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Abstract

Background: Heparan sulfate (HS) is an important regulator of the assembly and activity of various angiogenic signalling
complexes. However, the significance of precisely defined HS structures in regulating cytokine-dependent angiogenic cellular
functions and signalling through receptors regulating angiogenic responses remains unclear. Understanding such structure-activity
relationships is important for the rational design of HS fragments that inhibit HS-dependent angiogenic signalling complexes.

Methodology/Principal Findings: We synthesized a series of HS oligosaccharides ranging from 7 to 12 saccharide residues
that contained a repeating disaccharide unit consisting of iduronate 2-O-sulfate linked to glucosamine with or without N-
sulfate. The ability of oligosaccharides to compete with HS for FGF2 and VEGF165 binding significantly increased with
oligosaccharide length and sulfation. Correspondingly, the inhibitory potential of oligosaccharides against FGF2- and VEGF165-
induced endothelial cell responses was greater in longer oligosaccharide species that were comprised of disaccharides bearing
both 2-O- and N-sulfation (2SNS). FGF2- and VEGF165-induced endothelial cell migration were inhibited by longer 2SNS
oligosaccharide species with 2SNS dodecasaccharide activity being comparable to that of receptor tyrosine kinase inhibitors
targeting FGFR or VEGFR-2. Moreover, the 2SNS dodecasaccharide ablated FGF2- or VEGF165-induced phosphorylation of FAK
and assembly of F-actin in peripheral lamellipodia-like structures. In contrast, FGF2-induced endothelial cell proliferation was
only moderately inhibited by longer 2SNS oligosaccharides. Inhibition of FGF2- and VEGF165-dependent endothelial tube
formation strongly correlated with oligosaccharide length and sulfation with 10-mer and 12-mer 2SNS oligosaccharides being
the most potent species. FGF2- and VEGF165-induced activation of MAPK pathway was inhibited by biologically active
oligosaccharides correlating with the specific phosphorylation events in FRS2 and VEGFR-2, respectively.

Conclusion/Significance: These results demonstrate structure-function relationships for synthetic HS saccharides that
suppress endothelial cell migration, tube formation and signalling induced by key angiogenic cytokines.
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Introduction

Heparan sulfate (HS), a member of glycosaminoglycan (GAG)

family, exists as a covalently linked component of cell surface or

extracellular matrix core proteins forming proteoglycans, integral

components of several cell surface receptor signalling complexes

[1–3]. HS is composed of alternate hexuronic acid and N-

substituted glucosamine residues. Following polymerisation mod-

ifications include C5 epimerisation of glucuronic acid to form

iduronate and variable sulfation at the 2-O position of iduronic

acid and 6-O-, 3-O- and N-positions of glucosamine creating highly

sulfated HS domains separated by poorly sulfated, glucuronate-

containing regions [1–2].

The highly sulfated HS regions (S-domains) facilitate numerous

signalling events by interacting with a number of growth factors,

chemokines and their receptors [1–3]. Several studies suggest that

some growth factors interact with specific sequences within HS S-

domains that are required for both binding and biological activity

[4–8]. For example, 2-O-sulfated iduronate and N-sulfated

glucosamine are essential for the interaction between FGF2 and

HS, whereas 6-O-sulfate groups are required for mitogenic activity

of the complex [4–6]. FGF1 requires 2-O-, N- and 6-O-sulfate

groups for optimal binding to HS and mitogenesis [7]. On the

other hand, binding of a VEGF165 dimer to HS requires two

highly sulfated HS domains linked through a partially sulfated

transitional sequence [8]. Sulfates at 2-O-, 6-O- and N-positions

significantly contribute to the binding [8]. Some growth factors

require organized HS domains rather than defined sulfation

patterns [9]. For example, platelet-derived growth factor B

(PDGF-B), which guides pericyte recruitment during vascular

development, binds HS with an affinity that depends on the

spacing of N-sulfated domains in HS chains [9].
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Since such diverse, although specific, interactions between HS

and angiogenic cytokines are critical in modulating signalling

through respective receptors, angiogenic cytokine-receptor-HS

complexes represent a putative target for novel inhibitors of

pathophysiological angiogenesis. One approach could be to

develop HS oligosaccharides that competitively inhibit the

biological activity of membranous HS proteoglycans preventing

signalling through the cognate receptor. Indeed the potential

therapeutic benefit of low molecular weight heparin (LMWH), a

highly sulfated HS, was observed in pre-clinical models where it

acted as an antiangiogenic, antimetastatic, and anti-inflammatory

agent [10–12]. Moreover, in an in vivo angiogenesis assays

LMWH-derived octa- and deca-saccharides significantly reduced

microvessel density in response to FGF2 [13].

Despite attempts to generate pure length-defined heparin

oligosaccharides, chromatographic preparations represent a het-

erogeneously sulfated population of oligosaccharides, thus obscur-

ing the critical structural features of HS/heparin required to

inhibit different angiogenic cytokines. Using a chemical synthesis

strategy we have generated a series of HS oligosaccharides with a

defined number of saccharide residues, where the component

disaccharides contained iduronate 2-O-sulfate alone or the same

moiety with glucosamine N-sulfate. A strong correlation was

observed between the structure of oligosaccharides, their affinity to

key angiogenic cytokines and biological activity in targeting

specific cytokine-dependent endothelial cell functions.

Materials and Methods

Chemical synthesis
The synthesis was performed using traditional solution phase

chemistry and after each step the products were purified by either

crystallization or flash column chromatography using Silicagel 60

(Fluka, Gillingham, UK). The final products were purified by size

exclusion chromatography using Sephadex G-25 (Sigma-Aldrich,

Gillingham, UK) and lyophilised. For each step the product

structure and purity was confirmed by NMR spectroscopy and

mass spectrometry. Reactants, starting materials and solvents were

purchased from Sigma-Aldrich, Fluka and Alfa-Aesar (Heysham,

UK) and used without further purification.

Cell culture
Primary human umbilical vein endothelial cells (HUVECs) were

purchased from Lonza (Slough, UK) and routinely cultured in

EBM-2 medium supplemented with SingleQuots growth supple-

ments (Lonza) up to passage 7. SV40 immortalized HUVEC cell

line (EVLC2) was a gift from Prof. C. Dive (Paterson Institute for

Cancer Research, Manchester, UK). EVLC2 cells were main-

tained in Dulbecco’s Modified Eagle Medium containing F12

nutrient mixture, L-glutamine and pyruvate (DMEM; Invitrogen,

Paisley, UK) and supplemented 10% foetal bovine serum (FBS;

Promega, Southampton, UK). Normal human dermal fibroblasts

(NHDFs) were purchased from Lonza and cultured in DMEM/

F12 medium containing L-glutamine and pyruvate (Invitrogen)

and supplemented with 10% FBS (Promega).

HS competition assays
Ninety six well heparin-binding plates (Iduron, Manchester,

UK) were coated with heparin sulfate (HS; Iduron) at 25 mg/ml in

standard assay buffer (SAB; 50 mM sodium acetate pH 7.3,

150 mM sodium chloride and 0.2% Tween20) for 24 hours,

washed 3 times with SAB and incubated with 20 mg/ml BSA

diluted in SAB for 5 hours. After 3 washes with SAB, 10 ng of

each cytokine was diluted in 100 ml SAB plus 10 mg/ml BSA.

Oligosaccharides were mixed at 0.01–10 mg/ml concentration

range for FGF2 or 0.1–100 mg/ml range for VEGF165 (all from

R&D Systems, Abingdon, UK). Cytokine and oligosaccharide

mixtures were added to immobilized HS for 2 hours. Wells were

washed 3 times with SAB and biotin-tagged primary antibodies

against FGF2 (R&D Systems, DuoSet ELISA Development kit,

#DY233) or VEGF165 (R&D Systems, #BAF 293) diluted 1:200

in SAB plus BSA were added to the wells. After 2 hour incubation

wells were washed 3 times with SAB and streptavidin-HRP (R&D

Systems, #890803) diluted 1:200 in SAB plus BSA was added for

30 min at room temperature. Wells were washed 3 times with SAB

and then incubated for 20 min in TMB (Sigma-Aldrich). The

reaction was stopped with 2 M sulphuric acid and optical density

measured at 450 nm.

Sulforhodamine B (SRB) proliferation assay
HUVECs were plated at 1250 cells/well in 24 well plates in

250 ml of EBM-2 medium without SingleQuots growth supple-

ments plus 1% FBS and placed in the cell culture incubator for

6 hours before dosing. One hour before dosing oligosaccharides

were mixed with FGF2 (R&D Systems, 20 ng/ml) or VEGF165

(R&D Systems, 20 ng/ml) at 50 mg/ml (corresponding molar

concentration for each oligosaccharide is shown in Table 1) and

incubated at 37uC and then added to the cells for 96 hours. Cells

Table 1. Synthetic oligosaccharide series.

Oligosaccharide ength Sulfation* Molecular weight (g/mol) Molar dose (mM) for 10 mg/ml Molar dose (mM) for 50 mg/ml

7-mer 2S 1577 6.3 31.5

7-mer 2SNS 1985 5.0 25.0

8-mer 2S 1979 5.1 25.5

8-mer 2SNS 2387 4.2 21.0

9-mer 2S 2038 4.9 24.5

9-mer 2SNS 2548 3.9 19.6

10-mer 2S 2441 4.1 20.5

10-mer 2SNS 2951 3.4 16.9

12-mer 2S 2800 3.6 18.0

12-mer 2SNS 3412 2.9 14.7

*2S - iduronic acid 2-O-sulfate; 2SNS - iduronic acid 2-O-sulfate (2S) and glucosamine N-sulfate (NS).
doi:10.1371/journal.pone.0011644.t001
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were fixed with 5% trichloroacetic acid (TCA) for 1 hour at +4uC,

washed with water and allowed to dry. Cells were stained with 4%

sulforhodamine B in 1% acetic acid for 30 min, excess stain was

removed by washing in 1% acetic acid and wells were allowed to

dry. Stain was solubilised in 200 ml 10 mM Tris pH 8.8 and

transferred to 96-well plate for reading on a microplate reader at

540 nm.

Wound-healing assay
EVLC2 cells were seeded in 96-well plate at 26104 cells per well

and incubated for 16 hours at +37uC in a cell culture incubator.

Confluent monolayers were serum-starved in EBM-2 medium

lacking SingleQuots growth supplements and containing 0.1%

FBS for 24 hours and the wound was created by manually

scraping cell monolayer with a pipette tip. Cells were washed and

incubated with either EBM-2 medium without SingleQuots

growth supplements plus 0.1% FBS or medium supplemented

with FGF2 (20 ng/ml), VEGF165 (20 ng/ml), EGF (20 ng/ml) or

VEGF121 (20 ng/ml) (all from R&D Systems). Oligosaccharides

were pre-incubated with the cytokines before adding to cells for

30 min at room temperature. Maximal concentration of synthetic

oligosaccharides in would-healing assay was 50 mg/ml (equivalent

molar concentration for each oligosaccharide is shown in Table 1).

Heparin, dermatan sulfate 4-O-sulfated (DS 4S) 12-mer and a

mixture of chondroitin sulfate 4-O- or 6-O-sulfated (CS 4S/6S) 12-

mers were dosed at 50 mg/ml concentration. FGFR inhibitor

PD173074 (Sigma, # P2499) and VEGFR-2 inhibitor SU4312

(Tocris Bioscience, Bristol, UK, # 1459) were used at 0.2 mM and

0.4 mM concentration, respectively. To determine IC50 values

oligosaccharides were used at 0.04, 0.2, 1, 5, 25 and 50 mg/ml

concentrations (molar concentrations are shown in Table 1). Each

treatment was performed in triplicate. Phase contrast images were

taken immediately after adding cytokines with or without

oligosaccharides and after 24 hours of incubation using Zeiss

Axiovert 200 M microscope (Zeiss, Hertfordshire, UK) enclosed in

a full environmental chamber. The unpopulated areas were

analysed using MetaMorph image analysis software (Molecular

Devices, Uckfield, UK) by measuring unpopulated area at 0 and

24 hours and cell advancement area was derived for each

treatment. IC50 values were produced using GraphPad Prism

software (GraphPad Software, La Jolla, CA, USA).

Immunofluorescence microscopy
Cells were fixed with 4% paraformaldehyde in Tris-buffered

saline (TBS) for 10 min, permeabilized with TBS containing 0.5%

Triton X-100 for 15 min, and blocked with 5% FBS in TBS for an

hour. Cells were incubated with polyclonal rabbit anti-phospho-

FAK (pTyr397) (Invitrogen, #44–625G) antibody diluted 1:100

overnight at +4uC. Cells were washed and incubated with

AlexaFluor488–conjugated donkey anti-rabbit IgG antibody

(1:1000; Invitrogen, #A11034) and AlexaFluor568 phalloidin

(1:40; Invitrogen, #A12380) to visualize F-actin for 1 hour at

room temperature. After washing samples were analysed by

fluorescence microscopy at 620 magnification (Solent Scientific,

Segensworth, UK).

Tube formation assay
HUVECs (500 cells/bead) were mixed with Cytodex 3

microcarriers (Amersham Pharmacia Biotech, Bucks, UK) in

1 ml EBM-2 medium supplemented with SingleQuots growth

supplements. The bead-cell mixture was placed at 37uC in cell

culture incubator and shaken gently every 20 min for 4 hours.

The mixture was then placed in a 10 mm tissue culture dish in

4 ml EBM-2 medium and incubated overnight. The following

morning the beads were harvested, washed 3 times with 1 ml

EGM-2 medium without FGF2 and VEGF165 and resuspended in

EGM-2 medium without FGF2 and VEGF165 at a concentration

of 200 cell-coated beads/ml. The beads were supplemented with

2.5 mg/ml of fibrinogen and 0.15 units/ml of aprotinin (both

from Sigma-Aldrich). Fifty microliters of fibrinogen/bead solution

was added to 0.0625 units of thrombin (Sigma-Aldrich) in one well

of a 96-well tissue culture plate. The fibrinogen/bead solution was

allowed to clot for 5 min at room temperature and then

transferred to cell culture incubator for 30 min. EBM-2 medium

(150 ml) with either FGF2 (R&D Systems) or VEGF165 (R&D

Systems) both at 20 ng/ml containing different oligosaccharides at

50 mg/ml (equivalent molar concentrations are shown in Table 1),

PD173074 at 0.5 mM or SU4312 at 1 mM concentration was

added and allowed to equilibrate for 3 hours. Normal human

dermal fibroblasts (NHDFs) were layered on top of the clot at

0.46104 cells/well. Medium was changed after 3 days and after a

further 4 days tubules were stained with Calcein-AM (1 mg/ml;

Invitrogen) for 1 hour before counting tubules on each bead.

Tubules were visualized on a standard inverted microscope at610

magnification (Solent Scientific).

Aortic ring assay
A 96 well plate was coated with 50 ml fibrinogen solution made

up in serum-free DMEM as described in the tube assay and left to

set at 37uC. Thoracic aortas were removed from mice that had

undergone cardiac puncture to remove blood and sacrificed by

cervical dislocation. Aortas were transferred into ice-cold serum-

free DMEM. The peri-aortic fibroadipose tissue was removed,

aortas sectioned into 1 mm long aortic rings which were washed

extensively in DMEM. Aortic sections were placed on top of fibrin

gels and overlaid with 75 ml of fibrinogen gel which was allowed to

set for 30 min before adding 150 ml of EBM-2 medium

supplemented with 0.1% FBS and either FGF2 or VEGF165 plus

or minus 12-mer 2SNS oligosaccharide at 50 mg/ml (14.7 mM)

concentration. FGFR inhibitor PD173074 (0.5 mM) and VEGFR2

inhibitor SU4312 (1 mM) were added 1 hour prior to the addition

of FGF2 or VEGF165, respectively. The medium was refreshed

after 3 days. Aortas were stained either with Calcein-AM (1 mg/

ml; Invitrogen) or with FITC-conjugated isolectin B4 (2 mg/ml;

Sigma). Tubes were visualized by fluorescence microscopy at 65

magnification (Solent Scientific). For quantification of aortic tube

network phase contrast images were taken at 64 magnification on

the Zeiss Axiovert 200 M (Zeiss) enclosed in a full environmental

chamber. Metamorph software was used to analyse the tubular

network. The total length (mm) of the tubes was evaluated for each

treatment.

Immunoblotting
HUVECs were plated in 6 well plates at 16105 cells/well in

EBM-2 medium lacking SingleQuots growth supplements and

containing 0.1% FBS. After 24 hours cells were dosed with FGF2

or VEGF165 with or without oligosaccharides at 0.1, 1, 10 and

50 mg/ml (corresponding molar concentrations are shown in

Table 1), PD173074 at 0.5 mM or SU4312 at 1 mM concentration.

Five or 10 min after stimulation cell lysates were prepared in Cell

Lysis Buffer (Cell Signaling Technology, MA, USA) supplemented

with sodium orthovanadate (1 mM), PMSF (1 mM), phosphatase

inhibitor cocktail 1 (Sigma-Aldrich, 1:100) and phosphatase

inhibitor cocktail 2 (Sigma-Aldrich, 1:100). Ten micrograms of

protein were separated by SDS polyacrylamide gel electrophoresis

and blotted to polyvinylidene fluoride (PVDF) membrane.

Membranes were blocked with 10% non-fat dried milk in PBS

supplemented with Tween-20 (PBST) for 1 hour, followed by the

HS Oligosaccharides

PLoS ONE | www.plosone.org 3 July 2010 | Volume 5 | Issue 7 | e11644



incubation with the primary antibodies overnight at +4uC. The

following primary antibodies were used: anti-phospho-ERK1/2

(pThr202/Tyr204; clone E10, #5120) diluted 1:2000, rabbit

polyclonal anti-ERK1/2 (#9102) at 1:500, rabbit polyclonal anti-

phospho-FRS2a (pTyr196; #3864) at 1:500, rabbit monoclonal

anti-phospho-AKT (pSer473; clone 193H12, #4058) at 1:500,

rabbit polyclonal anti-AKT (#9272) at 1:500, rabbit monoclonal

anti-phospho-VEGFR-2 (pTyr1175; clone 19A10, #2478) at

1:500, rabbit monoclonal anti-VEGFR-2 (clone 55B11, #2479)

at 1:500 (all from Cell Signaling Technology), rabbit polyclonal

anti-phospho-VEGFR-2 (pTyr1214; Invitrogen, #441052) at

1:500 and anti-GAPDH (Abcam, #ab9485) at 1:2000. The

membranes were washed with PBST and incubated in horseradish

peroxidase-conjugated goat anti-rabbit or anti-mouse IgG (Sigma-

Aldrich) diluted 1:2000 in 5% nonfat dried milk in PBST. Bound

secondary antibody was detected by chemiluminescence (Perki-

nElmer, MA, USA). Densitometry analysis was applied to each

blot to quantify the intensity of bands, followed by normalization

against loading controls. Average fold-change as compared to the

stimulation with the growth factor alone was derived from three

independent experiments.

Growth factor binding to endothelial cell surface
Binding of FGF2 or VEGF to the human umbilical vein

endothelial (HUVE) cell surface was determined by using FGF2

and VEGF biotinylated fluorokine kits (R&D Systems, #NFFB0

and NFVE0, respectively) and following manufacturer’s instruc-

tions. Briefly, HUVECs were collected using cell dissociation

buffer (Invitrogen), centrifuged at 500 g for 5 min and then

washed twice in PBS. Ten ng of biotinylated FGF2 or VEGF with

or without oligosaccharides or specific blocking antibodies were

incubated at 37uC for 1 hour prior to mixing with HUVECs for

1 hour at 4uC. Avidin-FITC was added for 30 min at 4uC in the

dark. Cells were washed twice in 2 ml of cell wash RDF1 buffer,

resuspended in 0.2 ml of RDF1 buffer and the binding of growth

factors to the cell surface was performed using FacsCalibur (BD

Biosciences, CA, USA). Data was analysed by using FlowJo

Analytical software (Tree Star Inc., Ashland, USA).

Statistical analyses
Data are expressed as the mean 6SE. For comparison of

groups, the Student’s t test was used. A level of P ,0.05 was

considered as statistically significant.

Results

Chemical synthesis of oligosaccharides
We previously described an iterative synthesis of HS oligosac-

charides with variable length and sulfation patterns [14].

Oligosaccharides comprising 7 to 12 saccharide residues were

assembled from disaccharide precursors bearing protective groups

(Figure 1). To generate the requisite a-D-glucosamine-(1R4)-a-L-

iduronic acid disaccharide units (6 and 8), D-glucosamine 1 was

converted into glucoazide donor derivative 5 in 8 chemical steps

and D-glucose was converted into L-iduronic acid acceptor 4, via

L-ido cyanohydrin 3, also in 8 steps [14,15]. Both monosaccha-

rides contain orthogonal organic protecting groups, namely

carboxylic ester groups (Bz: benzoyl) and benzylic ethers (PMB:

p-methoxybenzyl and Bn: benzyl). Compounds 4 and 5 were

coupled together using the Schmidt trichloroacetimidate method

to give disaccharide 6. Further elongation using this disaccharide

donor was achieved towards either even- or odd-numbered

oligosaccharides by activation of the phenylthioglycoside donor

unit in 6 by N-iodosuccinimide (NIS) for reaction with an

appropriate acceptor saccharide. For synthesis of odd-numbered

saccharides, 6 was reacted with the methyl glycoside (reducing end

capped) monosaccharide acceptor derivative 7 to provide the

intermediate trisaccharide 9 (n = 1). For synthesis of even-

numbered oligosaccharides, donor disaccharide 6 was reacted

with disaccharide acceptor 8, yielding the intermediate tetrasac-

charide 10 (n = 1). The odd- and even-numbered sequences 9 and

10 were extended from 3-mer up to 9-mer and from 4-mer up to

12-mer, respectively, by iterative cycles of PMB removal with

cerium ammonium nitrate (CAN), unmasking a new O-4 acceptor

hydroxyl, followed by iterative NIS-activated glycosylation with

disaccharide donor 6. The final protected oligosaccharides were

then elaborated into the target sulfated HS sequences. This was

achieved by sequential removal of ester moieties by basic

hydrolysis and sulfation with pyridine sulfur trioxide complex,

effecting selective 2-O-sulfation. Subsequent palladium-catalysed

hydrogenolysis removed the benzylic ether protecting groups and

reduced the 2-azido groups. Finally, an optional selective N-

sulfation using pyridine sulfur trioxide complex in water yielded 11
and 12 (R = H or sulfate) as single chemical entities. This strategy

thus provided two homogeneously sulfated sequences of defined

length containing sulfates at either the 2-O position of iduronate

(2S) or at both the 2-O-position of iduronate and N-position of

glucosamine (2SNS; Table 1).

To confirm the structure of synthetic oligosaccharides we

performed mass spectrometry analysis (Supporting Information

Methods S1) using fully protected compounds, since sulfated

heparin-like oligosaccharides are notoriously difficult to ionise due

to their high acidity and charge. We found that the mass

spectrometry of the protected intermediate oligosaccharides 9 and

10 (7-mer to 12-mer) yielded good spectra when a dithranol

matrix was used (Figures S1, S2, S3, S4 and S5). The [M+Na+]

positive ion was observed, although in some oligosaccharides,

namely 10-mer and 12-mer, a [M+126+Na+] peak was significant

(Figures S4 and S5). This peak relates to an iodine atom linked to

the PMB group; an impurity formed during the coupling of

oligosaccharides. The impurity could not be separated from the

expected product, but in the later steps of synthesis both the PMB

and iodo-PMB groups were removed giving the same final

products.

To confirm sulfation pattern in 2SNS oligosaccharides we used

heparinases to degrade these compounds to component disaccha-

rides which were then analysed by strong anion exchange high-

performance liquid chromatography (Supporting Information

Methods S1; Figure S6). The majority of disaccharides which

were present in 2SNS oligosaccharides were disulfated UA(2S)-

GlcNS disaccharides as determined by comparison with the

elution times of HS standards (Figure S6; Table S1). However, a

low amount of monosulfated UA-GlcNS disaccharides were also

present in 8-mer, 9-mer and 12-mer oligosaccharides (Figure S6;

Table S1). Enzymatic digest of all oligosaccharides was incomplete

yielding approximately 9–22% of unpolymerized tetrasaccharides

(Figure S6; peak 4); a common limitation of enzymatic cleavage of

HS. Size exclusion chromatography confirmed that the material

eluting off the SAX column at 30–35 minutes is a mixture of

sulfated tetrasaccharides (data not shown).

Synthetic oligosaccharide composition determines
binding affinity to FGF2 and VEGF

To determine whether the synthetic oligosaccharides bind to

specific angiogenic cytokines, such as FGF2 and VEGF165, we

evaluated the ability of oligosaccharides to inhibit cytokine binding

to HS immobilized on GAG binding plates. FGF2 binding to HS

was unaffected by 2S 7- and 8-mer oligosaccharides, whereas

HS Oligosaccharides
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Figure 1. Strategy for assembly of odd- and even-numbered oligosaccharides. D-Glucose was converted to the L-ido cyanohydrin 3 and
further modifications gave the L-iduronic acid acceptor 4. This acceptor was coupled with the donor 5, derived from D-glucosamine 1, to yield the
disaccharide donor 6 containing a reactive thioglycoside unit. The donor disaccharide 6 was elongated by reaction with either acceptor
monoglucoside 7 or with acceptor disaccharide 8. The resulting tri- and tetrasaccharides 9 and 10, were further homologated by iterative cycles
consisting of a 2-step process of selective removal of PMB group followed by addition of another disaccharide donor unit, 6. The final odd- and even-
numbered oligomers 9 and 10, respectively, were then deprotected by sequential ester hydrolysis to allow 2-O-sulfation, followed by hydrogenolysis
to remove benzylic ethers and reduce azido groups and finally an optional selective N-sulfation to yield the oligomers 11 and 12. 11: 7-mer 2S: n = 2,
R = -H; 7-mer 2SNS: n = 2, R = -SO3Na; 9-mer 2S: n = 3, R = -H; and 9-mer 2SNS: n = 3, R = -SO3Na. 12: 8-mer 2S: n = 2, R = -H; 8-mer 2SNS: n = 2, R = -
SO3Na; 10-mer 2S: n = 3, R = -H; 10-mer 2SNS: n = 3, R = -SO3Na; 12-mer 2S: n = 4, R = -H; and 12-mer 2SNS: n = 4, R = -SO3Na.
doi:10.1371/journal.pone.0011644.g001

HS Oligosaccharides
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further increase in length allowed oligosaccharides to compete

with HS, such that the 2S 12-mer reduced FGF2 binding to HS by

75% at 10 mg/ml (3.6 mM) concentration (Figure 2A). The 2SNS

species more potently inhibited FGF2 binding to HS (Figure 2B).

The 2SNS 7-mer, 8-mer and 9-mer oligosaccharides decreased

binding to HS by 46%, 30% and 40%, respectively, while 10-mer

and 12-mer oligosaccharides inhibited FGF2 binding to HS by

.90% at 10 mg/ml concentration (Figure 2B; Table 1). The 2SNS

12-mer oligosaccharide was the most potent in that a concentra-

tion as low as 100 ng/ml (29 nM) was sufficient to inhibit 44% of

binding to HS (Figure 2B).

Saccharides with 2-O-sulfates only were weak competitors for

the interaction between HS and VEGF165 binding (Figure 2C),

whereas the 2SNS oligosaccharides were more effective compet-

itors and the length of oligosaccharide contributed to the affinity

for VEGF165 (Figure 2D). However, the concentrations required to

achieve similar degree of inhibition of VEGF165 binding to HS

were 10-fold higher than those required for FGF2 and only 12-

mer 2SNS prevented VEGF165 binding to HS by 67% at 10 mg/

ml (2.9 mM) concentration (Figure 2D).

Oligosaccharides are moderately potent inhibitors of
FGF2- and VEGF165-induced endothelial cell proliferation

During neovascularisation, rapidly proliferating endothelial cells

are incorporated into new vessels [16]. Therefore, we first assessed

whether oligosaccharides inhibit endothelial cell proliferation

induced by FGF2 or VEGF165. Oligosaccharide species bearing

only O2 sulfation had minimal effects on FGF2- or VEGF165-

dependent cell proliferation (Figure 3A). In contrast, 10-mer 2SNS

and 12-mer 2SNS oligosaccharides dosed at 50 mg/ml concen-

tration (16.9 mM 10-mer 2SNS and 14.7 mM 12-mer 2SNS)

inhibited specifically FGF2-stimulated cell proliferation by 35%

and 59%, respectively (Figure 3A). A similar degree of inhibition

was observed with the FGF receptor (FGFR) tyrosine kinase

inhibitor PD173074 and a selective inhibitor of VEGF and PDGF

receptor tyrosine kinases SU4312, albeit at lower concentrations

(Figure 3A). PD173074 inhibited FGF2-induced cell proliferation

by 68% at 0.5 mM concentration, while at 1 mM concentration

SU4312 reduced VEGF165-induced cell proliferation by 81%,

indicating that receptor tyrosine kinase inhibitors are more potent

inhibitors of FGF2- and VEGF165-induced endothelial cell

proliferation than 2SNS 10-mer and 12-mer oligosaccharides.

Oligosaccharides inhibit cytokine-mediated endothelial
cell migration

Endothelial cell motility and the ability to respond to angiogenic

growth factor gradients are essential processes for angiogenesis

[17]. Therefore, we assessed endothelial cell migration into

mechanically generated wounds in response to FGF2, VEGF165,

EGF and VEGF121. The latter two cytokines were studied as they

are not dependent on HS for their biological activity. The area

repopulated by SV40-immortalized HUVECs (EVLC2 cell line)

following 24 hour stimulation with FGF2, VEGF165 and EGF

increased by approximately 2-fold when compared to un-

stimulated serum-starved cells, while VEGF121 induced endothe-

lial cell migration to a lesser extent (Figure 3B). Next we tested if

2S and 2SNS species of oligosaccharides could abrogate FGF2-

and VEGF165-induced healing of the wounded area. 2S

oligosaccharides had little effect on cell migration (Figure 3C),

with the exception of 12-mer 2S, which at 50 mg/ml (18 mM),

Figure 2. Synthetic oligosaccharides compete with HS for binding to angiogenic growth factors. (A–B) FGF2 and (C–D) VEGF165 binding
to immobilized HS in the presence of increasing concentrations of 2S species (A and C) and 2SNS species (B and D) oligosaccharides. Data is
expressed as a percentage of HS binding in the absence of the competing oligosaccharide. The mean 6 SD (n = 4) is shown. Dark blue lines - 7-mers,
magenta lines – 8-mers, yellow lines – 9-mers, turquoise lines – 10-mers and purple lines - 12-mers.
doi:10.1371/journal.pone.0011644.g002
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reduced cytokine-induced cell advancement by 55% (Figure 3C).

To compare the functional significance of oligosaccharide charge

density and specific saccharide structure for 12-mers bearing one

sulfate group on FGF2- or VEGF165-mediated cell migration, we

tested the activity of dodecasaccharides composed of 4-O sulfated

dermatan sulfate (DS 4S) and a mixture of either 4-O or 6-O

sulfated chondroitin sulfate (CS 4S/6S). The DS 4S 12-mer

inhibited both FGF2- and VEGF165-induced cell migration to the

same degree as the synthetic 12-mer 2S, while CS 4S/6S 12-mer

was inactive suggesting that the specificity of sugar structure

contributes to the anti-migratory activity (Figure 3C). 2SNS

oligosaccharide species showed strong structure-dependent anti-

migratory activity (Figure 3C). The length of 2SNS oligosaccha-

rides was crucial in selective targeting of FGF2- or VEGF165-

induced endothelial cell repopulation (Figure 3C). 2SNS oligosac-

charides containing at least 8 saccharide residues were required to

Figure 3. Oligosaccharides inhibit growth factor-induced endothelial cell proliferation and migration. (A) Effect of oligosaccharides on
endothelial cell proliferation. HUVECs were incubated with or without growth factors and oligosaccharides were added at 50 mg/ml (corresponding
molar dose for each oligosaccharide is shown in Table 1), PD173074 at 0.5 mM and SU4312 at 1 mM concentration. Cell proliferation after 96 hour
incubation was evaluated using SRB assay. The increase in growth factor-induced cell proliferation is expressed as 100% (control). Treatment effect is
shown as a percentage of a control.Results are represented as the mean 6SD (n = 3). *, P = 0.024. (B) Cytokines stimulate endothelial cell migration.
Confluent layers of serum-starved immortalized HUVECs were wounded and FGF2 (20 ng/ml), VEGF165 (20 ng/ml), EGF (20 ng/ml) and VEGF121

(20 ng/ml) were added to stimulate cell migration into the wound. The wound area at baseline and after 24 h was measured. Fold increase in the
repopulated area is represented as the mean 6SD (n = 3). P,0.05. (C) Effect of oligosaccharides (all at 50 mg/ml; Table 1), heparin (50 mg/ml),
PD173074 (0.2 mM) or SU4312 (0.4 mM) on the cytokine-induced repopulated wound area was tested as in B. The area that healed during 24 hours in
the presence of cytokines when compared to serum-starved cells is expressed as 100%. The effect of oligosaccharides, heparin and receptor tyrosine
kinase inhibitors is expressed as a percentage of repopulated area induced by a cytokine alone. The mean 6 SD (n = 3) is shown. *, P,0.0001;
{, P,0.001; {, P,0.005. (D–E) Inhibition of FGF2- or VEGF165-induced wound closure at increasing concentrations of oligosaccharides that inhibit cell
migration by more than 80% at a maximal 50 mg/ml concentration. The mean 6 SD (n = 2) is shown. *, P,0.001; {, P,0.005; {, P,0.05.
doi:10.1371/journal.pone.0011644.g003
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inhibit FGF2-induced wound closure by 89%, while molecules

containing 9 saccharide residues achieved the same degree of

inhibition of VEGF165-dependent wound closure (Figure 3C). The

12-mer 2SNS oligosaccharide was the only compound that

completely inhibited FGF2- and VEGF165-dependent cell migra-

tion into the wound at a concentration as low as 5 mg/ml

(1.45 mM; Figure 3D-E). No effect was seen when 2SNS 8–12-mer

oligosaccharides were tested on non-stimulated cells (data not

shown) or cells stimulated with EGF and VEGF121 (Figure S7).

To determine the IC50 values of 2SNS oligosaccharides that

inhibited cytokine-induced cell advancement, the wounds were

treated with increasing concentrations of 2SNS 8-mer, 9-mer, 10-

mer and 12-mer oligosaccharides together with the specific

angiogenic cytokines and repopulated areas at each concentration

were assessed. For FGF2 the oligosaccharide IC50 values ranked in

the following order: 12-mer 2SNS.10-mer 2SNS.9-mer

2SNS.8-mer 2SNS (Table 2). The 9-mer 2SNS and 10-mer

2SNS were significantly less potent in inhibiting VEGF165–

mediated cell advancement into the wound when compared to

FGF2, while 12-mer 2SNS oligosaccharide was the most potent

inhibitor that targeted FGF2 and VEGF165 with a similar potency

(Table 2). More strikingly, 12-mer 2SNS IC50 values of FGF2- or

VEGF165-mediated cell migration were similar to those of

PD173074 and SU4312 compounds, respectively (Table 2).

Structure-dependent anti-angiogenic activity of
oligosaccharides

Endothelial tubulogenesis is a complex process that requires

multiple endothelial cell functions, including proliferation, migra-

tion, invasion and differentiation [16]. Since we observed

oligosaccharide structure-dependent inhibition of endothelial cell

migration, we examined how different oligosaccharide species

affect FGF2- and VEGF165-dependent endothelial tube formation.

FGF2 or VEGF165 stimulation was essential for the vessel-like

structures to grow from HUVEC-coated beads in fibrin gels

(Figure 4A). FGFR inhibitor PD173074 and VEGFR-2 inhibitor

SU4312 inhibited tube formation in response to FGF2 or

VEGF165, respectively (Figure 4A). Similar to the effects on cell

migration, the 2S oligosaccharides did not affect FGF2- or

VEGF165-induced endothelial tube formation (Figure 4B). In

contrast, the 2SNS oligosaccharides with a minimum 8 residues at

50 mg/ml concentration inhibited FGF2-dependent tube forma-

tion by 60–70% (Figure 4B; equivalent molar concentrations are

shown in Table 1). 2SNS oligosaccharides were less effective

inhibitors of VEGF165-mediated tubulogenesis. Only 2SNS 10-

and 12-mers reduced the number of tubes by 28% (Figure 4B). At

lower oligosaccharide concentrations (10 mg/ml; Table 1) only 12-

mer 2SNS inhibited FGF2- or VEGF165-mediated tube formation

by 42% and 16%, respectively, while shorter oligosaccharides were

less potent (Figure 4C). To test 2SNS 12-mer’s activity in a more

physiologically relevant model of angiogenesis, we evaluated how

12-mer 2SNS affects FGF2- or VEGF165-induced formation of

angiogenic vessel-like structures derived from mouse aortic rings

embedded in fibrin gels (Figure 4D). As in the bead assay, FGF2 or

VEGF165 significantly increased formation of aorta-derived tube

structures (Figure 4D). 12-mer 2SNS oligosaccharide at 50 mg/ml

(14.7 mM) concentration reduced FGF2- or VEGF165-dependent

total tube length by 56 and 57%, respectively (Figure 4E). The

endothelial nature of the tubes was confirmed by staining the

aortas with FITC-conjugated isolectin B4 (Figure 4F).

Oligosaccharides reduce FGF2 binding to endothelial cell
surface

To test whether oligosaccharides that showed activity in the

tube formation and migration assays affect FGF2 or VEGF165

binding to HUVE cell surface, we treated cells with biotinylated

FGF2 or VEGF165 in the presence or absence of oligosaccharides

and determined their levels on the cell surface. 12-mer 2SNS was

the most effective oligosaccharide in reducing cell surface bound

FGF2 by more than 60% at 50 mg/ml (14.7 mM) concentration

(Figure 5). However, at a lower, although biologically effective,

concentration (25 mg/ml) none of the oligosaccharides prevented

FGF2 binding to cells (Figure 5). VEGF165 binding to endothelial

cells was unaffected by any of the 2SNS oligosaccharides (Figure 5),

suggesting that prevention of a complex formation between FGF2

or VEGF165 and their receptors might not be the main mechanism

responsible for the inhibition of endothelial cell functions by

oligosaccharides.

The 2SNS dodecasaccharide inhibits FGF2- and VEGF165-
induced peripheral accumulation of phosphorylated FAK
and actin reorganization

The above data demonstrate that the 2SNS species inhibit

cytokine induced endothelial cell migration and tube formation.

We therefore investigated the mechanism for this observation.

Actin remodelling into lamellipodia, filopodia and stress fibers is

an essential cell response component required for cytokine-

induced cell migration [17]. Migrating cells assemble dynamic

focal adhesions at the leading edge in a process that crucially

depends on the spatial activation/inactivation cycles of focal

adhesion kinase (FAK) [17,18]. With this in mind, we first tested

how FGF2 and VEGF165 affect FAK phosphorylation on tyrosines

397 and 861 which is required for FAK activation [18], as well as

the organization of F-actin in stimulated cells. Serum-starved

HUVECs were stimulated with FGF2 or VEGF165 and co-stained

with the antibody recognizing FAK phosphorylated at tyrosine

397 or 861 and phalloidin-AlexaFluor568 to visualize F-actin.

Peripheral accumulation of phosphorylated FAK and F-actin were

detected only in FGF2- and VEGF165-stimulated (Figure 6B-C,

upper panels), but not in serum-starved cells (Figure 6A).

Localization pattern of FAK phosphorylated on tyrosine 861

was identical to phospho-FAK (pTyr397) (data not shown).

Treatment with the 12-mer 2SNS oligosaccharide completely

abrogated FGF2- and VEGF165-induced accumulation of periph-

eral FAK phosphorylated at tyrosine 397 (Figure 6B-C, lower left

panels) or 861 (data not shown) and actin-rich lamellipodia-like

Table 2. IC50 values of biologically active oligosaccharides
and FGFR and EGFR-2 inhibitors in endothelial cell migration
assay.

Oligosaccharide/RTKi FGF2 VEGF165

mg/ml mM mg/ml mM

8-mer 2SNS 2.86 1.2 ND ND

9-mer 2SNS 2.11 0.83 9.17 3.6

10-mer 2SNS 0.30 0.1 3.54 1.2

12-mer 2SNS 0.38 0.11 0.58 0.17

PD173074 - 0.082 ND ND

SU4312 ND ND - 0.19

The mean of at least two independent experiments is represented. No more
than 2-fold differences between IC50s in two independent experiments were
observed. ND - not determined; RTKi – receptor tyrosine kinase inhibitor.
doi:10.1371/journal.pone.0011644.t002
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structures (Figure 6B-C, lower middle panels). Quantification of

cells with peripheral phosphorylated FAK following each treat-

ment showed that 12-mer 2SNS oligosaccharide, but not 12-mer

2S, significantly prevented peripheral activation of FAK in

response to FGF2 or VEGF165 treatment (Figure 6D).

Oligosaccharides inhibit FGF2- and VEGF165-induced
receptor activation and signalling

To investigate the effect of oligosaccharides on FGF2- or

VEGF165- induced signalling events, we investigated changes in

the phosphorylation state of FGFR docking protein FRS2,

VEGFR-2, Erk and Akt. The average normalized fold-change

compared to the positive control was derived from three

independent experiments and is shown below each blot. The

phosphorylation level of FRS2 increased following stimulation

with FGF2 (Figure 7A). At the maximum concentration (50 mg/

ml; Table 1) 2SNS oligosaccharides containing between 8 and 12

saccharide residues significantly reduced FRS2 phosphorylation,

with 12-mer 2SNS reducing FRS2 phosphorylation to the basal

level (Figure 7A-B). At 0.1 mg/ml (29 nM) concentration only 12-

mer 2SNS significantly diminished FRS2 phosphorylation levels,

in keeping with the potency of this oligosaccharide (Figure 7A-B).

Consistently, reduction of FGF2-induced Erk phosphorylation by

oligosaccharides correlated with the phosphorylation status of

FRS2 at a maximal 50 mg/ml concentration (Figure 7A-B).

Moreover, 12-mer 2SNS oligosaccharide reduced FGF2-induced

phosphorylation of Akt by almost half (Figure 7C).

Next we examined the phosphorylation of VEGFR-2 on

tyrosine 1214, which has been previously implicated in the

activation of Cdc42 and SAPK2/p38-mediated actin reorganiza-

tion [19]. Increase in the phosphorylation of this tyrosine residue

was prominent following VEGF165 stimulation, whereas it

decreased when cells were treated with VEGF165 and the 12-

mer 2SNS at a concentration as low as 0.1 mg/ml (29 nM) as

shown by the average fold-change derived from three independent

experiments (Figure 7D-E). 2SNS oligosaccharides composed of 9

and 10 saccharide residues impacted on tyrosine 1214 phosphor-

ylation levels less significantly (Figure 7D-E). 12-mer 2SNS was the

most potent oligosaccharide in reducing VEGF165-induced

phosphorylation of Erk (Figure 7D-E). Since phosphorylation of

VEGFR-2 on tyrosine 1175 is required for endothelial cell

proliferation [20], we investigated whether this phosphorylation

site was affected by treatment with 12-mer 2SNS and the less

biologically active 9-mer 2SNS. Although VEGF165 prominently

stimulated phosphorylation on tyrosine 1175, neither oligosaccha-

ride reduced the levels of phosphorylation at maximal 50 mg/ml

concentration (Figure 7F; Table 1), suggesting that 2SNS

dodecasaccharide exerts differential inhibitory effects on

VEGF165-regulated endothelial cell responses through the reduced

phosphorylation of specific tyrosine residues in VEGFR-2.

Discussion

In this study we present for the first time two series of synthetic,

structurally defined oligosaccharides and investigate their activity

in a number of cell-based assays designed to test endothelial cell

proliferation, migration and tube formation in response to various

angiogenic cytokines. So far organic syntheses have been reported

for hexasaccharides [21], octasaccharides [22] and more recently

for a dodecasaccharide [23]. However, no comprehensive

biological activity data relating to oligosaccharide length and

specific sulfation patterns have been described.

It is generally accepted that FGF2 can bind relatively short

oligosaccharides consisting of at least four to six saccharide residues

that contain iduronate 2-O-sulfate and glucosamine N-sulfate

[24–25]. A 6-O-sulfate moiety is not critical for the HS-FGF2

interaction, although sulfation at this site is required for the

formation of the tri-molecular signalling complex involving FGF2,

HS and FGFR [5]. Our competitive binding assays show that

increasing 2-O-sulfated oligosaccharide length to 9 saccharide

residues allows 2S oligosaccharides to compete with HS for FGF2

binding (Figure 2A). This affinity is not further increased by adding

extra saccharide residues to the chain, suggesting that there might be

a critical length or overall charge required for FGF2 binding. Our

Figure 4. Oligosaccharides inhibit growth factor-induced endothelial tube formation. (A) HUVEC coated beads were embedded in fibrin
gels and treated with either FGF2 or VEGF165 alone or with FGF2 in the presence of PD173074 (0.5 mM) and VEGF165 in the presence of SU4312 (1 mM)
for 6 days. Tubes were visualised by staining with Calcein-AM. Scale bar, 100 mm. (B) HUVEC coated beads were treated with FGF2 or VEGF165 mixed
with oligosaccharides at 50 mg/ml concentration (equivalent molar concentrations are shown in Table 1). PD173074 and SU4312 were used at 0.5 mM
and 1 mM concentration, respectively. The average number of tubes per bead (20–50 beads were evaluated) was quantified. FGF2 or VEGF165 alone
treatment represents a control (100%). Percentage in number of tubes per bead in each treatment when compared to the control is shown as mean
6 SD (n = 2–4). *, P,0.035; {, P,0.02. (C) Oligosaccharide dose-dependent inhibition of FGF2- or VEGF165-induced endothelial tube formation.
Response to 1, 10 and 50 mg/ml concentration (Table 1) of oligosaccharides was evaluated as in B. The mean 6 SD (n = 2) is shown. *, P,0.035;
{, P,0.02. (D) Mouse aortic rings were embedded in fibrin gels supplemented with the medium with no growth factors (0.1% FBS) or with FGF2,
FGF2 plus 12-mer 2SNS (50 mg/ml; 14.7 mM), VEGF165 or VEGF165 plus 12-mer 2SNS (50 mg/ml; 14.7 mM). Tube growth was evaluated after 6 days.
Aortas were stained with Calcein-AM. Scale bars, 300 mm. (E) Quantification of total aortic tube length was performed using MetaMorph software and
expressed as a percentage of a total tube length induced by the growth factor alone. 12-mer 2SNS was used at 50 mg/ml (14.7 mM), PD173074 at
0.5 mM and SU4312 at 1 mM concentration. RTKi – receptor tyrosine kinase inhibitors. The mean 6SD (n = 3–5) is shown. *, P = 0.01; {, P#0.003;
{, P,0.0001. (F) Tubular structures derived from aortas show endothelial cell-specific staining with FITC-conjugated isolectin B4. Scale bar, 300 mm.
doi:10.1371/journal.pone.0011644.g004

Figure 5. 2SNS species of oligosaccharides reduce FGF2, but
not VEGF165, binding to endothelial cell surface. HUVECs were
mixed with biotin-labelled FGF2 or VEGF165 alone or in the presence of
2SNS oligosaccharides at either 25 mg/ml (FGF2 treatment; grey bars) or
50 mg/ml (FGF2 treatment; black bars and VEGF165 treatment; white
bars) concentration (equivalent molar doses are shown in Table 1). The
binding of growth factors to HUVE cell surface was determined by
addition of avidin-FITC and analysed by FACS. FGF2 or VEGF165 binding
in the absence of oligosaccharides or blocking antibodies is expressed
as 100%. Percentage of growth factor binding when compared to the
sample incubated without oligosaccharides or blocking antibodies is
shown as the mean 6SD (n = 2). *, P,0.05; {, P#0.01.
doi:10.1371/journal.pone.0011644.g005
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results also show that N-sulfation in the presence of 2-O-sulfate

groups significantly improves binding affinity to FGF2, while it is a

prerequisite for the binding to VEGF165. 2SNS oligosaccharides

were less potent inhibitors of the interaction between VEGF165 and

HS than the interaction between FGF2 and HS. This reflects the fact

that different HS structures are required to facilitate binding to

VEGF165. For example, VEGF165 binds HS through two highly

sulfated S-domains flanked by transitional regions [8] indicating that

VEGF165 perhaps require much longer species of oligosaccharides

for their optimal binding affinity.

Figure 6. FGF2- and VEGF165-induced peripheral accumulation of activated FAK and F-actin is inhibited by 2SNS 12-mer
oligosaccharide. (A) Lack of peripheral accumulation of FAK phosphorylated on tyrosine 397 and F-actin in serum-starved HUVECs. Cells were co-
stained with anti-phospho-FAK (pTyr397) antibody (left image) and phalloidin-AlexaFluor568 (middle image). Merged view is represented in the right
image. Scale bar, 75 mm. (B–C) Peripheral FAK phosphorylated at tyrosine 397 and F-actin are detected after 10 min stimulation with FGF2 (B, upper
images) or VEGF165 (C, upper images). 12-mer 2SNS oligosaccharide prevents peripheral localization of phosphorylated FAK and F-actin in response
to FGF2 (B, lower images) or VEGF165 (C, lower images). Merged images are presented in the right panel. Scale bars, 75 mm. (D) Percentage of cells
with peripheral FAK phosphorylated on tyrosine 397 in unstimulated (0.1% FBS) or FGF2 or VEGF165 stimulated cells in the absence or presence of 12-
mer 2SNS or 12-mer 2S is shown as the mean 6SD (n = 3). *, P,0.0005; {, P,0.01.
doi:10.1371/journal.pone.0011644.g006

HS Oligosaccharides

PLoS ONE | www.plosone.org 11 July 2010 | Volume 5 | Issue 7 | e11644



Figure 7. Oligosaccharides inhibit FGF2- and VEGF165-induced receptor activation and signalling. (A) Serum-starved HUVECs were
stimulated with FGF2 for 10 min in the absence or presence of increasing concentrations of indicated oligosaccharides. Phosphorylated FRS2 and Erk
were detected by Western blotting. Equal protein loading was monitored by probing with the anti-GAPDH antibody. The values below each blot
represent an average normalized fold change in the intensities of bands as compared to the bands corresponding to FGF2 stimulated cells in the
absence of oligosaccharides. The normalized fold change was derived from three independent experiments. (B) Fold change of phosphorylated FRS2
and Erk levels in FGF2 treated cells in the presence of oligosaccharides as compared to the FGF2 stimulated cells without oligosaccharide treatment.
Amount of phosphorylated FRS2 and Erk as determined by densitometric evaluation was normalized against corresponding GAPDH levels. Values are
the mean 6 SEM (n = 3). *, P,0.05; {, P,0.01; {, P,0.0001. (C) Biologically active 12-mer 2SNS inhibits FGF2-induced activation of PI3K/Akt pathway.
Serum-starved HUVECs were exposed to FGF2 (20 ng/ml) or VEGF165 (20 ng/ml) for 10 min in the absence or presence of 12-mer 2SNS (50 mg/ml;
14.7 mM). Phospho-Akt (Ser473) was detected by immunoblotting with the anti-phospho-Akt antibody recognising Akt phosphorylation on serine
473. Total Akt protein levels were assessed by probing with the anti-Akt antibody. Average fold change values derived from three independent
experiments show no stimulation of Akt phosphorylation by VEGF165 and inhibition of FGF2-induced phosphorylation of Akt by 12-mer 2SNS. (D)

HS Oligosaccharides

PLoS ONE | www.plosone.org 12 July 2010 | Volume 5 | Issue 7 | e11644



Our study demonstrates HS fragment structure-dependent

inhibition of endothelial cell functions; mainly inhibiting migration

and tube formation. The level of inhibition correlated with the

degree of affinity of oligosaccharides to FGF2 and VEGF165.

Compounds containing as few as 8 saccharide residues with 2-O-

and N-sulfation impacted adversely on FGF-2-induced cell

migration and tube formation, while longer 2SNS oligosaccharides

were active against VEGF165-mediated cellular responses, mainly

cell migration. Similarly to our work, Leali et al. investigated the

requirement for specific sulfation patterns in Escherichia coli K5

polysaccharide, confirming the essential requirement for N-

sulfation for anti-angiogenic activity [26]. Moreover, sulfation in

the 2-O- and/or 3-O-position in GlcA residue was also required to

inhibit endothelial cell sprouting, morphogenesis and vascularisa-

tion of chick embryo chorioallantoic membrane [26]. Our studies

suggest that the biological activity of oligosaccharides might also

depend on the saccharides present in heparan sulfate, namely

iduronate, since the DS 4S 12-mer, but not CS 4S/6S 12-mer,

impacted on growth factor-induced endothelial cell migration.

Since heparin activated FGF2-dependent endothelial cell migra-

tion in our assay (Figure 3C), the specificity of sulfation in an HS

chain is likely to be an important determinant of the oligosaccha-

ride’s potential to support or inhibit growth factor activity.

One of the mechanisms of inhibition by oligosaccharides might

involve competition for cell surface HS and therefore reduced

formation of cytokine/HS/receptor signalling complexes. We saw

relatively low oligosaccharide structure-dependent reduction of the

endothelial cell surface-bound FGF2, whereas binding of

VEGF165 was unaffected (Figure 5), suggesting that the mecha-

nism of inhibition might involve the formation of non-functional

signalling complexes involving FGF2 or VEGF165, HS and the

respective receptor on the cell surface. Indeed, one recent study

showed that 2SNS HS dodecasaccharides specifically form a

complex with FGF2 and FGFR1c [27].

Oligosaccharides were weak inhibitors of cell proliferation, with

the exception of the 12-mer 2SNS which moderately inhibited

FGF2-stimulated endothelial cell proliferation. The same level of

mitogenic inhibition was also observed in Ba/F3 cells expressing

exogenous FGFR1 when cells were treated with HS-derived

dodecasaccharide rich in 2-O- and N-sulfation [7], suggesting that

this HS structure is able to prevent optimal activation of FGF-

FGFR complex. Similarly, anti-angiogenic K5 polysaccharide

derivative was a poor inhibitor of FGF2-induced endothelial cell

proliferation [26]. How do oligosaccharides inhibit cell migration

and tube formation while having only a modest effect on cell

proliferation? One possibility is that oligosaccharides interfere with

distinct signalling pathways that convey either proliferative or

migratory signals. Despite the complexity of FGF-induced

signalling, several publications suggest that the migratory activity

of FGF2 requires MAP kinase pathway involving either Erk or p38

MAP kinase [28]. In our study, the most potent 12-mer 2SNS

oligosaccharide significantly reduced FGF2-induced Erk phos-

phorylation (Figure 7A-B). Consistent with the anti-migratory

function, 12-mer 2SNS oligosaccharide also abolished FGF2-

induced polymerization of actin in lamellipodia-like structures rich

in activated FAK (Figure 6B). Erk inhibition might also explain the

inability of FGF2 to induce peripheral focal complexes via Erk

substrates, such as FAK, MLCK or calpain, required for focal

adhesion dynamics and cell migration [29].

We found that the most biologically active 12-mer 2SNS

targeted specific VEGF165-induced phosphorylation sites in

VEGFR-2, such that phosphorylation on tyrosine 1214 was

reduced, but tyrosine 1175 phosphorylation was unaffected

(Figure 7D and 7F), implying that the VEGF165/VEGFR-2/12-

mer 2SNS complex has altered biological function. Tyrosine 1175,

when phosphorylated, recruits and activates PLCc1 which leads to

the activation of protein kinase C (PKC) and cell proliferation

[20]. This is consistent with our study which showed that 2SNS

12-mer oligosaccharide had a moderate effect on endothelial cell

proliferation (Figure 3A). On the contrary, phosphorylation on

VEGFR-2 tyrosine 1214 is required for the activation of Cdc42

and p38, actin reorganization and cell migration [19]. Another

VEGF165-induced pathway specifically required for endothelial

cell migration, but not proliferation, is activation of PLCb3 leading

to Cdc42 activation which can be sustained at lamellipodia

structures [30]. In agreement, we found that 12-mer 2SNS

completely abolished phosphorylation of PLCb3 (data not shown)

and accumulation of activated peripheral FAK and F-actin in

response to VEGF165 (Figure 6C). While these data point to

specific phosphorylation patterns of VEGFR-2 in response to

oligosaccharides, 12-mer 2SNS could also interfere directly with

VEGFR-2 associated proteins. For example, it is known that

neuropilin-1 (NRP-1) and VEGFR-2 interaction is enhanced by

HS and leads to increased chemotaxis in response to VEGF165

[31]. 12-mer 2SNS could also impinge on the ability of VEGF165

to activate Src and prevent the assembly of peripheral FAK

phosphorylated on tyrosine 861 and integrin avb5 complexes,

which are critical in endothelial cell adhesion and migration [32].

In conclusion, novel synthetic chemistry [14,15] has enabled us

to produce two species of HS oligosaccharides that have specific

length and sulfation patterns. Using these reagents we have

defined critical structural features required for the inhibition of

specific cytokine-dependent endothelial cell responses. Heparin-

derived oligosaccharides have been shown to be promising

compounds capable of reducing physiological and pathological

angiogenesis [13]. The most biologically potent inhibitory species,

2SNS dodecasaccharides, therefore presents an opportunity to

develop a molecule that targets a broad spectrum of angiogenic

cytokines that signal through tyrosine kinase receptors, but which

have a mandatory dependence on HS for their biological activity.

Supporting Information

Methods S1

Found at: doi:10.1371/journal.pone.0011644.s001 (0.03 MB
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VEGF165 stimulation was performed in the absence or presence of increasing concentrations of respective oligosaccharides. Phosphorylation of
VEGFR-2 on tyrosine 1214 and phospho-Erk were detected by immunoblotting with the respective antibodies as shown. GAPDH levels show the total
protein levels. Average fold change derived from three independent experiments shows significant activity of 12-mer 2SNS in inhibiting
phosphorylation of VEGFR-2 and Erk. (E) Fold change of phosphorylated VEGFR-2 (Tyr1214) and Erk levels in VEGF165 stimulated cells in the presence
of oligosaccharides as compared to VEGF165 stimulated cells without oligosaccharide treatment. The amount of phosphorylated proteins was
normalized against corresponding GAPDH levels. Values are the mean 6 SEM (n = 3). *, P,0.05; { P,0.01. (F) 12-mer 2SNS is not affecting
phosphorylation of VEGFR-2 on tyrosine 1175. VEGF165 treatment was performed for 5 min in the absence or presence of 9-mer 2SNS or 12-mer 2SNS
dosed at 50 mg/ml (9-mer 2SNS 19.6 mM and 12-mer 2SNS 14.7 mM) concentration. Phosphorylation of VEGFR-2 on tyrosine 1175 was detected by
probing with the indicated antibody. Anti-VEGFR-2 antibody was used to determine the total VEGFR-2 protein levels. Densitometric quantification of
three independent blots shows no effect on phospho-VEGFR-2 (Tyr 1175) levels.
doi:10.1371/journal.pone.0011644.g007
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Figure S1 Full scan mass spectrum of protected intermediate 7-

mer oligosaccharide. MALDI-TOF m/z calculated for [M+Na+]

(C152H156N12O39Na+): 2797 (100.0%), 2798 (90.2%), 2796

(58.1%); found: 2799.

Found at: doi:10.1371/journal.pone.0011644.s002 (0.29 MB TIF)

Figure S2 Full scan mass spectrum of protected intermediate 8-

mer oligosaccharide. MALDI-TOF m/z calculated for [M+Na+]

(C173H176N12O46Na+): 3182 (100.0%), 3181 (98.1%), 3183

(70.6%); found: 3184.

Found at: doi:10.1371/journal.pone.0011644.s003 (0.28 MB TIF)

Figure S3 Full scan mass spectrum of protected intermediate 9-

mer oligosaccharide. MALDI-TOF m/z calculated for [M+Na+]

(C193H197N15O50Na+): 3549 (100.0%), 3548 (88.2%), 3550

(78.2%); found: 3548.

Found at: doi:10.1371/journal.pone.0011644.s004 (0.31 MB TIF)

Figure S4 Full scan mass spectrum of protected intermediate 10-

mer oligosaccharide. MALDI TOF m/z calculated for [M+Na+]

(C214H217N15O57Na+): 3933 (100.0%), 3934 (84.3%), 3932

(81.4%); found: 3934. m/z calculated for [M-H+I+Na+]

(C214H216IN15O57Na+): 4059 (100.0%), 4060 (84.3%), 4058

(81.4%); found: 4060.

Found at: doi:10.1371/journal.pone.0011644.s005 (0.35 MB TIF)

Figure S5 Full scan mass spectrum of protected intermediate 12-

mer oligosaccharide. MALDI TOF: m/z calculated for [M+Na+]

(C255H258N18O68Na+): 4685 (100.0%), 4686 (99.5%), 4687

(75.4%); found: 4688. m/z calculated for [M-H+I+Na+]

(C255H257IN18O68Na+): 4811 (100.0%), 4812 (99.5%), 4813

(75.4%); found: 4814.

Found at: doi:10.1371/journal.pone.0011644.s006 (0.38 MB TIF)

Figure S6 Disaccharide analysis of 8-mer 2SNS, 9-mer 2SNS,

10-mer 2SNS and 12-mer 2SNS oligosaccharides. Separation of

disaccharides by SAX-HPLC is shown. Arrowheads show elution

positions for UA-GlcNS (1), UA(2S)-GlcNAc (2), UA(2S)-GlcNS

(3) and tetrasaccharides (4) as determined by comparison with

elution times of HS standards. UA - uronic acid; GlcNAc - N-

acetylated glucosamine; GlcNS - N-sulfated glucosamine; 2S - 2-O

sulfate; E - enzymes.

Found at: doi:10.1371/journal.pone.0011644.s007 (0.25 MB TIF)

Figure S7 Biologically active 2SNS oligosaccharides that inhibit

FGF2-induced cell migration have no effect on EGF- and

VEGF121-stimulated cell advancement. Confluent layers of

serum-starved immortalized HUVECs were wounded, EGF

(20 ng/ml) or VEGF121 (20 ng/ml) were added to stimulate cell

migration into the wound in the absence or presence of 8-mer

2SNS, 9-mer 2SNS, 10-mer 2SNS and 12-mer 2SNS oligosac-

charides dosed at 50 mg/ml concentration. The wound area at

baseline and after 24 hours was measured. The area that healed in

the presence of cytokines alone when compared to serum-starved

cells is expressed as 100%. The effect of oligosaccharides is

expressed as percentage of repopulated area by cells stimulated

with the cytokine alone. Data is presented as the mean 6 SD

(n = 3).

Found at: doi:10.1371/journal.pone.0011644.s008 (0.09 MB TIF)

Table S1 Disaccharide composition of 2SNS oligosaccharides.

Found at: doi:10.1371/journal.pone.0011644.s009 (0.03 MB

DOC)
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