
Testing Evolutionary and Dispersion Scenarios for the
Settlement of the New World
Mark Hubbe1*, Walter A. Neves2, Katerina Harvati3

1 Instituto de Investigaciones Arqueológicas y Museo, Universidad Católica del Norte, San Pedro de Atacama, Chile, 2 Laboratório de Estudos Evolutivos Humanos,
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Abstract

Background: Discussion surrounding the settlement of the New World has recently gained momentum with advances in
molecular biology, archaeology and bioanthropology. Recent evidence from these diverse fields is found to support
different colonization scenarios. The currently available genetic evidence suggests a ‘‘single migration’’ model, in which
both early and later Native American groups derive from one expansion event into the continent. In contrast, the
pronounced anatomical differences between early and late Native American populations have led others to propose more
complex scenarios, involving separate colonization events of the New World and a distinct origin for these groups.

Methodology/Principal Findings: Using large samples of Early American crania, we: 1) calculated the rate of morphological
differentiation between Early and Late American samples under three different time divergence assumptions, and
compared our findings to the predicted morphological differentiation under neutral conditions in each case; and 2) further
tested three dispersal scenarios for the colonization of the New World by comparing the morphological distances among
early and late Amerindians, East Asians, Australo-Melanesians and early modern humans from Asia to geographical
distances associated with each dispersion model. Results indicate that the assumption of a last shared common ancestor
outside the continent better explains the observed morphological differences between early and late American groups. This
result is corroborated by our finding that a model comprising two Asian waves of migration coming through Bering into the
Americas fits the cranial anatomical evidence best, especially when the effects of diversifying selection to climate are taken
into account.

Conclusions: We conclude that the morphological diversity documented through time in the New World is best accounted
for by a model postulating two waves of human expansion into the continent originating in East Asia and entering through
Beringia.
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Introduction

It has been repeatedly observed that Early American (hereafter

Paleoamerican) cranial morphology differs significantly from that

of recent Native Americans (hereafter called Amerindians) [1–3].

While Paleoamericans show strong morphological affinities with

Australo-Melanesians, Amerindians are clearly associated with

East Asians. These marked cranial differences have led some

researchers to develop a scenario of distinct origins for early and

later American groups, and to propose two waves of population

expansion into the New World [2–4]. This view is at odds with

most of the genetic evidence currently available on Native

American origins, the majority of which [5–7] - though not all

[8] - suggest a single origin for New World populations. Under this

interpretation the large anatomical differences between Paleoa-

mericans and Amerindians stem either from in situ stochastic

microevolutionary processes [9], or from progressive loss of the

diversity originally present in the mother-population at the end of

the Pleistocene [10], rather than from distinct ancestry of the two

groups.

Since cranial morphology has been shown to reflect population

history in recent human populations [11–17], it is suitable for

assessing dispersion patterns for prehistoric groups for which

molecular information is not available. Our study: a) demonstrates

that Paleoamericans and Amerindians exhibit distinct morpho-

logical patterns; and b) tests different colonization scenarios by

formulating predictions of morphological differentiation associated

with different temporal and geographic constraints under different

evolutionary and dispersion models into the New World.

Our approach is twofold: First we calculated the predicted rate

of morphological evolution [18] under three scenarios: 1)

Paleoamericans are the direct ancestors of Amerindians; 2)

Paleoamericans and Amerindians share a last common ancestor

by the time of the first entrance into the continent (,15 kyr BP

PLoS ONE | www.plosone.org 1 June 2010 | Volume 5 | Issue 6 | e11105



[19–22]); and 3) the last common ancestor between them was East

Asian and predated the first dispersal into the continent

(represented by the Late Pleistocene Zhoukoudian Upper Cave

individuals; ,30–11 kyr BP [23–27]). Secondly, we compared the

D2 matrix among a large number of modern human populations

to the geographic distance matrices among the same populations

as predicted under three dispersion models (Figure 1). We did this

in order to evaluate which model best explains the observed

morphological differences between Paleoamericans and Amerin-

dians, taking into account the likely ancestral morphology for the

region (Upper Cave [23–27]). Model 1 is the control and

comprises the direct linear geographic distances between our

population samples. Model 2 assumes a single dispersal event into

the New World; this model considers Paleoamericans as direct

local ancestors to Amerindians. Model 3 assumes that Paleoamer-

icans and Amerindians share an ancestor outside the New World.

Following the archaeological consensus that the route of entrance

to the Americas was through the Bering Strait [4,24–27] this

model assumes that both morphological patterns originated from

two distinct migration waves from Northeast Asia.

In order to account for the effects of selection to climate in

generating the morphological differences observed, analyses were

ran twice: once using a set of 24 cranial variables; and a second

time excluding five variables previously shown to respond to

diversifying selection to climate [13,17] and thus subject to higher

rates of homoplastic similarities among human groups living in

similar environments. If the cranial differences observed between

Paleoamericans and Amerindians are primarily due to climatic

selective pressures, one would expect that removing these

variables would decrease their differences and strengthen the

models representing a single colonization event of the continent

(Model 2).

Results

Figure 2 shows the geographic location of the population

samples and the nearest neighbor connections based on Mahala-

nobis D2 (Table S1). Only the connections based on 24 variables

are shown, since both analyses had very similar results.

Paleoamericans and Amerindians clearly show distinct morphol-

ogies: none of the former samples are directly connected to the

latter. Paleoamericans are instead linked by nearest morphological

distance to the early modern humans from Zhoukoudian Upper

Cave and to Australo-Melanesians, while Amerindians are joined

with East Asian groups.

Figure 3 presents the mean rates of morphological differenti-

ation calculated for all possible pairwise comparisons between

Paleoamerican and Amerindian series, for the two variable sets.

The presented results must be interpreted in relation to the

reported expected rate of morphological change for mammals

under neutral evolutionary expectations, which ranges from

0.0001 to 0.01 [18]. Accordingly, we show very high rates of

morphological differentiation in general: in all scenarios a large

part of the pairwise comparisons fall above the upper limit of the

neutral expectation (0.01). The highest values in all cases are given

by the comparison between Archaic Colombia and Peru, as a

result of their high between-group variation. In the first scenario

the mean rates range from 0.002 to 0.336 for the 24 variables set

and from 0.002 to 0.0378 for the 19 variable set, with an average

among all pairwise comparisons of 0.07 (24 variables) and 0.08 (19

variables). Clearly these values refute the idea that late Amerindian

morphology can be generated through neutral evolutionary

processes from the Paleoamerican one. However, as the

divergence time is increased (Scenarios 2 and 3), the mean rates

calculated approach the neutral limit of 0.01. Differences between

the last two scenarios are too small to allow for any differentiation

among them, but both scenarios favor the idea that the last

common ancestors between Paleoamericans and Amerindians

antecedes the arrival of the first human groups in the New World.

Table 1 presents the Mantel test results for the two variable sets.

All correlations between geographic and morphological distances

were highly significant. Although Mantel correlation tests

considering D2 matrices tend to underestimate the permutation

p-values [28], the very low p-values associated to our analyses

favor the interpretation of significant correlation between the

matrices. However, the correlation coefficients varied widely,

indicating very different levels of support for each of the three

models. As expected, the control model (linear distances) showed

the lowest correlation coefficient. Furthermore, the removal of

variables not associated with population history strengthened the

correlations between geographic and morphological distances

considerably, especially for Model 3 (bipartite Asian origin). By far

the highest correlation coefficient obtained in both runs was for

this model.

In order to test if Model 3 presents a better fit to the

morphological distances than the other three models, Dow-

Cheverud tests [29] were applied. Table 2 presents the results of

these tests, comparing Model 3 against the other two models. As

can be observed, when all 24 variables are taken into account, the

bipartite origin of Native Americans cannot be considered a better

prediction of the Mahalanobis distances than the other models (i.e.

Figure 1. Representation of the geographic dispersion models
tested for the occupation of the Americas. Model 1 is not
represented because it is a control model (assuming direct linear
distances among all groups). The bars represent the morphological
change observed in East Asia (left) and America (right) during Late
Pleistocene/Early Holocene. The red color represents the morphology
present in Asia by the end of the Pleistocene and the blue color
represents the morphology present nowadays in Asia and America.
Model 2 assumes that the morphological differentiation in East Asia
occurred before America’s settlement and that the New World was
occupied only once; Model 3 assumes two distinct dispersions into the
continent. See text for detailed description of each model. The dates
presented are just approximations, but they assume America’s
settlement to have occurred around 15 kyr BP (19–22).
doi:10.1371/journal.pone.0011105.g001

Settlement of the New World
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correlations are not significant, although approaching signifi-

cance). However, when the same test is applied on the set of

variables not correlated to climate adaptation, the bipartite origin

is clearly a stronger scenario than the control and one-migration

models, now showing significant correlations.

Discussion

Our results confirm previous observations of large morpholog-

ical differences between Paleoamericans and Amerindians. They

demonstrate that both chronological and geographical models

assuming independent origins for these two populations via

Beringia fit these morphological differences considerably better

than the alternative models. Under the assumption that morpho-

logical differentiation among modern humans during the Final

Pleistocene and the Holocene was mainly a result of neutral

microevolutionary processes [14–17], the observed rates of

morphological differentiation favor the idea that Early and Late

American samples included in this study shared a last common

ancestor outside the New World. At the same time, the geographic

bipartite model resulted in a generally better fit to the

morphological distances among groups. Removal of measure-

ments under selection did not change the pattern of correlation,

and in fact strengthened the bipartite model differentially over the

other models. Indeed, differences in the obtained r values were

significant when the models were compared using the Dow-

Cheverud test, when selection was accounted for. However, the

removal of variables did not change the results for the mean rates

of morphological differentiation between the populations, as would

be expected if diversifying selection were responsible for a

disproportional increase in the between-group variance among

the series.

Our results do not support the hypothesis that the

morphological differences between Early and Late American

groups are a result of in-situ neutral evolution. Rather they fit

better a two wave dispersal model for the settlement of the New

World. Our findings are at odds with the majority of molecular

evidence on Native American origins [5–7] (although they agree

with a recent study of rare mitochondrial haplogroups [8] which

also favors two origins for Early Americans associated with

distinct crossings from northeast Asia within a short period of

time [17–15 kyr BP]) .

This disparity between our results and those of most genetic

studies points to a large gap in our understanding of the peopling

of the New World. Our findings show that this disparity cannot

be easily accommodated through selection to climate and that

general secular trends appear as a less probable explanation for

the morphological differences between Early and Late Native

American groups. We propose that the disparity might derive

either from diverging sampling strategies between craniometric

(that includes both extinct and extant series) and molecular

studies (mainly restricted to extant groups); or from the fact that

genetic quantitative traits such as cranial morphology might

reflect different microevolutionary events from those affecting

autosomic or uniparental DNA markers. The first alternative has

been proposed before [3]; however recent efforts in recovering

ancestral DNA from early Americans have failed so far in

identifying distinct mitochondrial lineages in these samples [30].

Figure 2. Minimum Spanning Tree of the series calculated from the Mahalanobis squared distances among groups and plotted
over their geographic coordinates. The lines represent the closest path for connecting all samples according to the morphological distances
between them. Red dots represent samples with Paleoamerican morphology and the brown dot represents the specimens from Zhoukoudian Upper
Cave. Blue dots indicate the Late Holocene samples from East Asia, the Americas and Australo-Melanesia.
doi:10.1371/journal.pone.0011105.g002

Settlement of the New World
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The second alternative, on the other hand, has received some

support based on the fact that parts of the skull morphology

respond differentially to environmental pressures [15,17,31].

Unfortunately, these possibilities cannot be satisfactorily evaluat-

ed until results derived from molecular and morphological data

collected from the same populations (extinct and/or extant) are

contrasted directly.

We conclude that the morphological diversity documented

through time in the New World is best accounted for by a model

postulating two waves of human expansion into the continent

originating in East Asia and entering through Beringia. This,

however, does not completely exclude the possibility that the

observed morphological diversity in America is the result of

diachronic trends of differentiation [9], or progressive losses of

the original variability present in the mother-population of

Native Americans [10], especially if strong diversifying selection

acted upon the morphological pattern brought into the

continent by its first populations. Future work should focus on

Middle Holocene samples in order to further test the bipartite

model suggested here.

Figure 3. Boxplot of the pairwise mean rates of morphological differentiation (gray dots) calculated between Paleoamerican and
Amerindian series. The black squares represent the average of the pairwise mean rates for each scenario and the rectangle represents the
confidence limit defined by one time the standard deviation of the mean rates. The black horizontal line shows the upper limit of the neutral
expectation range (0.01). A) Results for the 24 variables set. B) Results for the 19 variables set.
doi:10.1371/journal.pone.0011105.g003

Settlement of the New World
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Materials and Methods

Samples included in the analyses
The cranial series involved in this study, together with their

sample sizes, chronological ranges and main references are

reported in Table 3. Together, they represent the human cranial

morphological diversity seen in the Americas, East Asia and

Australo-Melanesia. Native American samples were included to

represent the Paleoamerican morphology from Early and Middle

Holocene (Lagoa Santa, Paleo-Mexico, Paleo-Colombia and

Archaic-Colombia) and the Amerindian morphology from Late

Holocene (Arikara, Santa Cruz, Peru, Base Aérea and Tapera), as

described elsewhere [1–3,32–33]. The Zhoukoudian Upper Cave

skulls (UC-101 and UC-103) were added as representing the

ancestral morphology to the series included in this study [23–26].

Morphological Affinity Analysis
Mahalanobis squared distances among sample pairs were

calculated (Table S1). This statistic represents the morphological

variation between groups as defined by

D2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x{yð ÞtS{1 x{yð Þ

q

Where x and y are the vectors with the averages of the

measurements of each variable for samples X and Y, respectively,

and S is the pooled within-group covariance matrix. Consequent-

ly, the larger the values of the D2 distance, the farther the group

centroids are from each other [34]. The D2 values were used to

compute a minimum spanning tree, a clustering procedure

developed for finding the closest ‘‘route’’ for linking a set of

points [35], which in turn was superimposed over the geographic

coordinates (latitude and longitude) of the series.

Diachronic morphological differentiation
Under the assumption that inter-species or inter-populations

morphological differentiation is a result of neutral evolutionary

forces, there is a proportional increase of the between-species

variance in relation to the within-species variance for each

generation that separates the lineages from its last common

ancestor [36–37]. From this, Lynch [18] derived a rate of

morphological differentiation, given by

D~varb ln zð Þ= t varw ln zð Þ½ �

Where varb(ln z) and varw(ln z) are the between-group and the

within-group mean squares of an ANOVA for log-transformed

measures (z) and t is the number of generations separating the

lineages from their last common ancestor (i.e. the sum of times

down both descendant branches). Lynch [38] reports the expected

range of the rate of morphological differentiation under neutral

expectation for mammals to fall between 0.01 and 0.0001.

Following his methodology [18], here we calculated the mean

rate of morphological differentiation across all variables for pairs

Table 1. Mantel Correlations between Mahalanobis Squared Distances (D2) and each of the geographic distance models tested.

Dispersion Model
D2 calculated
from 24 variables

D2 calculated from 19 variables
(without variables associated with
climatic adaptation)

Model 1 Linear Geographic Distances (Control) r = 0.24545
r2 = 0.06025
p = 0.0018

r = 0.22735
r2 = 0.05169
p = 0.0048

Model 2 One migration through Beringia r = 0.24827
r2 = 0.06164
p = 0.0117

r = 0.25660
r2 = 0.06584
p = 0.0115

Model 3 Two migrations through Beringia r = 0.41192
r2 = 0.16968
p = 0.0004

r = 0.47900
r2 = 0.2294
p = 0.0001

r – two-way Mantel correlation r.
p – associated probability of r after 10000 permutations.
doi:10.1371/journal.pone.0011105.t001

Table 2. Results of the Dow-Cheverud test between the bipartite model (Model 3) against the other ones.

Model 3 – Two migrations through Beringia versus
Dow-Cheverud results
based on 24 variables

Dow-Cheverud results
based on 19 variables

Model 1 Linear Geographic Distances (Control) r = 0.14537
p = 0.0840

r = 0.21975
p = 0.0143

Model 2 One migration through Beringia r = 0.16969
p = 0.0656

r = 0.23062
p = 0.0155

r – two-way Mantel correlation r.
p – associated probability of r after 10000 permutations.
doi:10.1371/journal.pone.0011105.t002

Settlement of the New World
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of populations. The comparisons were made between all

Paleoamerican series and all Late American series, changing

the number of generations separating them according to three

distinct scenarios. In all cases, generation time was assumed to

be 20 years, respecting the values used by Lynch [18], which

allows for the direct comparison of our data. The age of each

series was assumed as the mean of the chronological range

presented in Table 3. Howells’ series were assumed to be one

thousand years old.

The first scenario assumes that Paleoamerican groups are the

direct ancestral populations of Amerindians, and as such t is

defined as the number of generations separating early and late

American series. Consequently, this scenario takes into account

models for the occupation of the New World that assume only one

migration into the continent [9–10].

The second and third scenarios, on the other hand, are in

accordance with the dual-dispersion model [1–3]. The second

scenario assumes that Paleoamericans and Amerindians shared

they last common ancestor by the time of the first occupation of

the continent, around 15 kyr BP [4–7], while the third assumes

that the last common ancestor between these lineages is

represented by the Upper Cave specimens, around 20 kyr BP

[39]. Accordingly, t for each scenario was defined as the sum of

generations down each branch to the date of the last common

ancestor assumed.

Since parametric tests of the fitness of the observed rate to the

neutral expectation depend largely on the definition of the specific

population size (Ne) [40], which is difficult to estimate for our

series, we adopt a qualitative approach here and contrast the range

of mean rates of morphological differentiation for the pairwise

comparisons against the neutral expectation reported earlier

(where modern human samples were also considered and shown

to fall within it [18]).

Geographic range expansion
Still following the assumption that most of the morphological

differentiation in modern humans are due to stochastic microevo-

lutionary processes, following isolation by distance or range

expansion (resulting from multiple founding effects) patterns of

differentiation [10–11,14,16] with influence of natural selection

majorly restricted to extremely cold climates [12,14,16], it is

expected that the morphological distance between two series

should be correlated to the geographic distance separating them if

both series departed from a single mother population (or one from

another). However, when two populations disperse into the same

region distinct from the one where they originally diverged and

keep themselves biologically isolated (for example, as in successive

colonization events) the geographic distance between them would

not be correlated with their biological differentiation, since the real

dispersion range of each population is greater than the actual

geographic distance between them. Thus, under these evolution-

ary assumptions, every time the ancestral population of two series

is not located in the geographic space between them (either in the

same locality of one of them or between them) their biological

distance will be poorly correlated to their geographic location. In

this situation, a more reasonable model to calculate the distance

between these series would be, instead of using linear distances

between them, to calculate the distance from the first series to the

location of the common ancestral population and from this to the

second series.

To test distinct range-expansion scenarios for our data, the

Mahalanobis distance matrix was compared to three geographic

distance matrices representing distinct models of geographic

dispersion using Mantel tests of matrix correlation [41–42].

Strictly speaking the correlation coefficient of Mantel’s test is

simply the coefficient calculated between the off-diagonal elements

of each matrix:

Table 3. Series included in the study, population to which they were associated and information on their geographic coordinates,
sample size and chronological range.

Series Population Latitude Longitude
Male
sample

Female
sample

Chronological
range Reference

Mexico Basin Paleoamerican 19.41u 299.13u 3 1 ,10 kyr 1

Lagoa Santa Paleoamerican 219.90u 243.94u 14 10 11.0–7.5 kyr 2

Paleo Colombia Paleoamerican 4.61u 274.08u 6 7 11–6.5 kyr 3

Archaic Colombia Paleoamerican 4.61u 274.08u 10 18 5–3 kyr 3

Zhoukoudian Upper Cave Upper Pleistocene Asian 39.90u 116.38u 1 1 ,30.0–11 kyr 39

Base Aérea Amerindian 227.59u 248.53u 12 9 ,1.0 kyr 2

Tapera Amerindian 227.59u 248.53u 26 25 ,1.0 kyr 2

Arikara Amerindian 44.36u 2100.35u 42 27 Sub-recent 32–33

Santa Cruz Amerindian 34.00u 2119.75u 51 51 Sub-recent 32–33

Peru Amerindian 212.10u 277.05u 55 55 Sub-recent 32–33

Buriat East Asian 52.40u 106.20u 55 54 Sub-recent 32–33

Ainu East Asian 43.05u 141.34u 48 38 Sub-recent 32–33

North Japan East Asian 43.43u 142.85u 55 32 Sub-recent 32–33

South Japan East Asian 33.30u 131.00u 50 41 Sub-recent 32–33

Hainan East Asian 20.04u 110.34u 45 38 Sub-recent 32–33

Tolai Australo-Melanesian 24.35u 152.27u 56 54 Sub-recent 32–33

Australia Australo-Melanesian 235.41u 139.11u 52 49 Sub-recent 32–33

Tasmania Australo-Melanesian 242.85u 147.29u 45 42 Sub-recent 32–33

doi:10.1371/journal.pone.0011105.t003
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rXY ~
SP X ,Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SS Xð Þ:SS Yð Þ½ �
p

Where

SS Xð Þ~
XN

i=j

Xij{�X
� �2

SP XYð Þ~
XN

i=j

Xij{�X
� �

: Yij{�Y
� �

And assuming X and Y to be square distance or similarity

matrices with i times j elements. However, since elements in

distance or similarity matrices are by principle not independent,

the resulting r has an unknown distribution. The test of the null

hypothesis (r = 0) is done thus through multiple permutations of

the rows and corresponding columns of one of the matrices,

keeping the other matrix unchanged. In this study p-values were

assessed after ten thousand permutations.

To test if any of the geographic models fits better the

morphological distances we applied the Dow-Cheverud test

[29]. The Dow-Cheverud test permits to test if any of two model

(hypothetical) matrices (X1 and X2) fits better an observed

distance matrix (Y) [28]. The test consists of calculating the

standardized difference between Matrices X1 and X2 and

correlating it with Matrix Y. If the resulting r is positive and

significant (in a new Mantel correlation test) Matrix X1 can be

assumed as a better predictor of Matrix Y. On the other hand, if

the resulting r is negative and significant, then Matrix X2 can be

seen as a better predictor than X1. If r returns a non-significant

value, then no matrix can be interpreted as having a better fit to

Matrix Y. As a consequence, it was possible to evaluate if the

model with the strongest observed correlation with the morpho-

logical distances matrix is a better predictor than the other,

weaker models.

Although the Dow-Cheverud test has been criticized for being

vulnerable when the data shows spatial and/or temporal auto-

correlation [43], we chose to apply it here for the following

reasons: 1) the geographic models tested must be considered as

mutually exclusive, which invalidates its use in the more robust

multiple-regression approaches [42]; and 2) Konigsberg [28]

demonstrated that in situations like the one considered here, where

two arbitrary (and theoretically error-free) model matrices (X1 and

X2) are contrasted against one biological matrix (with an unknown

level of random error associated to the measurements), the

probability distribution of the Dow-Cheverud test shows no

apparent departure from the expected uniform distribution

[28: 483].

The geographic models
In all three dispersion models, the geographic distance assumed

for the groups among each population was calculated as the direct

distance, in kilometers, between them. This means that the

difference between the models relies on how the distance between

the groups of different populations is calculated (for example,

between Paleoamerican and Amerindian groups).

To contextualize the correlations obtained for the dispersion

models, we calculated the first model as a control matrix

(Table S2; see Figure 1 for an illustration of the models), which

simply represents the direct linear distance between all pairs of

series, disregarding such geographic barriers as the Pacific

Ocean.

For the two remaining models, distances between series follow

only terrestrial routes (using Bangkok, Bering Strait and Panama

as ‘‘way-points’’). Model 2 (Table S3) represents a scenario of local

microevolutionary differentiation within the Americas. It predicts

that later Amerindians differentiated locally from Paleoamericans,

and therefore, following the range expansion model, their

morphological differentiation should be proportional to their

geographic proximity. It assumes that the differentiation between

Early East Asians (Upper Cave, in this case) and Late East Asians

occurred prior to the occupation of the New World. Within the

Americas distances among series are simple direct linear distances.

This matrix represents a settlement model that involved only one

major human entrance into the continent, with the morphological

variability seen in the Americas through time being the result of in-

situ microevolutionary processes.

Model 3 (Table S4) tests distinct origins for Paleoamericans

and Amerindians, with both groups representing distinct

expansion events into the continent from East Asia through

Beringia. In this case, the geographic distance between these

groups equals to the distance from the former to Zhoukoudian

Upper Cave (passing through Bering and Panama when

necessary) plus the distance from Upper Cave to Amerindians

(again, through Bering and Panama, when necessary). The

remaining distances followed the second model, i.e. no trans-

oceanic migrations were allowed.

Variable sets used in the analyses
The 24 most discriminant cranial variables (Table 4) were

selected from an initial database of 40 measurements [32–33] by

a Back Stepwise Discriminant Analysis (F to Remove/F to enter =

10/11) [44]. Although uncommon, the stepwise procedure was

adopted to minimize the effect that deviations from the population

mean as a consequence of small sample sizes have on the

Mahalanobis Distance calculations and in the subsequent Mantel

correlation tests. Small samples tend to yield poor estimates of the

population mean, adding an error to the sample mean which is

inversely proportional (although not linearly so) with sample size

[45]. For the calculation of the Mahalanobis Distance these random

errors bring an additive inflation of the overall distance, since the

error associated to each variable will be added in the sum of the final

distance value through the difference vector (x–y; see formula above).

Inflated D2 as a product of the additive effect of these random errors

will affect especially the results of a Mantel correlation analysis. Due

to the nature of matrices representing pairwise comparisons, each

sample who gave origin to this matrix influences a large amount of

the possible elements of the matrix (2/N, while in any linear

correlation analysis the weight of any given sample is simply 1/N).

As a consequence, analysis dependent on such matrices are

especially vulnerable to the original error due to the sampling size.

In the case of the Mantel correlation analysis, the inflated D2 values

will result in an increase in its sum of squares [SS(X); see above],

resulting in a general decrease of the correlation coefficients

(exception to this rule will occur when this particular matrix is

compared to another matrix were the same elements are inflated,

thus increasing significantly their sum of products – SP(XY) – that

will result in artificially high correlation coefficients). In practical

terms, this means that a single small sample can present a higher

influence in the correlation coefficient than all the remaining

samples included.

Settlement of the New World

PLoS ONE | www.plosone.org 7 June 2010 | Volume 5 | Issue 6 | e11105



This effect will be especially marked when the random error of

the sample means results in this value appearing slightly outside

the range of variation of the remaining sample means, i.e. when

the ill-estimated mean presents higher average between-group

variance with the other samples than the overall between-group

variance for the comparative series. A way to minimize this error is

to select the variables to be included in the D2 calculation with

relatively overall high between-group variation, such as the one

applied here through a stepwise discriminant analysis. Although

this procedure will overweight the overall differentiation between

samples, it will not be affected by the differences resulting from one

single sample.

We demonstrate the effect of D2 inflation as a consequence of

the inclusion of the two Upper Cave skulls as representatives of the

ancestral morphology present in East Asia in Supplementary

Figures S1 and S2 and Table S5. Together they present the same

analyses in the Results, but now based on the complete set of 40

variables. While there is no real change in the pattern of

morphological affinities of the series represented in the MST

(Figure S1), nor substantial changes in the mean rates of

morphological differentiation (Figure S2), we observe an overall

decrease in the correlation coefficients (Table S5) when compared

to the results section (Table 1). To demonstrate the effect of the

two Upper Cave skulls in this analysis, we subsequently calculated

the same correlations without the Upper Cave skulls (Table S5). As

can be seen, the pattern of correlation coefficients is again very

similar to the one presented in our results, corroborating that in

the previous analysis the two Upper Cave skulls had more

influence in the overall correlation coefficient than the remaining

17 series.

Missing values (9.51% of the measurements) in the prehistoric

series were replaced through multiple regression of the variable

total mean, using the remaining measurements of each

individual as independent variables (but see [46] for a discussion

on the topic). Males and females were pooled. For the rate of

morphological differentiations, the original data were logged,

following [18], to allow for direct comparisons. For the D2 based

analyses, size effect was corrected by dividing the measurements

of each individual by its geometric mean [47]. We accounted for

the role of selection by repeating our analyses on a subset of 19

measurements (Table 4) not associated with diversifying

selection to climate [13] and thought to mainly reflect

population history.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0011105.s001 (0.07 MB

DOC)

Table S2

Found at: doi:10.1371/journal.pone.0011105.s002 (0.08 MB

DOC)

Table S3

Found at: doi:10.1371/journal.pone.0011105.s003 (0.07 MB

DOC)

Table S4

Found at: doi:10.1371/journal.pone.0011105.s004 (0.07 MB

DOC)

Table S5

Found at: doi:10.1371/journal.pone.0011105.s005 (0.03 MB

DOC)

Figure S1 Minimum Spanning Tree of the series calculated

from the Mahalanobis squared distances of the complete set of 40

variables and plotted over their geographic coordinates. The lines

represent the closest path for connecting all samples according to

the morphological distances between them. The presented tree

topology is very similar to the one presented for the selected 24

variables, were Early Americans are closely relates to Upper Cave

and Autralo-Melanesians, and no direct connection is seen

between early and late American series.

Found at: doi:10.1371/journal.pone.0011105.s006 (5.65 MB TIF)

Figure S2 Boxplot of the pairwise mean rates of morpholog-

ical differentiation (gray dots) calculated for the complete set of

40 variables. The black squares represent the average of the

pairwise mean rates for each scenario and the rectangle

represents the confidence limit defined by one time the standard

deviation of the mean rates. The black horizontal line shows the

upper limit of the neutral expectation range (0.01). Again, the

results observed here are very similar to the ones presented in

the results section.

Found at: doi:10.1371/journal.pone.0011105.s007 (2.85 MB TIF)
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Table 4. Howells’ craniometric variables included in the
analyses.

Variables

Glabello-occipital length (GOL)

Nasio-occipital length (NOL)

Basion-bregma height (BBH)

Maximum cranial breadth (XCB)*

Maximum frontal breadth (XFB)*

Nasal height (NLH)*

Bijugal breadth (JUB)

Nasal breadth (NLB)

Bifrontal breadth (FMB)

Biorbital breadth (EKB)

Interorbital breadth (DKB)

Simotic cord (WNB)

Malar length, inferior (IML)

Cheek height (WMH)*

Frontal cord (FRC)*

Frontal subtense (FRS)

Parietal cord (PAC)

Occipital subtense (OCS)

Nasion radius (NAR)

Subspinale radius (SSR)

Zygoorbitale radius (ZOR)

Frontalmalare radius (FMR)

Ectoconchion radius (EKR)

Zygomaxillare radius (ZMR)

*- variables associated with climate adaptation that have been remove in the
second run of the analyses.
doi:10.1371/journal.pone.0011105.t004
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