler (Roche) and Velvet [52]

assemblers.

Genome Annotation
Annotation was performed using a combination of RAST [53]

and the Washington University Genome Center’s gene prediction

pipeline. Select loci were manually curated using previously

published N. meningitidis and N. gonorrhoeae genome sequences as

references.

Orthologs and core genome
Orthologous proteins were identified by BLASTP using

reference proteins from previously sequenced N. meningitidis and

N. gonorrhoeae genomes where possible. Predicted proteins were

designated orthologs of a reference protein if the ratio of reference

self-hit bitscore to predicted protein bitscore was greater than 0.4.

The orthology of proteins unique to draft genomes was

determined in the same manner, except randomly chosen

predicted proteins were used as reference proteins. The orthology

was confirmed by genome context whenever required. The 896

genes present in all 19 Neisseria genome sequences used in this

study were designated as the core Neisseria genome.

Generation of Neisseria species tree
The subset of 636 core Neisseria genes also present in C. violaceum

was used to find phylogenetic relationships among Neisseria species.

The concatenated DNA sequences of these 636 genes were aligned

using MAFFT [54] and the resulting alignment edited using

Gblocks [55] to remove any gaps. A maximum likelihood tree

(using the GTR + I + c model in PAUP) was generated using the

concatenated orthologous sequences from C. violaceum as the

outgroup. Support for each branch was obtained by performing

the bootstrap analysis with 100 replicates. Using the same method,

an unrooted tree was also obtained with the concatenated

sequences from all 896 core Neisseria genes.

Identification of repeat elements
Repetitive elements of commensal Neisseria were identified using

the ‘fuzznuc’ application of EMBOSS [56]. DNA Uptake Sequences

(DUS) were identified in each genome by looking for the pattern

GCCGTCTGAA. Non-canonical DUS were found by allowing one

mismatch to the canonical DUS pattern. The dRS3 elements

were detected in each genome using the pattern ATTCCCNN-

NNNNNNGGGAAT [13,14]. Each identified site was then

manually checked to see if it had a lone dRS3 repeat or a complete

RS element. Relaxing the search to allow one or two mismatches did

not detect any additional RS elements. Correia repeats (CR) were

identified by searching for the following patterns [15,57], with three

mismatches allowed per pattern: TATAG[CT]GGATTAACAAA-

AATCAGGAC, TATAG[CT]GGATTAAATTTAAACCGGTAC,

TATAG[CT]GGATTAACAAAAACCGGTAC, TATAG[CT]GG-

ATTAAATTTAAATCAGGAC.

Each identified repeat was then manually checked to see if it

had a lone CR or a complete Correia element.

Identification of virulence genes
A list of 177 virulence genes was created by searching published

literature and available databases for Neisseria genes that are known

or hypothesized to have virulence functions [4,18,19]. The protein

sequences of these 177 genes were used as queries in a TBLASTN

search against all commensal genome sequences with an E-value

cutoff set at 1e25. A gene was identified as present if it had .50%

identity to the query protein and an alignment length of $75% of

the query length.

Identification of phase variable genes
Searches of the published literature identified 72 Neisseria genes

known or hypothesized to be phase variable [14,16,17]. The

protein sequences of these 72 genes were used as queries in a

TBLASTN search against all commensal genome sequences with

Neisseria Vir. Gene Exchange
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an E-value cutoff set at 1e25. A gene was identified as present if it

had .50% identity to the query protein and an alignment length

of $75% of the query length. To confirm the presence of the

phase variable (PV) repeat, the corresponding gene from the

commensal genome sequence was extracted and aligned to the

appropriate reference gene sequence. The alignments were

manually examined for the presence of the PV repeat.

Gene tree-to-species tree congruence
A phylogenetic method was used to detect the extent of genetic

exchange among Neisseria species by examining 69 of the 70

virulence genes that are shared across all 19 Neisseria genome

sequences. The pilE gene was not analyzed, as multiple copies of

pilE in several of the genomes made identifying orthologs difficult.

Phylogenies for each of the 69 genes were derived in PhyML [38]

using a GTR + I + c model of evolution with BIONJ starting tree.

The site likelihood for each tree was computed using baseml

(PAML package) [58]. The AU test [39] was then applied using

Consel [59].

Detection of intragenic recombination
To provide a secondary method for measuring genetic

exchange, the extent of intragenic recombination was also

examined. Alignments for each of the 69 virulence genes were

generated and recombination breakpoints identified using the

program RDPv3.18 [41].

Confirmation of pseudogenes
Genes of interest were amplified from purified genomic DNA by

PCR. All PCR reactions were performed in a 50 ml reaction

volume using 50 ng of purified DNA as template, 1X Phusion HF

master mix (Finnzymes) and 0.1 mM of the gene-specific primers

(Table S7). Thermocycler conditions were as follows: 1 cycle at

98uC for 30 sec; 35 cycles at 98uC for 10 sec, 60uC for 30 seconds

and 72uC for 15 sec; 1 cycle at 72uC for 10 min. The resulting

PCR products were purified using a column-based method

(Qiagen). Purified products were then sequenced using appropri-

ate forward and reverse primers (Table S7) by the Sanger method

at the University of Arizona Genetics Core (Tucson, AZ).

Supporting Information

Text S1 Supplemental text and references.

Found at: doi:10.1371/journal.pone.0011835.s001 (0.11 MB

DOC)

Figure S1 Human Neisseria type IV pilus (Tfp) biogenesis and

pilin modification genes. Species and strain names are listed in the

phylogenetic tree on the left. N. meningitidis carrier strains are

denoted by asterisks. Each box represents an individual gene.

Genes connected by a horizontal line are contiguous on the

chromosome. A forward slash (/) indicates genes that have been

confirmed as pseudogenes by sequencing. A backwards slash (\)

represents hypothetical pseudogenes whose status has not been

confirmed by experimentation. Genes in grey are not involved in

Tfp biosynthesis or pilin modification. Tfp genes that have not yet

been named are listed by their locus tag designations. The

designations of commensal pilC orthologs are based on genome

context and sequence homology to pilC1 or pilC2 of pathogenic

Neisseria.

Found at: doi:10.1371/journal.pone.0011835.s002 (0.89 MB TIF)

Figure S2 Capsular polysaccharide genes of human Neisseria

species. The Neisseria capsular locus is made up of five regions: A,

B, C, D, and E. Some sequences also contain a duplicate of the D

region, denoted as D’. A composite of the multi-species capsular

locus is depicted at the bottom of the figure and includes gene

names based on published nomenclature. Each box represents an

individual gene, except for numbered boxes, which represent

genes of the number listed. Genes of the same color are part of the

same pathway; grey boxes denote genes whose functions are

unknown or unrelated to the capsule. Genes connected by a

horizontal line are contiguous on the chromosome. A backwards

slash (\) represents hypothetical pseudogenes whose status has not

been confirmed by experimentation. Note that in N. subflava, the C

and E regions as well as gene NLA0370 are in an inverted

orientation compared to the other sequences. Also, whether N.

elongata, N. sicca, and N. mucosa contain a D or D’ region cannot be

ascertained from the available data.

Found at: doi:10.1371/journal.pone.0011835.s003 (0.74 MB TIF)

Table S1 Genome sequences used in this study.

Found at: doi:10.1371/journal.pone.0011835.s004 (0.07 MB

PDF)

Table S2 General characteristics of Neisseria genomes.

Found at: doi:10.1371/journal.pone.0011835.s005 (0.07 MB

PDF)

Table S3 Presence or absence of phase variable genes in

commensal Neisseria. Targets were identified by searching the

literature for genes known or hypothesized to be phase variable in

pathogenic Neisseria.

Found at: doi:10.1371/journal.pone.0011835.s006 (0.17 MB

PDF)

Table S4 Genes known or hypothesized to be involved in

Neisseria virulence. The 177 targets were identified by searching the

literature for genes previously identified as having a role in Neisseria

virulence. Genes in bold type are present in all 19 Neisseria

genomes used in the study.

Found at: doi:10.1371/journal.pone.0011835.s007 (0.13 MB

PDF)

Table S5 Copy number of pilE, pilS and opa genes in Neisseria

species. See supplemental references (Text S1) for additional

information on N. meningitidis MC58 [3,20] and N. gonorrhoeae

FA1090 [20,21].

Found at: doi:10.1371/journal.pone.0011835.s008 (0.08 MB

PDF)

Table S6 Recombination of virulence genes among Neisseria

species. The RDPv3.18 program was used to test for recombina-

tion in 69 virulence genes that are shared by all Neisseria species.

Found at: doi:10.1371/journal.pone.0011835.s009 (0.13 MB

PDF)

Table S7 Primers used for PCR amplification and sequencing of

potential pseudogenes.

Found at: doi:10.1371/journal.pone.0011835.s010 (0.07 MB

PDF)

Data Set S1 Common metabolic pathways present in commen-

sal Neisseria. Genes from the N. meningitidis MC58 genome are

included as a reference.

Found at: doi:10.1371/journal.pone.0011835.s011 (0.18 MB

XLS)

Data Set S2 Virulence genes present in all 19 Neisseria genomes.

Note that the N. subflava and N. cinerea genome sequences both

contain two copies of pilE; the second copy is listed directly below

the first (see rows 74–75).

Found at: doi:10.1371/journal.pone.0011835.s012 (0.06 MB

XLS)
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Data Set S3 Neisseria strain-specific genes. The name on each tab

indicates the species included for the given table.

Found at: doi:10.1371/journal.pone.0011835.s013 (0.26 MB

XLS)

Data Set S4 Commensal Neisseria-specific genes. Genes present

in two or more commensal genomes but absent from all N.

meningitidis and N. gonorrhoeae genomes. See supplemental reference

[19] (Text S1) for abbreviations of the COG categories.

Found at: doi:10.1371/journal.pone.0011835.s014 (0.22 MB

XLS)

Data Set S5 Pathogenic Neisseria-specific genes. Tab ‘‘N.

meningitides’’ includes the seven N. meningitidis strains analyzed;

tab ‘‘N. gonorrhoeae’’ includes the three N. gonorrhoeae genomes

studied. See supplemental reference [19] (Text S1) for abbrevia-

tions of the COG categories.

Found at: doi:10.1371/journal.pone.0011835.s015 (0.04 MB

XLS)
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