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Abstract

b-amyloid levels are elevated in Down syndrome (DS) patients throughout life and are believed to cause Alzheimer’s disease
(AD) in adult members of this population. However, it is not known if b-amyloid contributes to intellectual disability in
younger individuals. We used a c-secretase inhibitor to lower b-amyloid levels in young mice that model DS. This treatment
corrected learning deficits characteristic of these mice, suggesting that b-amyloid-lowering therapies might improve
cognitive function in young DS patients.
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Introduction

Down syndrome (DS) is a complex genetic disorder that

includes varying degrees of intellectual disability [1,2]. Occurring

in approximately 1 in 700 births, DS results from trisomy of all or

part of human chromosome 21 (trisomy 21) [3], which generally

accounts for triplication of at least 100 genes. Among these is the

gene encoding APP, as well as genes that upregulate APP

expression [4]. Sequential cleavage of APP by b-secretase (BACE

1) and c-secretase produces peptides of varying lengths (mainly 40

and 42 amino acids), collectively termed b-amyloid, or Ab [5,6],

which is widely believed to be an acute mediator of cognitive

impairment [7], as well as a causative factor in Alzheimer’s disease

(AD). Ab is over-produced in Down syndrome patients throughout

life. Indeed, Ab serum levels are 200% to 300% higher than in

karyotypically normal individuals, and Ab accumulates within

neurons and in amyloid plaques in juvenile and adult DS patients,

respectively [8].

Increased Ab levels in DS are believed to be responsible for the

near universal prevalence of AD in adult DS patients. By age 40,

most if not all DS patients have extensive amyloid plaque

pathology and degeneration of basal forebrain cholinergic

neurons, both characteristic features of AD, and most of these

individuals develop AD dementia by the fifth and sixth decades of

life [9]. However, it is not known whether elevated Ab levels in DS

children affect intellectual disability. To explore this possibility, we

utilized the Ts65Dn mouse, which is widely considered the gold

standard of Down syndrome mouse models [10]. Ts65Dn is

characterized by partial trisomy of mouse chromosome 16, which

contains genes homologous to the human chromosome 21 genes

that are most consistently triplicated in DS, including three copies

of APP, the gene encoding the amyloid precursor protein [11].

These mice exhibit pronounced cognitive deficits as early as 2–3

months of age [12], as well as other correlates of DS. Additionally,

by 6 months of age, Ts65Dn mice begin a progressive, age-related

decline in choline acetyltransferase (ChAT) levels and cognitive

function [13], features that are common to adult DS and AD

patients [14].

Results

DAPT alters levels of APP metabolites in 4-month-old
Ts65Dn mice

We used 4-month-old Ts65Dn mice and their disomic, colony-

mates as controls. We compared APP levels, the b-secretase and a-

secretase cleaved APP C-terminal fragments (C99, C89 and C83)

[15], and Ab40 and Ab42 from hemibrains (lacking cerebellum) of

mice that had been treated either with the c-secretase inhibitor,

DAPT [16], or vehicle for four days. Western blot analysis

revealed that APP levels in vehicle-treated Ts65Dn mice were

elevated to 225% of vehicle-treated controls (Fig. 1a, b), in

agreement with some [17] but not all previous studies [18]. Levels

of the b-secretase and a-secretase cleaved APP C-terminal

fragments (C99, C89 and C83) in vehicle-treated Ts65Dn mice

were elevated to 260% of vehicle-treated controls (Fig. 1a, b)

suggesting that increased levels of Ab might occur as a result of an
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enlarged precursor pool. Ab40 and Ab42 concentrations were

elevated in vehicle-treated Ts65Dn mice to 132% and 139% of

vehicle-treated controls, respectively (Fig. 1c).

DAPT treatment lowered Ab40 and Ab42 concentrations in

Ts65Dn mice to 65% and 64% of vehicle-treated Ts65Dn mice,

respectively (Fig. 1c). DAPT also decreased Ab40 levels in control

mice to 76% of vehicle-treated controls (Fig. 1c, left panel) and

elevated APP C-terminal fragments to 149% and 180% of vehicle-

treated control and vehicle-treated Ts65Dn mice, respectively

(Fig. 1b).

DAPT reverses Ts65Dn Cognitive Deficits in the Morris
Water Maze

Ts65Dn mice are characterized by deficits in spatial learning

and memory in behavioral tests, including the Morris water maze

[19]. Similar cognitive deficits have been described for AD model

mice. Since acute treatment with DAPT had previously been

shown to rescue cognitive deficits in an AD mouse model [20], we

tested the ability of DAPT to improve cognitive function in

Ts65Dn mice.

Measuring the time it takes to reach the hidden platform during

training (latency), Ts65Dn mice treated with vehicle alone

exhibited significantly poorer learning compared to control mice

treated with vehicle (Fig. 2a), confirming the previously reported

cognitive deficits in these mice [19]. Treatment of Ts65Dn mice

with DAPT, however, completely reversed these deficits, such that

learning in DAPT-treated Ts65Dn mice was not significantly

different from learning in control mice treated with vehicle or

DAPT (Fig. 2a). Importantly, average daily swim speed was

measured throughout the experiment and was not significantly

different among any of the groups (data not shown).

Following 11 days of training, a probe trial was performed on

day 12 to assess spatial memory. Using the number of times mice

crossed the target platform location as a measure, Ts65Dn mice

treated with vehicle alone showed a dramatically decreased

number of crossings compared to vehicle or DAPT-treated control

mice. In contrast, the number of target platform crossings for

Ts65Dn mice treated with DAPT was equivalent to those of

control mice treated with vehicle or DAPT (Fig. 2b). Neither

DAPT nor vehicle significantly affected number of crossings for an

arbitrary point in the pool (equivalent target location in opposite

quadrant; not shown).

In agreement with previous reports [19], Ts65Dn mice

exhibited poorer learning on a visible platform version of the

water maze. This deficit was also rescued by treatment with DAPT

(Fig. 2c). Interestingly, a slight increase in thigmotaxis (tendency to

swim near the walls of the water maze) in the Ts65Dn mice was

also reversed by DAPT (Fig. 2d), suggesting the complexity of the

cognitive and behavioral phenotype that might be affected by Ab.

Discussion

The notion that DS symptoms represent an irreversible

developmental defect has been challenged recently by demonstra-

tions that cognition in Ts65Dn mice can be improved pharma-

cologically using either GABAA antagonists [21], [22], memantine

(an NMDA receptor antagonist) [23], or the noradrenergic agonist

prodrug, L-DOPS [24]. Together these observations suggest that

cognitive improvement in Ts65Dn mice occurs by enhancing or

otherwise regulating excitatory synaptic transmission. This is

consistent with observations suggesting that GABAergic over-

inhibition of excitatory synaptic activity causes loss of synaptic

plasticity in Ts65Dn mice [25]. Here we provide evidence that

cognitive deficits in DS can be corrected by controlling Ab
production, itself a regulator of glutamatergic transmission.

Specifically, we propose that the cognitive improvement we

Figure 1. DAPT raises APP-CTF levels and lowers Ab levels in brains of 4-month-old Ts65Dn mice. Four-month-old Ts65Dn mice and wild type
colony mate controls were treated with vehicle or DAPT (100 mg/kg/day) for 4 days. (A) Representative western blots of APP, CTFs and b-actin from control
(ctrl) and Ts65Dn (Ts) mice. (B) Left panel, quantification of APP (Students t-test, mean6s.e.m.,unpaired, two-tailed, n = 8 per group). Ctrl+Vehicle vs.
Ts+Vehicle, p = 0.0003; Ctrl+DAPT vs. Ts+DAPT, p = 0.0002; Ctrl+Vehicle vs. Ts+DAPT, p = 0.0001; Ctrl+DAPT vs. Ts+Vehicle, p = 0.0006. Right panel, combined
(C99, C89 and C83) CTFs (all means differ significantly, n = 8, 1-way ANOVA, p = 0.0002; significant differences between individual pairs of mean calculated
by Students t-test, mean6s.e.m., unpaired, two-tailed). (C) Ab40 and Ab42 quantification from control and Ts65Dn mice. Left panel, Ab40 (Students t-test,
mean6s.e.m., unpaired, two-tailed, n = 6 per group); Ctrl+Vehicle vs. Ts+Vehicle, p = 0.0173; Ctrl+Vehicle vs. Ctrl+DAPT, p = 0.0043; Ctrl+DAPT vs. Ts+Vehicle,
p = 0.0079; Ts+Vehicle vs. Ts+DAPT, p = 0.0082. Right panel, Ab42 (Students t-test, mean6s.e.m., unpaired, two-tailed, n = 6 per group); Ctrl+Vehicle vs.
Ts+Vehicle, p = 0.0169; Ctrl+DAPT vs. Ts+Vehicle, p = 0.0003; Ts+Vehicle vs. Ts+DAPT, p = 0.0052.
doi:10.1371/journal.pone.0010943.g001
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observed in Ts65Dn mice treated with the c-secretase inhibitor,

DAPT, resulted from lowered Ab levels [26,27,28].

Our results contribute to a growing body of evidence that

supports the hypothesis that cognitive function undergoes rapid

change in response to fluctuations in soluble Ab levels in

cognitively impaired animals. Administration of DAPT to the

Alzheimer’s mouse model, Tg2576 corrects cognitive deficits

characteristic of this strain after exposing the mice to the drug for

as little as 3 hours prior to testing [20]. Tg2576 mice express

human APP containing the familial Alzheimer’s disease (FAD)

Swedish mutation, which results in elevated levels of Ab peptides

[29]. Tg2576 mice begin to develop amyloid plaques at about 12+
months. However, soluble Ab levels are elevated by five months

and the mice are cognitively impaired at this time. The rapid

correction of the cognitive deficit in these mice, ages 5 to 16

months, by DAPT administered only 3 hours prior to testing

coincides with the amount of time required to reduce levels of

soluble Ab by about one half [16].

Other studies have shown that soluble Ab rapidly inhibits

hippocampal long-term potentiation (LTP) in vivo [30] and

depresses excitatory synaptic transmission in hippocampal slice

neurons [31]. A mechanism that would account for these effects of

Ab is suggested by studies in which soluble Ab has been shown to

induce rapid internalization of NMDA- [26] and AMPA-type

glutamate receptors [27,28]. These cellular events suggest a

mechanism that could explain reduced cognitive function in the

context of Ab overexpression as well as the rapid recovery of

cognitively impaired animals treated with Ab-lowering drugs.

In human DS, children exhibit intellectual disability prior to the

development of a neurodegenerative phenotype or the develop-

ment of amyloid plaques [9]. This does not rule out developmental

abnormalities as contributors to intellectual disability. However,

given the rapid amelioration of cognitive deficits in Ts65Dn mice

by DAPT, we suggest that intellectual disability in young DS

patients might also be treatable by Ab-lowering drugs.

Materials and Methods

Ethics Statement
The care of the animals and sacrifice procedures in this study

were performed according to the National Institutes of Health

Guide for the Care and Use of Laboratory Animals and were

Figure 2. DAPT reverses cognitive deficits in 4-month-old Ts65Dn mice in the Morris water maze. DAPT was administered to Ts65Dn and
control mice (100 mg/kg/day) two days prior to, and throughout, the maze testing. (A) Hidden platform test, latency to reach platform during
training. (B) Probe trial on day 12, number of platform crossings. (C) Visible platform test, latency to reach platform. (D) Thigmotaxis. Statistical
Analysis: n = 6 for all groups (A–D). (A) 2-way ANOVA with repeated measures revealed a main effect of genotype F1,20 = 11.31, p = 0.003 & Day
F10,200 = 4.90, p = 3.00E-06 and an interaction between genotype and DAPT F1,20 = 7.73, p = 0.012. Post-hoc planned comparison test between
Ts65Dn+vehicle and all 3 other groups (Ts65Dn+vehicle vs. Ts65Dn+DAPT p = 0.02, Ts65Dn+vehicle vs. control+vehicle p = 0.0003, Ts65Dn+vehicle vs.
control+DAPT p = 0.008, n = 6 in all groups for all figures). (B) 2-way ANOVA for number of target platform crossings revealed an interaction between
genotype and DAPT F1,20 = 8.46, p = 0.009. Post-hoc planned comparison test revealed a significant difference between Ts65Dn+vehicle vs.
Ts65Dn+DAPT p = 0.01 and between Ts65Dn+vehicle vs. control+vehicle p = 0.007. No significant differences were observed for number of crossings
of the analogous, virtual opposite platform location (not shown). (C) 2-way ANOVA with repeated measures revealed significant effects of genotype,
F1,20 = 9.91, p = 0.005 and day, F10,200 = 21.42, p = 0.001, as well as a significant interaction between genotype and DAPT, F1,20 = 5.43, p = 0.03. Post-
hoc planned comparison test revealed significant differences between Ts65Dn+vehicle vs. all 3 other groups (vs. Ts65Dn+DAPT p = 0.04, vs.
control+vehicle p = 0.003, and vs. control+DAPT p = 0.005). (D) 2-way ANOVA with repeated measures revealed main effects of genotype, F1,20 = 5.13,
p = 0.03 & day F10,200 = 21.94, p,1.00E-06 with an interaction between genotype and DAPT, F1,20 = 5.43, p = 0.03. Post-hoc planned comparison test
revealed only a significant difference between Ts65Dn+vehicle vs. control+vehicle p = 0.004.
doi:10.1371/journal.pone.0010943.g002
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approved by the Institutional Animal Care and Use Committee of

The Rockefeller University.

Mouse lines
All mice were purchased from The Jackson Laboratory (Bar

Harbor, ME) and maintained at The Comparative Bioscience

Center (CBC) at The Rockefeller University. These consisted of

Ts65Dn (trisomic) females and normosomic (disomic) colony-mate

females as controls. Females were chosen, rather than males, to

facilitate housing (5 to a cage). A previous study demonstrated that

male and female Ts65Dn mice share equivalent learning deficits

[12]. Although onset of estrus cycle in some Ts65Dn females may

be delayed by one to two weeks, by eight weeks of age they are

cycling the same as their diploid littermates. Since female mice (in

general) when housed together, tend to become synchronous, the

Ts65Dn mice would likely be synchronous with same-aged

controls or littermates (Personal communication, Muriel T.

Davisson, PhD, The Jackson Laboratory). Thus, for a given

experiment, the mice were assumed to be in similar phases of the

estrus cycle. The methods of breeding, genotyping and other

pertinent information can be obtained through the Jackson lab

web address: http://www.jax.org/cyto/ts65dn.html. Briefly,

Ts65Dn mice (also designated: Ts(1716)65Dn) result from crossing

Ts65Dn females to C57BL/6JEi6C3H/HeSnJ (B6EiC3Sn) F1

males. Quantitative PCR is used to identify trisomic mice.

Normosomic controls consist of wild type mice (not harboring

the segmental trisomy mutation) that are derived from the Ts65Dn

colony. The recessive retinal degeneration 1 mutation (Pde6brd1)

segregates in this colony. Progeny are genotyped by standard PCR

to screen out all mice harboring this gene.

Detection of APP and APP CTFs
Mice were sacrificed by CO2 asphyxiation and brains were

immediately dissected. Cerebellum was removed and a hemibrain

(volume approx. 200ml) was homogenized in 600ml of 3% SDS

containing protease inhibitor cocktail, then sonicated and heated

at 95uC for 10 min, followed by a second round of sonication. The

resulting lysates were centrifuged at 13,0006g for 20 minutes at

room temperature and supernatants were removed for analysis.

After normalizing for protein concentration (bicinchoninic acid

method), aliquots of each sample containing approximately 25mg

of protein (5ml) were mixed with 20ml SDS sample buffer and

resolved by SDS-PAGE on pre-cast 10–20% tricine Novex gels

(Invitrogen). After electro-transfer to a PVDF membrane (pore

diameter, 0.45mM), western blots were prepared using antibody

369 (which recognizes the C-terminal region of APP and APP-

CTFs) or anti-b-actin (Santa Cruz Biotechnology, sc-4778). APP,

CTFs and actin were resolved by chemiluminescence on Kodak

film. There were four groups of mice: Ts65Dn +/2 DAPT,

controls +/2 DAPT. Each group consisted of 8 animals.

Detection of mouse Ab by ELISA
Sandwich Elisa was carried out for endogenous mouse Ab as

previously described [32]. The organic solvent, diethyl amine

(DEA), was used to extract soluble Ab [33]. Briefly, hemi-brains

were homogenized in 20 mM Tris buffer containing 1 mM

EDTA, 1 mM EGTA, 250 mM sucrose and protease inhibitors,

pH 7.4. The lysate was further homogenized with 0.4% DEA in

100 mM NaCl and centrifuged at 135,0006g for 60 min. The

supernatant was neutralized by adding 0.5 M Tris-HCl, pH 6.8.

The ELISA assay was performed as described previously [34].

Briefly, Nunc-immuno plates (Maxisorp; Nunc A/S, Roskilde,

Denmark) were coated with 10 mg/ml JRF/cA40/10 or JRF/

cA42/26 antibodies. Mouse-specific antibody JRF/A1–15/2-

HRPO was used to detect the presence of Ab peptides. There

were four groups of mice: Ts65Dn +/2 DAPT, controls +/2

DAPT. Each group consisted of 6 animals.

DAPT administration
(N-[N-(3,5-Difluorophenacetyl-L-alanyl)]-S-phenylglycine t-Butyl

Ester) was purchased from EMD Biosciences, Inc. and Sigma-

Aldrich Co. Formulation and administration were carried out as

described [16,35]. Briefly, DAPT was suspended in 100% ethanol

(3mg/0.015ml), which was then rapidly mixed with filter-sterilized

Mazola corn oil (10 mg/ml suspension in 5% ethanol/95% corn oil)

by vortexing. 150ml was injected s.c. twice daily, and 300ml was

injected in a single dose on the first and last day, per 30g mouse. Mice

received ,100mg DAPT/kg/day. This dose was based on the

quantity of DAPT reported to effectively lower Ab levels in mice,

while allowing daily administration for up to two weeks without

mortality or significant morbidity [16,35], [36].

Behavioral testing
Water maze experiments were performed on 4-month-old

female Ts65Dn mice and female disomic colony mate controls as

previously described except that a single probe trial was

conducted on day 12. Visible platform testing, with white vinyl

curtains covering external cues, began one day after the probe

trial and consisted of 6 trials/day for 3 days. 1.5 mg of DAPT

(0.15 ml of a 10 mg/ml suspension in 5% ethanol/95% corn oil)

was administered s.c. twice daily 2 days prior to testing and

throughout water maze testing. No adverse effects were observed.

There were four groups of mice: Ts65Dn +/2 DAPT, controls

+/2 DAPT. Each group consisted of 6 animals. A 1.22 meter

diameter, white, plastic, circular pool was filled to a depth of

33 centimeters with 22uC+/21uC water made opaque with

gothic white, non-toxic, liquid tempera paint in a room with

prominent extra-maze cues. Mice were placed in one of 4 starting

locations facing the pool wall and allowed to swim until finding a

15 centimeter diameter, white platform submerged by 0.75 cm

for a maximum of 60 sec. On finding the platform, mice

remained on the platform for 20 seconds before being removed

to the home cage. If mice did not find the platform within 60 sec,

they were guided to the platform by the experimenter and after

remaining on the platform for 20 sec were removed to the home

cage. Latency to reach the platform, distance traveled to reach

the platform, swim speed, time spent in each of 4 quadrants and

time spent along the walls were obtained using automated video

tracking software from Noldus (Ethovision). Mice were trained

with 4 trials/day with an inter-trial interval of 1–1.5 min for 11

consecutive days between 8 AM and 1 PM. A probe trial (free

swim with the submerged platform removed) was performed as

the first trial of the day on day12. The number of platform

location crossings during the probe trial was calculated and

analyzed with Student’s t-test while latency to platform, swim

speed and thigmotaxis (tendency to remain near walls) were

analyzed using ANOVA with repeated measures. In separate

experiments, a visual cue was attached to the platform and extra-

maze cues were covered with white plastic curtains. Latency to

reach the visible platform was recorded for 4 different, random

platform locations with an intertribal interval of 1 min. The

visible platform test examines the animal’s gross visual ability.
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