
Light Sheet Microscopy for Single Molecule Tracking in
Living Tissue
Jörg Gerhard Ritter, Roman Veith, Andreas Veenendaal, Jan Peter Siebrasse, Ulrich Kubitscheck*

Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität, Bonn, Germany

Abstract

Single molecule observation in cells and tissue allows the analysis of physiological processes with molecular detail, but it still
represents a major methodological challenge. Here we introduce a microscopic technique that combines light sheet optical
sectioning microscopy and ultra sensitive high-speed imaging. By this approach it is possible to observe single fluorescent
biomolecules in solution, living cells and even tissue with an unprecedented speed and signal-to-noise ratio deep within the
sample. Thereby we could directly observe and track small and large tracer molecules in aqueous solution. Furthermore, we
demonstrated the feasibility to visualize the dynamics of single tracer molecules and native messenger ribonucleoprotein
particles (mRNPs) in salivary gland cell nuclei of Chironomus tentans larvae up to 200 mm within the specimen with an
excellent signal quality. Thus single molecule light sheet based fluorescence microscopy allows analyzing molecular
diffusion and interactions in complex biological systems.
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Introduction

The observation of single molecules in living cells allows the

study of physiological key processes such as signal processing,

intracellular transport and gene expression [1]. However, there are

no experimental tools to perform such experiments in intact, large

biological objects in three dimensions such as tissue or embryos

[2]. The internal fluorescence background in such specimen is

simply too high making single molecule imaging very problematic

if not completely impossible. An elegant solution presents light

sheet based fluorescence microscopy (LSFM), which is an

adaptation of classical ‘‘Ultramicroscopy’’ [3] to fluorescence

microscopy. Although LSFM is a new technique, it has intensely

been developed from its invention until now and had already a

remarkable success in imaging complex three dimensional (3D)

multicelluar organisms, e.g. embryos, zebrafish or mouse embryos,

in vitro and in vivo [4–14].

LSFM uses a thin, focused light sheet to illuminate the sample

orthogonally to the detection pathway. Therefore only a narrow

region near the object plane of the observation objective lens is

illuminated and fluorophores outside this plane are not excited and

do not generate a background signal. Furthermore, fluorophores

outside the focal plane are not photo-damaged as they would be

upon epi-illumination. These instrumental characteristics produce

an optical sectioning effect, improved contrast and allow very long

observation times of sensitive samples [15].

However, LSFM is not limited to the optical sectioning of

comparatively large samples. Here we demonstrate that single

molecule imaging in solution and especially in living tissue

substantially profits from using light sheet illumination, because

single molecule experiments are extremely sensitive in terms of

background fluorescence and photobleaching. Other optical

sectioning schemes like total-internal-reflection microscopy (TIRF)

[16] or highly inclined laminated optical sheet microscopy (HILO)

[17,18] already became very successful in this field, but because of

their limited penetration depth they are not suitable for single

molecule tracking in extended 3D samples. Here, light sheet based

microscopy would be an ideal solution for single molecule

experiments in thick specimen [19,20]. We describe the develop-

ment and application of a light sheet based fluorescence microscope,

which combines the benefits of optical sectioning, the detection

efficiency of high numerical aperture (NA) objective lenses

(NA.1.0) and parallel image acquisition. Thus it became possible

to image the dynamics of single molecules with unprecedented

speed and precision in vitro and in vivo deep within a living specimen.

The utility of this instrument was first shown by imaging and

tracking of different molecular species in buffer at the single

molecule level and the imaging contrast was directly compared to

data acquired with classical epi-illumination. The advantages for in

vivo single molecule imaging in 3D-extended biological tissue were

demonstrated by observing tracer molecules within salivary gland

cell nuclei of C. tentans larvae. From this experiment we could

determine the effective intranuclear viscosity, a parameter which

affects the mobility of all molecules and particles in the nucleus.

Then we studied the trafficking of single, native mRNA molecules in

C. tentans salivary gland cell nuclei, which were made visible by a

fluorescently labeled RNA binding protein, hrp36. This protein is

the C. tentans homologue of the mammalian RNA binding protein

hnRNP A1 [21,22]. Our new imaging approach yielded images of

single RNA particles with a superb contrast, which allowed their

tracing at high frame rates and at high spatial resolution about 100

to 200 mm deep within the salivary gland.
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Results

Instrument design
Our instrument is quite different from other LSFMs, because

several new design challenges had to be met. While most existing

setups [9–11,20,23] use large specimen chambers together with

water-dipping objectives mounted horizontally to image 3D

extended specimen, we chose to exploit the stage of a commercial

inverted microscope. Furthermore, we used a high NA water

immersion objective lens for imaging, which was needed to

maximize the light detection efficiency (Fig. 1). The custom-built

sample chamber featured a glass bottom with standard coverslip

thickness (0.17 mm), had glass walls such that the illumination

light could be introduced from the side and was placed on a

motorized stage (Materials and Methods S1). The light sheet

had to be created within the working distance of 280 mm of the

detection objective and was produced by a dedicated illumination

objective lens with a high NA in order to achieve a thin light sheet

with an axial extension of only 3 mm full-width-at-half-maximum

(FWHM). The high NA of the illumination objective resulted in a

strong convergence of the focused beam and a corresponding short

working distance of the illumination objective. A special long

working distance illumination objective (106; NA = 0.28; working

distance, 33.5 mm; Mitutoyo, Japan) met all construction

conditions. We built the light sheet illumination on a standard

microscope body in order to increase its usability, because this

allowed us to switch between fluorescence imaging exploiting the

light sheet advantages and standard microscopy techniques like

phase or differential interference contrast (DIC). We chose an

inverted stage because the specimen chamber had to be accessible

for a microinjection device (Fig. 1b).

Light sheet characterization
The actual light sheet dimensions defined the field of view and

optical sectioning capability of the microscope. To measure the

light sheet dimensions a aqueous solution of ATTO647N was

filled into the sample chamber at a concentration of 100 mM. Its

illumination directly revealed the 3D extensions of the light sheet,

which were imaged and quantified (Fig. 2). The minimal FWHM

along the illumination axis was 19.760.1 mm. Upon turning the

elliptical illumination beam by 90u the thickness of the light sheet

could directly be visualized and analyzed in a similar manner. Its

axial width was 3.060.1 mm FWHM for an excitation wavelength

of 638 nm. The extension of the usable light sheet along the

illumination axis can be defined by twice the Rayleigh length of

the Gaussian beam, so that the field of view for optimal contrast

was approximately 84 mm620 mm. Similarly, for excitation

wavelengths of 488 nm and 532 nm the axial FWHM values

were determined as 2.960.1 mm and 3.060.1 mm, respectively

(Table 1). The optical sectioning thickness was comparable for all

three wavelengths as it was expected for an achromatic

illumination.

Imaging of single molecules in solution
To demonstrate the sensitivity and speed of the instrument we

investigated the mobility of single molecules in aqueous solution.

An increased contrast was expected due to the lack of out-of-focus

fluorescence, such that it should be possible to image and track

smaller (and faster) molecules at the single molecule level than ever

before [24].

For a quantitative comparison between LSFM and standard epi-

illumination we compared the image contrast in image sequences of

single, fluorescently labeled 500 kDa dextran molecules recorded at

almost 100 Hz (Fig. 3 and Movie S1). As expected the contrast was

clearly superior (0.97) when the light sheet illumination was used

versus epi-illumination (0.37) for the given tracer concentration

(Materials and Methods S1). The signal-to-noise-ratio (SNR)

increased by a factor of 4 yielding a significantly improved

localization precision [25].

We imaged and analyzed three different molecular species with

different sizes and shapes, namely 500 kDa dextran molecules with

a Stokes radius of 26.5 nm [21], ovalbumin (MW 43 kDa) with a

Stokes radius of 2.4 nm [24], and fluorescently labeled 30mer

oligonucleotides (long-rod, with equatorial radii a = 5 nm and

b = 0.5 nm [26]). The theoretically expected diffusion coefficients

covered three orders of magnitude (Table 2). Respective image

Figure 1. Concept and experimental realization of single-molecule light sheet based fluorescence microscopy. (a) The illuminating
laser light sheet was focused into a glass sample chamber, whose bottom had standard cover slip thickness. Single molecule fluorescence was
collected by a high NA water immersion objective and detected by a fast EMCCD. Due to the optical sectioning effect only fluorescence in the focal
region was excited and no out-of-focus fluorescence contributed to the image (enlarged view). (b) Experimental realization on the stage of an inverse
microscope. An elliptical laser beam (1) is focused by the illumination objective (3) into the sample chamber (4) creating the light sheet. Imaging
occurred perpendicular to the illumination axis by a high NA lens (2). Specimen could be moved through the light sheet by a motorized translation
stage (6). Optionally, specimen could be microinjected (5). (c) Enlarged view of the specimen chamber and the light sheet.
doi:10.1371/journal.pone.0011639.g001

Single Molecule LSFM
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sequences were recorded at 483 Hz; in all cases we could observe

and follow the trajectories of single probe molecules (Movie S2).

The mean-square-displacements (MSDs), Sx2T, were extracted

from the single molecule trajectories and plotted as a function of

time, t, to determine the diffusion constants, D, of the probe

molecules according to Sx2T~4D t (Fig. 3). In this manner we

found diffusion coefficients for 500 kDa dextranes, ovalbumin and

30mer oligonucleotides of Ddextran = 8.260.1 mm2/s, Dova =

8862 mm2/s and D30mer = 130614 mm2/s. To validate these data

we performed measurements by fluorescence correlation spectros-

copy (FCS) (Table 2). In all cases we found an excellent

correspondence between single molecule tracking, FCS and the

theoretically estimated diffusion coefficients. These values mea-

sured at a viscosity of 1cP also served as references for the

measurement of the effective viscosity within the nucleoplasm of

salivary gland cell nuclei of C. tentans larvae.

In vivo tracking of single mRNP particles in the nucleus
In a next step we employed LSFM for in vivo imaging within a

3D extended biological specimen with large dimensions compared

to plain monolayer culture cells. As a suitable model system we

chose the salivary gland cell nuclei of larvae of the dipteran

Figure 2. Dimensions of the light sheet. The red light sheet
(l= 638 nm) was formed in a solution with a 100 mM concentration of
ATTO647N. It was imaged with a 106NA 0.3 objective by a slow-scan
CCD-camera (Materials and Methods S1). Lateral (a) and axial (b)
extension of the light sheet. Scale bars, 100 mm. (c) Full-width-at-half-
maximum (FWHM) values of the light sheet along the illumination (x-)
axis. Light sheet geometries of all excitation wavelengths were
summarized in Table 1.
doi:10.1371/journal.pone.0011639.g002

Table 1. Light sheet dimensions for different excitation
wavelengths.

l [nm] Axial width (z) [mm] Y-height [mm]

637 3.060.1 19.760.1

532 3.060.1 19.660.1

488 2.960.1 19.660.1

doi:10.1371/journal.pone.0011639.t001

Figure 3. Single molecule visualization and tracking in
solution. (a) Standard epi-illumination fluorescence image of single
ATTO647-labelled dextran molecules (MW 500 kDa) diffusing in
transport buffer acquired at an exposure time of 10 ms. Scale bar,
5 mm (b) The same sample was imaged upon light sheet illumination
demonstrating the striking contrast improvement (see Movie S1).
Scale bar, 5 mm. (c) Intensity profile along a vertical line through the
central pixels of the two brightest molecules shown in (a) and (b)
illustrating the contrast improvement. (d) MSDs as a function of time for
different molecules; dextran 500 kDa (boxes), ovalbumin (circles), and a
30mer oligonucleotide (triangles). Movies were recorded for all three
species with 483 Hz. The data were fitted by lines to determine the
diffusion coefficients. The error bars represent the standard deviation.
The results were summarized in Table 2. (see Discussion S1).
doi:10.1371/journal.pone.0011639.g003
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C. tentans [27–29]. This system was well suited to demonstrate the

imaging capabilities of the single molecule LSFM, because the

salivary glands are an intact, large and living tissue. The salivary

glands have a complex structure and dimensions of roughly

700 mm62000 mm6250 mm as sketched in Fig. 4a. The gland

cells contain large nuclei with diameters of 50–70 mm (Fig. 4a).

Each gland cell nucleus contains four polytene chromosomes being

roughly 10 mm in diameter. Each polytene chromosome is made

up of 8000 to 16000 perfectly aligned chromatids [29], which form

a distinct chromosome band structure. The remaining nucleo-

plasm is devoid of chromatin [30]. This is an ideal system to study

the regulation of mRNA trafficking without the possibly retarding

effect of chromatin (see Figure S1).

Chromosome IV contains two especially active transcription

sites, the so called Balbiani Rings (BRs) 1 and 2. Three genes with

a length of up to 40 kb are transcribed here and are processed to

large BR mRNA particles (BR mRNPs) with a diameter of

roughly 50 nm, which move randomly in the nucleoplasm after

their release from the gene. In the nucleoplasm of the salivary

gland cell nuclei the BR mRNPs have a density of 10–100

particles per mm3 and form about 90% of the present mRNPs

[31]. The glands were dissected out of the larvae and placed

inside the specimen chamber for microscopy. In this large

biological system visualization of single, fluorescently labeled BR

mRNPs and tracking their movements was problematic, since the

nuclei had a distance to the cover slip of 100 to 200 mm. In a

conventional fluorescence microscope single molecule imaging at

such a depth within the specimen is almost impossible, because

the SNR is low due to a high fluorescence background (see

Figure S2).

For labeling of the mRNPs we used the characteristics of the

RNA-binding protein hrp36, which is an important structural

component of BR mRNPs with about 120 copies contained in a

single BR mRNP [32]. Hrp36 is part of the mRNPs from the

genes in the nucleus to the polysomes in the cytoplasm and it is

associated with the mRNPs even during passage of the particles

through the nuclear pore complex. Within living salivary glands

BR mRNPs are continuously formed in the nuclei, and therefore

we could label the BR mRNPs by in vivo microinjection of

fluorescent ATTO647N-labeled hrp36 (Materials and Meth-
ods S1). The formation of BR mRNPs takes approximately

10 minutes. Localization and microinjection of the nuclei inside

the salivary gland cells was performed using bright-field imaging,

since the nuclei were easily distinguishable from the cellular

interior.

Immediately after microinjection single hrp36 could not be imaged

at a frame rate of 50 Hz, because this frame rate was not high enough

to image single, small proteins. However, after about 10 min single

hrp36 signals became visible. Presumably, they were then incorpo-

rated into the 50 nm sized BR mRNPs, which diffused at a much

lower rate [21]. Hence, in this manner the movements of single,

native BR mRNPs in the nucleoplasm could be studied. We

compared the integrated signal intensity of BR mRNPs with that of

single ATTO647N molecules, and concluded that the mRNPs

carried single Atto647N-labeled hrp36 molecules. Due to its optical

sectioning capability LSFM was especially well suited for this task.

Only BR mRNPs in the focal region were illuminated and visualized

(Fig. 4b). This resulted in excellent SNRs and clearly longer

trajectories of the BR mRNPs (Fig. 4c and Movie S3) than in

previous experiments [21]. In order to analyze the mRNP mobility,

we determined the positions along the single particle trajectories with

a localization precision of s= 40612 nm (Materials and Meth-
ods S1), and plotted the jump distances between consecutive frames

in histograms (Fig. 4d). These histograms can be analyzed by a

multi-component analysis. We found three different mobility

fractions of the BR mRNPs. A fast fraction (45%) with a diffusion

coefficient of D1 = 2.060.2 mm2/s, a slower fraction (45%) with a

D2 = 0.560.05 mm2/s and a strongly retarded fraction (10%) with a

D3 = 0.0860.01 mm2/s.

To compare the mRNP mobility with inert molecules of a

similar geometrical size we microinjected fluorescent dextran

molecules (MW 500 kDa) with a Stokes radius of 26.5 nm into

salivary gland cell nuclei. Using LSFM it was straightforward to

image these dextran molecules within the nuclei with an excellent

signal quality, and to track them for extended time periods

(Movie S4). From the resulting trajectories we determined the

jump distance histogram as described above. In contrast to

the situation in buffer the analysis now revealed the existence

of two different mobility components, a fast one (64%)

with Dfast = 2.360.2 mm2/s and a slower one (36%) with

Dslow = 0.560.1 mm2/s (Fig. 4e). A comparison of Dfast with

the diffusion coefficient measured in buffer solution yielded the

effective nuclear viscosity in these cell nuclei as g = 3.661 cP

corroborating previous FRAP and single particle tracking results

[21]. We speculated that the occurrence of the second, reduced

diffusion constant Dslow was due to the molecularly crowded

intranuclear environment [33]. The comparison of dextran and

mRNP mobility suggested that D1 and D2 were related to the

diffusion of the mRNPs in the crowded nuclear interior, because

they were almost identical to Dfast and Dslow of the tracer.

However, the third, quite slow mRNP diffusion coefficent, D3,

was not observable for the inert dextran. We concluded that this

mobility component was caused by interactions of the BR

mRNPs with large intranuclear structures.

Discussion

Single molecule observation in large, living samples is

problematic. Single molecule microscopy using conventional

epi-illumination suffers from out-of-focus fluorescence, which

reduces the SNR and decreases the localization precision.

Illumination schemes like TIRF or HILO [16–18] are highly

selective and yield good SNRs, but they are restricted to

excitation volumes close to the glass-sample interface. Single-

molecule LSFM allows optical sectioning deep inside biological

tissue and the use of high NA water-immersion objective lenses,

both beneficial for optimal signals. Biological, fluorescent

molecules as small as a few nanometers were accessible to single

molecule observation in aqueous solution, and we succeeded to

track molecules with a diffusion coefficient of greater than

100 mm2/s. The LSFM is therefore an excellent tool to perform

single molecule studies in living tissue. Moreover, the method has

great potential for super resolution imaging and 3D tracking of

single molecules in large, living specimens such as embryos at a

millisecond time scale.

Table 2. Diffusion constants of various probe molecules
measured by single-molecule LSFM in aqueous solution.

Molecules
Radius
[nm]

DMSD

[mm2/s]
DFCS

[mm2/s]
DTheory

[mm2/s]

500 kDa dextran 26.5 8.260.1 7.560.8 8.1

Ovalbumin 2.4 8862 9265 89

Oligonucleotide a = 5, b = 0.5 130614 12062 120

doi:10.1371/journal.pone.0011639.t002

Single Molecule LSFM
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Materials and Methods

Optical setup
We used an Axiovert 200 (Carl Zeiss MicroImaging GmbH,

Göttingen, Germany) and replaced the microscope stage with a

custom-built stage, which allowed illumination perpendicular to

the detection axis. The lateral position of the specimen chamber

was adjusted by micrometer screws (BM11.16, Newport, Darm-

stadt, Germany), and axially by a motorized stage (M105.1B

translation stage with DC-Mike linear actuator M232-17 from PI,

Karlsruhe, Germany). The specimen chamber was made of BK7

glass and was especially manufactured for our purposes (Hellma,

Figure 4. Single molecule tracking in the living salivary gland cell nucleus of the C.tentans larvae. (a) Scheme of the light sheet
illumination of a salivary gland cell nucleus. The salivary glands are a living tissue with dimensions much larger than that of e.g. cell culture cells. Scale
bar, 200 mm. (b) Typical image showing single diffusing BR mRNPs (red arrows) labelled with microinjected hrp36. The dashed line indicates the
position of the nuclear envelope. Scale bar, 3 mm. (c) Time series of a moving mRNP particle marked by single ATTO647N-labelled hrp36 molecules
inside the nucleus. The last panel shows the complete trajectory. Frame rate, 49.46 Hz; Scale bar 1 mm. (d) Normalized jump distance distribution of
BR mRNP particles and microinjected 500 kDa dextran molecules (e) inside salivary gland cell nuclei for a time interval of 20 ms. The red line showed
the complete fitting function and the dashed lines indicate the contributions of the single components (see Materials and Methods S1). Fitting
results were summarized in Table 3.
doi:10.1371/journal.pone.0011639.g004
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Müllheim, Germany). The internal dimensions of the chamber

were 4 mm620 mm62 mm. The wall thickness was 2.5 mm and

the bottom had standard cover slip thickness, 0.17 mm.

For fluorescence excitation three laser lines were used: A 488 nm

DPSS laser (Sapphire-100, Coherent, Germany), a 532 nm solid state

laser (LaNova50 Green, Lasos, Germany) and a 638 nm laser diode

module (Cube635-25C, Coherent, Germany). All three laser lines

were guided with dichroic beam splitters to an acousto-optical

tunable filter (AOTF.nC 1001, Opto-Electronics, France). The

AOTF selected laser lines, and defined illumination durations and

intensity. After the AOTF the light was coupled into a mono-mode

fiber (kineFlex, Point Source, Hamble, UK) and guided onto the

optical table. Here the elliptical Gaussian illumination beam was

formed by a cylindrical Galilean beam expander. It consisted of a

convex cylindrical lens with a focal length of f = 250 mm and a

concave lens with a focal length of f = 238.1 mm (CKX540-C and

CKV522-C, Newport, Darmstadt, Germany). As illumination

objective we used a plan apochromat 106, NA 0.28 long working

distance objective lens (Mitutoyo, Japan).

Fluorescence signals were collected with a 406, NA 1.2 water

immersion objective lens (C-Apochromat, Carl Zeiss MicroImaging

GmbH, Göttingen, Germany), or a 106, NA 0.3 objective lens (EC

Plan-Neofluar, Zeiss). In the emission beam path respective narrow

bandwidth notch filters were employed (Semrock, Rochester, USA).

For imaging an EMCCD camera with 1286128 pixels was used

(iXon BI DV-860, pixel size 24 mm, Andor Technologies, Belfast,

Ireland). A 46 magnifier (Carl Zeiss MicroImaging GmbH,

Göttingen, Germany) was added in front of the camera, which

resulted in an objective field pixel size of 150 nm for the 406, NA 1.2

objective lens. The dimensions of the light sheet were measured with

a slow-scan CCD camera (Axiocam MRm, Carl Zeiss MicroImaging

GmbH, Göttingen, Germany) with a pixel size of 645 nm for the

106, NA 0.3 objective lens.

Determination of light sheet thickness
ATTO647N (ATTO-TEC GmbH, Siegen, Germany) was

diluted in buffer at a concentration of 100 mM and filled into

the specimen chamber. Upon laser excitation a homogenous

image of the light sheet was created (Fig. 2). In standard

configuration the extension in the y-direction of the light sheet was

imaged. Rotating the cylindrical lenses by 90u rotated the elliptical

illumination beam, and therefore the z-width of the light sheet

could be imaged. Images were taken for all excitation laser lines.

Excitation of the ATTO647N by 488 and 532 nm occurred due to

a small absorption band in the blue-green range of the dye

spectrum. The light sheet was imaged by a 106NA 0.3 objective

(EC Plan-Neofluar, Zeiss) and detected by an Axiocam MRm

(Carl Zeiss MicroImaging GmbH, Göttingen, Germany). For both

y- and z-directions the FWHM of every vertical pixel line in the

image was plotted versus the position on the illumination axis,

which allowed the determination of the light sheet waists (Fig. 2).

Single molecule imaging and analysis
For imaging of single molecules in solution the molecules were

diluted to a final concentration of 100 pM in transport buffer.

Fluorescence signals were detected with a 406, NA 1.2 water

immersion objective lens at room temperature. All movies were

recorded at a frame rate of 483.09 Hz corresponding to an

exposure time of 2 ms per frame. Fluorescence was excited by the

638 nm laser line.

Before tracking a background subtraction and 363 Gaussian

filtering was performed on the image stacks. Single molecule

signals were identified by the threshold algorithm of the tracking

software Diatrack v3.03 (Semasopht), which was also used for

trajectory definition. To exclude occasionally occurring aggregates

of ovalbumin or oligonucleotides from the analysis unusually

bright signals and unusually slow moving particles were excluded

from the analysis.

From the resulting trajectories the mean-square-displacement

(MSD) was calculated and plotted versus time t. The data were

fitted according to ,x2. = 4Dt to determine the diffusion

coefficient D. This was done with Origin 8.0 PRO (OriginLab

Corporation, Northampton, USA).

To calculate the theoretical diffusion coefficient we used the

Stokes-Einstein equation [34].

D~
kBT

f
ð1Þ

Here D is the diffusion coefficient, kB the Boltzmann constant, T

the temperature and f the frictional drag coefficient. For a sphere

with radius r such as the 500 kDa dextran and ovalbumin, f is

defined as [34]:

fsphere~6pgr ð2Þ

For a randomly moving ellipsoid, such as the 30b oligonucleotide,

it is defined as:

fellipsoid~
6pga

ln
2a

b

ð3Þ

g is the viscosity of the medium, a and b the semi-major and -

minor axes of a prolate ellipsoid of revolution. The according radii

were obtained from the literature (500 kDa dextran [21,35] and

oligonucleotide [26]) or calculated according to the equation [24]

(ovalbumin):

r~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3M=NA

4pr

3

s
ð4Þ

Here M is the molar mass, NA the Avogadro constant and r refers

to the protein density (1.2 g cm23) [36].

The contrast C of image sequences of 500 kDa dextran

molecules was determined according to this definition.

C~
Imax{Imin

ImaxzImin

ð5Þ

Table 3. Mobility of 500 kDa dextran molecules and mRNPs
inside living salivary gland cell nuclei.

500 kDa dextran mRNP particle

D1 [mm2/s] 2.360.2 2.060.2

Fraction 1 6463% 4563%

D2 [mm2/s] 0.560.1 0.5060.05

Fraction 2 3463% 4562%

D3 [mm2/s] - 0.0860.01

Fraction 3 - 1061%

doi:10.1371/journal.pone.0011639.t003

Single Molecule LSFM
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Imax designates the intensity of a molecule in focus above

background Imin. Imax was determined by fitting a 2D-Gaussian

to the signals. Imin was determined by measuring the mean

intensity in areas where no molecules were seen. All image

sequences were recorded with an exposure time of 10 ms, which

equates to frame rate of 98.91 Hz.

In vivo imaging and analysis
Imaging of the 500kDa dextran molecules and the labeled

mRNP particles in salivary gland cell nuclei of C. tentans larvae

were performed with a 406, NA 1.2 water immersion objective

lens at room temperature. Image integration time was 20 ms

corresponding to a frame rate of 49.46 Hz. Fluorescence was

excited by the 638 nm laser line.

All image stacks were analyzed with the tracking software

Diatrack v3.03 (Semasopht). Background subtraction and Gauss-

ian filtering was performed before signal identification. To localize

the particle, every particle signal was fitted by a 2D Gaussian.

Sequences of single, localized events were combined to trajecto-

ries.

The determination of the 2D-localization precision of moving

BR mRNPs in the salivary gland cells was achieved using the

equation[37],

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

N
z

a2

12N
z

8ps4b2

a2N2

r
ð6Þ

where s is the standard deviation of the point-spread function, a

the pixel size, b the standard deviation of the background and N

the total number of photons contributing to a signal. To

determine the latter value the average number of the integrated

intensity values for a signal was determined. Finally the total

number of photons per signal was calculated considering the

count-to-photoelectron conversion factor for the used iXon

camera [38].

Out of the trajectories the jump distance from one frame to the

next frame was calculated for every trajectory. These jump

distances were plotted in a normalized histogram (Fig. 4d & e)

and fitted according to the following equation [39]:

p r,Dtð Þ~
X

i

Ai

2DiDt
r: exp {

r2

4DiDt

� �
ð7Þ

This equation represents the theoretical jump distance probability

density function for i diffusive species. Ai is the fractional amount

of a single species and Di the respective diffusion coefficient. r is the

jump distance covered in the time interval Dt. In a complex

medium like a cell nucleus a single, distinct diffusion coefficient

was not expected and the equation above allowed a multi-

component analysis of the in vivo data. The calculations and data

fitting were performed by Origin 8.0 PRO (OriginLab Corpora-

tion).

We measured a reference diffusion coefficient in aqueous

solution (1 cP) and also the diffusion coefficient in the nucleo-

plasm. For the calculation of the viscosity of the nucleoplasm we

used Eq. 1.

Microinjection of C.tentans salivary glands
Chironomus tentans were raised as described [21]. Salivary glands

were isolated from fourth instar larvae and microinjected with an

Eppendorf injection and micromanipulation setup using a holding

pressure of 25 hPa and manual injection procedure.

Buffer and reagents
Phosphate buffered saline (PBS) was prepared from a

commercially available stock solution (Biochrom AG, Berlin,

Germany). Transport buffer contained 20 mM HEPES/KOH,

pH 7.3, 110 mM potassium acetate, 5 mM sodium acetate,

2 mM magnesium acetate, 1 mM EGTA, and 2 mM DTT.

Amino-derivatized dextran (molecular mass 500 kDa; Invitrogen,

Germany) was dissolved in 0.1 M NaHCO3, pH 8, and

fluorescence labeled with a 5-fold excess of ATTO647 succidi-

nimidyl ester (ATTO-TEC GmbH, Siegen, Germany). Chicken

egg Ovalbumin (molecular mass ,43 kDa; Sigma-Aldrich,

Germany) was solved in PBS containing 1mM TCEP (tris(2-

carboxyethyl)phosphine; Sigma-Aldrich, Germany) and labeled

with ATTO647N maleimide (ATTO-TEC GmbH, Siegen,

Germany). Preparation of ATTO647N-labeled hrp36 was

according to [21]. All labeling reactions were set up at room

temperature for 2 hours and free dye was removed by gel

filtration on a BioRad-P6 desalting column (MW cut off 6 kDa;

BioRad, Munich, Germany). Labeled probes were finally size-

fractionated on a Superose 12 column to remove aggregates and

smaller fragments. The 29-O-methyl RNA oligonucleotide

homologue to the repetitive portion of the BR 2.1 mRNA was

obtained from IBA BioTAGnologies (Göttingen, Germany). It

comprised 30 bases (ACT TGG CTT GCT GTG TTT GCT

TGG TTT GCT) and contained a 59 fluorescence label

(ATTO647N). To check for purity the oligo was resolved on a

15% polyacrylamide gel prior to use.

Fluorescence correlation spectroscopy
FCS measurements were performed using a Zeiss Confocor I

microscope setup. For calibration of the beam width ATTO647N-

maleimide dye molecules (MW 870 Da; ATTO-TEC GmbH,

Siegen, Germany) in buffer were used. The diffusion coefficient of

ATTO655-maleimide dye (MW 810 Da) has been measured

previously with high precision [40], and a diffusion coefficient of

400 mm2/s was determined. Since both dyes were comparable in

molecular weight, we assumed a diffusion coefficient of 400 mm2/s

for ATTO647N-maleimide as well. This assumption was corrob-

orated by the characteristic diffusion times for the two dyes of 63

and 62 ms, respectively. Calibration of the beam width was done

prior to the measurements. Before a single FCS run, a z-scan was

recorded to ensure that the measurement was performed in the

solution not close to the coverslip. Data analysis was performed

using FCS ACCESS (Evotec, Hamburg, Germany). The theoret-

ical autocorrelation curve for 3D diffusion of up to 3 mobility

components is,

G(t)~1z 1z
T

1{T
e
{t=tt

� �X3

j~1

fj

N

1

1zt
�
tD,j

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zt

�
tD,jk

2

q ð8Þ

where fj are the fractions corresponding to the different diffusion

times tD.j, N is the total number of fluorescent molecules, T is the

ratio of triplet state, tt is the triplet time and k is the axial e22

beam radius of the laser beam divided by the lateral e22 beam

radius. k was usually close to 5. tD is related to the diffusion

coefficient by

D~
w2

4 tD

ð9Þ

where w is the lateral e22 beam radius of the laser spot. Laser

illumination was performed with 633 nm light.

Single Molecule LSFM

PLoS ONE | www.plosone.org 7 July 2010 | Volume 5 | Issue 7 | e11639



ATTO647-labeled 500 kDa dextran molecules were diluted

1:1000 from the stock in PBS, followed by centrifugation at

220006g for 45 minutes. Before measuring, a MatTek dish (MatTek

Corp., Ashland, USA) was coated with bovine serum albumine

(10g/L). After removing the coating solution, 300 mL dextran

solution was added and covered with a coverslip to prevent

evaporation. Single FCS runs with 10 to 30 seconds were performed

and average values were calculated. ATTO647N-labeled ovalbumin

was diluted in transport buffer 1:1000 from stock solution, and

centrifuged at 220006g for 30 minutes. Single FCS runs of

60 seconds length were performed and average values were

calculated.

ATTO647N-labeled Oligonucleotides were diluted 1:105 from

stock concentration (1 nmol/mL) with PBS, and measured as

described for ovalbumin.

Supporting Information

Figure S1 3D-reconstruction of the polytene chromosomes and

their distribution inside the nucleus of the salivary gland cells of the

C.tentans larvae. Inside the nucleus the entire DNA is located in

the polytene chromosomes, leaving the nucleoplasm chromatin

free. Dashed line indicates the border of the nucleus. Images were

taken with a confocal microscope. Scale bar, 15 mm.

Found at: doi:10.1371/journal.pone.0011639.s001 (0.77 MB TIF)

Figure S2 hrp36 labelled BR mRNP imaged upon epi-

illumination. ATTO647N-labelled hrp36 proteins were microin-

jected into the nucleus of a salivary gland cell. After 10 min the

hrp36 proteins were incorporated within mRNPs. The yellow

circle indicates the position of the mRNP. Exposure time 20 ms;

scale bar 1.5 mm.

Found at: doi:10.1371/journal.pone.0011639.s002 (0.51 MB TIF)

Discussion S1

Found at: doi:10.1371/journal.pone.0011639.s003 (0.02 MB

DOC)

Movie S1 On the left panel, freely diffusing 500 kDa dextranes

diluted in PBS were imaged with epi-illumination at room

temperature. On the right panel the same sample was imaged

with LSFM. Both movies were recorded with 98.91 Hz and

displayed with 30 Hz. For both movies the same camera and laser

power settings were used. Field of view is 19.2 mm619.2 mm.

Found at: doi:10.1371/journal.pone.0011639.s004 (6.56 MB AVI)

Movie S2 Three different species of freely diffusing single

molecules in buffer were imaged with 483.09 Hz and displayed

with 30 Hz. On the left panel 500 kDa dextran molecules with an

diffusion coefficient of Ddextran = 8.2 mm2/s are shown, in the

center panel 43 kDa ovalbumin molecules with DOva = 88 mm2/s

and on the right panel 30mer oligonucleotides with a

D30mer = 130 mm2/s. The movies were filtered with a 363

Gauss kernel and contrast enhanced. Field of view for each panel

is 19.2 mm619.2 mm.

Found at: doi:10.1371/journal.pone.0011639.s005 (9.84 MB AVI)

Movie S3 Hrp36 was microinjected in the nucleus of a salivary

gland cell of a C.tentans larva. After 10 min hrp36 proteins were

incorporated into mRNPs and became visible at the employed

imaging rate of 49.46 Hz. The movie is displayed with 30 Hz.

Field of view is 19.2 mm619.2 mm.

Found at: doi:10.1371/journal.pone.0011639.s006 (3.29 MB AVI)

Movie S4 The 500 kDa dextran was microinjected in the

nucleus of a salivary gland cell of a C.tentans larva and

immediately imaged at a frame rate was 49.46 Hz. The movie is

displayed with 30 Hz; field of view, 19.2 mm619.2 mm.

Found at: doi:10.1371/journal.pone.0011639.s007 (3.29 MB AVI)

Materials and Methods S1

Found at: doi:10.1371/journal.pone.0011639.s008 (0.02 MB

DOC)
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