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Abstract

Three-dimensional digital atlases are rapidly becoming indispensible in modern biology. We used serial sectioning
combined with manual registration and segmentation of images to develop a comprehensive and detailed three-
dimensional atlas of the honeybee head-neck system. This interactive atlas includes skeletal structures of the head and
prothorax, the neck musculature, and the nervous system. The scope and resolution of the model exceeds atlases previously
developed on similar sized animals, and the interactive nature of the model provides a far more accessible means of
interpreting and comprehending insect anatomy and neuroanatomy.
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Introduction

Until recently, the fields of anatomy and histology have relied

on dissection and description, drawings, and sectioning of

specimens. These approaches are limited by an inability to

describe a structure in three dimensions. Two-dimensional

description, even from multiple points of view, is often insufficient

to relay the depth and complexity of a biological three-

dimensional (3D) structure. Microscopes and imaging techniques

are now sufficiently advanced to allow large scale collection and

analysis of 3D data [1–6]. These approaches have led to the

generation of digital 3D atlases of various structures, e.g. rat [7],

human [8], and insect brains [4,9].

Digital 3D atlases have a number of advantages. Digital models

can be easily viewed from many directions, providing an intuitive

3D representation. The ability for the user to interact with a 3D

model greatly facilitates the learning process. Digital models can

also be easily disseminated to interested parties, and steadily

enhanced over a period of time.

For these reasons, we undertook the development of a

comprehensive 3D model of the honeybee neck. The head-neck

system is of particular interest in insects (which have fixed eyes),

because the entire head must be stabilised during movement to

overcome visual problems, such as disambiguating rotational from

translational optic flow [10,11]. We chose the honeybee because it

is one of the organisms commonly taken as being representative of

flying insects. The morphology of the honeybee neck has been

described on three previous occasions. Snodgrass [12] described

the entire ‘‘miniature machine’’, including the skeletal structure

and musculature of the neck. Markl [13] described the skeletal

structure, musculature and innervation pattern of the thorax.

Schröter et al. [14] described the morphology of two of the neck

muscles in detail, and also identified individual innervating motor

neurons.

While these studies are well documented and illustrated, they

suffer from an inability to describe complex 3D information, due

to the two-dimensional mode of presentation. In the present study

we address this issue by providing a 3D digital atlas of the

honeybee neck. In generating the atlas we aimed to: validate the

morphological descriptions of earlier studies; provide an accurate

representation of external and internal prothorax morphology in

an easily interpretable format; and use the 3D model as a tool for

predicting muscle function.

Results

The complete interactive model is available for download (Fig.

S1). For orientation purposes, Fig. 1 shows orthogonal views of the

model. Table 1 provides an overview of the attachment points of

each of the neck muscles, the innervating nerves, the probable

functions of the muscles, and any points of contention with

previous studies. Except where otherwise indicated, the terminol-

ogy used arises from Snodgrass [12].

Head structure
The weight of the head is borne by the direct neck muscles,

which insert onto a thickened ridge of cuticle surrounding the

foramen magnum. Around this ridge, a number of thickened

foldings of the head cuticle are present (illustrated in colour code in

Fig. 2). Of interest are the two supraforaminal apodemes (that attach to

several neck muscles); the occipital condyles, upon which the pivot

points of the prothorax sit; and the subforaminal cup (that attaches to

the direct neck depressor muscle).

Propectus
The dorsal neck membrane forms a cone of flexible connective tissue

that connects the foramen magnum of the head to the cuticular

structures of the prothorax (Fig. 1B, C). The only rigid tissues

directly connecting the head and neck (the occipital processes) project

inwards into the foramen magnum and articulate with the

occipital condyles of the head (Fig. 2C, 2D). The occipital

processes are the most anterior projections of a pair of bilaterally
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symmetrical structures, termed the propectuses. Each propectus is a

section of cuticle containing a number of infoldings and

protrusions, including the sternal (ventral) plate, pleural (lateral)

plate, horizontal apodeme, cervical apodeme and pleural apophysis (Fig. 2).

Each of these structures serves as the attachment site for one or

more muscles. The sternal plates of the two propectuses run

towards the midline but do not unite (Fig. 2F); flexible connective

tissue joins the medial margin of each sternal plate to the overlying

endosternum. A small medially projecting propectal condyle marks

the site of articulation between the propectus and endosternum

(Fig. 2F), which are bound by a strong tendon.

Endosternum
Overlying the sternal plates of the propectuses is the endosternum.

Ventrally, the basal surface of the endosternum forms part of the

protective exoskeleton, interfacing anteriorly with the propectuses,

and posteriorly with the forelegs. The basal plates provide solid

foundations for large upward extending infoldings that provide

Figure 1. Orthogonal views of the reconstructed model. Left column: model with no translucency. Middle column: model with exoskeleton
translucent. Right column: only exo- and endo-skeletal components shown. Surface structures partially translucent. (A) Frontal view (minus frons and
mouthparts). (B) Side view. (C) Dorsal view. (D) Ventral view. Cx: coxa of the foreleg; DNM: dorsal neck membrane; H: head; Pn: pronotum; Pp:
propectus; Mn: mesonotum. D: dorsal; V: ventral; L: lateral; A: anterior; P: posterior.
doi:10.1371/journal.pone.0010771.g001
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protective housing for the nerve cord, and attachment points for

several muscles of the neck and forelegs. The endosternum is a

continuous structure that can be regionalized as follows (Fig. 3):

the basisternum, the ventral protective plate; the furcasternum, which

articulates with the coxae of the forelegs; the endosternal wings,

which envelop the nerve cord; and the furcasternal pits, supraneural

bridge and supraneural apodemes, which are all sites of muscle

attachment.

Pronotum
The pronotum is the dorsal plate of the prothorax, forming a wide

arc over the propectuses and encircling their pleural plates

ventrally (Fig. 4A). Both the anterior and posterior margins of the

pronotum are inflected to form the anterior and posterior pronotal

inflections (Fig. 4D). These inflections serve as sites of muscle

attachment, and also interface between the pronotum, the

propectuses, and the mesonotum. Other structural features are

the pronotal sulcus, a deep inflection visible externally, and the

spiracular lobes, which form protective coverings over the first pair of

spiracles (Fig. 4A). The reconstruction of the pronotum is not

complete as it was beyond the scope of the present work.

Mesonotum
The second notal plate, the mesonotum, serves two functions:

externally it provides a protective housing for the mesothorax;

internally it provides attachment points for several wing muscles

(Fig. 1). Only the anterior region of the mesonotum is of interest

here: the posterior mesonotum was not reconstructed. The most

notable feature of the anterior mesonotum is the infolding of the

body wall on the ventral rim (prephragma (anteriorly)) and first

phragma (laterally)) (Fig. 4C). The anterior surface of the

prephragma serves as an attachment point for several of the neck

muscles, while the posterior surface serves as the ventral

attachment point for wing muscle 71.

Dorsal neck membrane
The large gap between the anterior margin of the pronotum

and the foramen magnum of the head is bridged by a flexible

membrane. Ventrally the membrane forms a cushioning surface

between the occipital condyles of the head and the occipital

processes of the propectuses. The membrane also links the sternal

plate of each propectus to the head, thus forming a ring of soft

tissue around the foramen magnum (Fig. 4A).

Nervous system
The ventral nerve cord projects through the occipital foramen

below the tentorial bridge (Fig. 5D). The cord gives off two nerves

(IK1 and IK2) before forming the prothoracic ganglion (Fig. 5A).

Ten nerves emanate from the prothoracic ganglion, and these are

numbered consecutively from anterior to posterior.

Innervation to all of the neck muscles is provided by motor

neurons running through IK1 and IK2, and the first of the

prothoracic nerves, IN1 (Fig. 5). IK1 innervates two ventrally

located neck muscles. IK2 innervates many of the neck muscles

originating from the pronotum or mesonotum. IN1 is the largest of

the three cervical nerves, emanating in all directions to innervate

Table 1. Comparison of gross muscle morphology and function across three studies.

Type Name Insertion Origin Innervation Function Snodgrass [12] Markl [13]

Direct
neck muscle

40a SA (lateral) * Pph (lateral)* IK2 Head levator/abductor * Not described As described here

40b Same as 40a PPI (medial)* IK2 Head levator/rotator+ * Prephragma (medial)
+Head levator

As described here

41a FM (medial)* Pph (lateral)* IK2 Head levator/lateral
translator

* Not described As described here

41b Same as 41a Pph (medial) IK2 Head levator As described here As described here

42a SA (apical) HA IN1 Head levator/abductor+ +Head levator/rotator As described here

42b Same as 42a Pp (pleural) IN1 Head rotator/levator As described here As described here

42c Same as 42a Pp (sternal) IN1 Head rotator/levator As described here As described here

43 SA (lateral) SNBE (lateral & medial) IN1 Head levator/abductor+ +Head levator As described here

44 SC SNBE (anterior) IK1 Head depressor As described here As described here

Indirect neck
muscle

45 Pn (medial) Pph (medial) IK2 Pn retractor+ +Pn depressor/Mn retractor As described here

46 CA (medial) Pn (lateral)* IK2 OP levator/abductor/
rotator+

* Pph (lateral)
+Not described

As described here

47 Same as 46 PPI (medial) IK2m OP levator+ +Not described m Not described

48 HA (anterior) PPI (medial) IN1/IK2 OP levator/adductor/
rotator+

+Not described As described here

49 API (anterior) PA IN1 OP protractor As described here As described here

50 API (posterior) PA IN1 OP depressor/protractor+ +OP protractor As described here

51a/51b CA SNAE IK1 OP retractor/adductor+ +OP adductor As described here

Overview of gross morphology, innervation and function of the neck musculature as described here, by Snodgrass [12] and by Markl [13]. API: Anterior pronotal
inflection; CA: cervical apodeme of propectus; HA: Horizontal apodeme of the propectus; Mn: Mesonotum; FM: Rim of foramen magnum; OP: Occipital process; PA:
pleural apophysis of propectus; Pph: Prephragma of mesonotum; PPI: posterior pronotal inflection; Pn: Pronotum; Pp: propectus; SA: Supraforaminal apodeme of the
head; SC: Subforaminal cup; SNAE: Supraneural apodeme of endosternum; SNBE: Supraneural bridge of endosternum. Symbols: (*) and (m) indicate that the anatomy or
innervation of a muscle described here differs to that described by Snodgrass [12] and Markl [13] respectively; (+) indicates that the function of a given muscle is
considered to be different to that described by Snodgrass [12].
doi:10.1371/journal.pone.0010771.t001
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several muscles of the neck and forelegs. A forward projecting

branch of IN1 runs directly into the cervical apodeme of the

propectus (Fig. 5D). It is densely packed with small diameter

neurons that innervate mechanoreceptive hair cells, which detect

movement between the occipital condyles of the head and the

occipital processes of the propectuses. The second of the

Figure 2. The head and propectuses. (A) Oblique frontal view. (B) Posterior view of the head. (C) Enlarged view of the foramen magnum and
surrounding structures. (D) Articulation of the right propectus with the head (left propectus not shown). (E) Posterolateral view. (F) Dorsal view
including the endosternum. White arrow marks a protruding flange that may prevent over-protraction of the propectus. FM: foramen magnum; OC:
occipital condyles; PC; propectal condyle; PGL: postgenal lobes; PPl: pleural plate of propectus; SPl: sternal plate of prospectus; TP: tentorial pits.
Colour codes as in Fig. 1.
doi:10.1371/journal.pone.0010771.g002
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prothoracic nerves, IN2, runs to the floor of the propectus, where

it presumably innervates a similar battery of mechanoreceptors

registering movement between the propectuses and the basister-

num. Similar prosternal organs have been described in Calliphora

[15].

The forward mechanoreceptive branch of IN1 gives off a

slender branch that unites with IK2 (arrow in Fig. 5D). Recurrent

connections between the last nerve of one ganglion, and the first

nerve of the succeeding ganglion is a feature of insect neural

anatomy ([16]). Posteriorly, IN1 also unites with IN6 (Fig. 5A), as

also occurs in locusts [16].

Direct versus indirect head rotations
Snodgrass [10] originally described two possible ways to move

the head: direct and indirect. For direct movement, the head is

moved relative to the supporting structures of the neck. Direct

movement is elicited by muscles acting directly upon the head. For

indirect movement, the head is not moved relative the supporting

structures of the neck, but rather it is the supports themselves that

are moved. Fig. 6 gives examples of direct and indirect head

rotations.

Direct head rotation is complicated because the head is

articulated about two pivot points. The pivots are located where

the occipital condyles of the head meet the occipital processes of

the propectuses. A consequence of articulation upon two pivot

points is that the head is more easily rotated in pitch, than in roll

or yaw. For roll or yaw to occur, the head must be released from

its articulation with one of the pivot points.

Indirect head rotation is likely to be more effective in roll and

yaw than in pitch. From consideration of Fig. 6, it is apparent that

upwards pitch by indirect means is unlikely to occur because it

would compress the gut, nerve tract and other soft tissues between

the propectuses and pronotum. Head yaw can be achieved by

protraction of one occipital process and retraction of the other. In

reality it appears that the two propectuses are tightly coupled by a

length of ligament-like tissue connecting the propectal condyle to

the endosternum. Movement of one propectus induces movement

of the endosternum, which in turn induces movement of the other

propectus. However, rather than movement of one propectus

relative to the other, indirect head yaw may be achieved by

deformation of the propectus. Cross-sections of the propectuses

showed that the sternal and pleural walls are very thin, suggesting

Figure 3. The endosternum. (A) Frontal view of endosternum and propectus. (B) Lateral view of endosternum, right propectus and right fore coxa.
(C) Posterior view of endosternum, propectuses and fore coxae. (D) Oblique posterodorsal view of endosternum, propectuses, coxae and dorsal neck
membrane. NF: neural foramen; Colour codes and labels as in Fig. 1.
doi:10.1371/journal.pone.0010771.g003
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considerable flexibility. Gently tugging the cervical apodemes of a

dissected bee backward confirmed that the propectus is very

flexible, allowing retraction of the occipital process while the base

of the propectus remains stable.

Indirect roll can be achieved by rotation of the propectus-

endosternum unit within the thorax. Indeed, roll rotation of the

propectuses results in roll of the entire sternal base, which may

then be supplemented by direct head roll.

Five direct muscles (muscles 40–44), and seven indirect muscles

(muscles 45–51) [12,13] have been described previously. Here we

pay particular attention to the functions of the neck muscles, which

we often find to be contentious with those attributed by Snodgrass

[12] (see Table 1).

Direct neck muscles—40 and 41
Both muscles 40 and 41 consist of two subunits (‘a’ and ‘b’) that are

conjoined by a single tendon. The tendon of muscles 40a and 40b

inserts laterally on the dorsal rim of the foramen magnum (Fig. 7A),

or possibly fuses with the dorsal neck membrane; the tendon and

membrane could not be differentiated here, and fusion of the tendon

with the neck membrane has been described previously in locusts

[16]. Muscle 40a runs laterally from the tendon to its origin on the

prephragma of the mesonotum, while 40b runs medially from the

tendon to its origin on the midline of the posterior pronotal inflection

(Fig. 7A). The tendon of muscles 41a and 41b inserts on the centre of

the dorsal rim of the occipital foramen. Muscle 41a runs laterally

from the tendon to its origin on the prephragma, adjacent to 40a

(Fig. 7A). Muscle 41b diverges laterally from the conjoined tendon, to

attach to the medial aspect of the prephragma (Fig. 7A). Innervation

to muscles 40 and 41 is given by IK2, which forms several points of

contact with each subunit (Fig. 7B).

Snodgrass [12] described muscles 40 and 41 as levators of the

head. Their attachments to the dorsal side of the neck foramen

suggest a role in both upwards translation and upwards pitch of

the head. The insertions of all subunits except 41b also suggest

additional functions. Specifically, the lateral insertions of 40a

suggest a role in generating head yaw. Muscle 40b, which shares

the same tendon attachment to the head but projects dorsome-

dially rather than laterally, is likely to produce head roll to the

contralateral side. Contraction of 41a may generate lateral

translation of the head, though its dominant function is clearly

head levation. As 40a and 41a curve underneath muscles 47 and

48, the direction in which the tendons are pulled depends on the

rigidity of these muscles, with greater contraction of 47 and 48

progressively limiting movement in the yaw and roll axes

respectively.

Figure 4. The pronotum, mesonotum and dorsal neck membrane (DNM). (A) Anterior view of skeletal structures of the prothorax. (B) Same
as (A), posterior view. (C) Same as (A), lateral view. Pronotum not shown to expose the prephragma, first phragma and DNM. (D) Enlarged posterior
view of pronotum and propectus. IM: intersegmental membrane; PPh: prephragma of the mesonotum; 1 Ph: first phragma of the mesonotum; PS:
pronotal sulcus. Colour codes and labels as in Fig. 1.
doi:10.1371/journal.pone.0010771.g004
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Direct neck muscles—42
A large muscle composed of three branches that converge

anteriorly to a common tendon that inserts on the tip of the

supraforaminal apodeme of the head (Fig. 7C). Subunit 42a runs

horizontal and attaches to the horizontal apodeme of the

propectus. With some difficulty, subunits 42b and 42c could be

dissociated in semi-thin sections by differences in staining intensity

(42b being lighter). 42b and 42c form broad attachments on the

pleural and sternal plates of the propectus respectively. All

subunits are innervated by IN1 (Fig. 7D).

The insertion point of the tendon suggests that all subunits

induce upwards pitch of the head. Contraction of 42a also

generates substantial yaw in the ipsilateral direction, while 42b and

42c, which project further ventrally and laterally, are likely to

generate strong head roll to the ipsilateral side: this is probably

their dominant function.

Direct neck muscles—43 and 44
Muscle 43 inserts just lateral of the supraforaminal apodeme of the

head (Fig. 7E, 7F). Posteriorly, the muscle fibres bifurcate into two

branches, one of which attaches to the lateral wall of the supraneural

bridge of the endosternum, and the other on the medial, posterior

and dorsal walls (Fig. 7F). The two branches of 43 could not be

followed anteriorly, as the muscle fibres did not visibly differ in cross

section. Both branches of 43 receive input from IN1 (Fig. 7F). The

lateral attachment points and posterior projection of 43 suggests that

this muscle is a powerful levator and yaw rotator of the head.

The largest of the direct neck muscles, muscle 44 attaches via a

long tendon to the inner surfaces of the subforaminal cup of the

head (Fig. 7E). The scoop shaped tendon encloses the anterior

ends of the muscle fibres, which expand posteriorly before

attaching to the endosternal wings and supraneural bridge of the

endosternum (Fig. 7E, 7F). Muscle 44 consists of 5 discrete muscle

subunits, each possessing anatomically distinct attachment points

[14]. These subunits were not reconstructed here.

Innervation to 44 is provided solely by several branches of IK1

(Fig. 7F). Muscle 44 is the only direct neck muscle whose

contraction can result in depression of the head, and this is its

major function. Its off-midline insertion also suggests it may have a

role in controlling head yaw.

Indirect neck muscles—45
A stout muscle that connects the anterodorsal wall of the

pronotum, to the mediolateral aspect of the prephragama (Fig. 8A–

Figure 5. Ventral nerve cord (VNC) and nerves innervating the neck muscles; IK1, IK2 and IN1. (A) Dorsal view of brain, VNC and nerves. Arrow
marks where IN1 meets IN6. (B) Posterodorsal view of nervous system with surrounding skeletal structures. Mesonotum shown translucent to expose full
extent of IK2. (C) Lateral view of same with only right prospectus and mesonotum (translucent) shown. (D) Enlarged view of nerve cord exiting foramen
magnum. For clarity only left IK1, and right IK2 and IN2 are shown. Arrow marks location where IK2 meets IN1. Colour codes and labels as in Fig. 1.
doi:10.1371/journal.pone.0010771.g005
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C). Innervation is provided by IK2. Snodgrass [12] considers this

muscle as a depressor of the pronotum, or possibly retractor of the

mesonotum. From our reconstruction it is unclear how contraction

of this muscle could result in either of these functions. Rather it

would seem that this muscle is a strong retractor of the pronotum.

The very short length of the muscle (250 mm) suggests that its

range of movement is very limited. Probably the major function of

this muscle is simply to anchor the pronotum to the mesonotum.

Indirect neck muscles—46, 47 and 48
Muscles 46 and 47 diverge from a common tendon that inserts

on the cervical apodeme of the propectus. The tendon diverges,

uniting laterally with muscle 46 which originates from the lateral

walls of the pronotum, and medially with muscle 47, which

originates from the posterior pronotal inflection (Fig. 8A–C).

Markl [13] describes muscle 46 as being innervated by IK2, but

was unable to determine which nerve innervates muscle 47. We

find here that both 46 and 47 are innervated by IK2.

Muscle 48 is a large muscle that inserts broadly on the

horizontal apodeme of the propectus. The muscle originates from

the medial-most aspect of the posterior pronotal inflection

(Fig. 8A–C). Muscles 47 and 48 run in very close association in

this area, and it was difficult to distinguish the two fibre bundles.

Muscle 48 is primarily innervated by IN1. Several branches of IK2

run in very close association with the external surface of muscle 48,

but only one branch of IK2 appeared to breach the muscle surface

and innervate the underlying fibres. Markl [13] also attributed

innervation of 48 to both IN1 and IK2.

Snodgrass [12] did not describe the functions of these muscles,

possibly because they are quite difficult to infer. Contraction of

each of the three muscles results in levation of the occipital

processes, suggesting possible roles in head pitch or upwards

translation. However, the insertions of at least two of these muscles

suggest that their dominant function is quite different. The medial

insertion of 46 indicates that this muscle abducts and externally

rotates the occipital process of the propectus, while the lateral

insertion of 48 means that this muscle adducts and internally

rotates the occipital process. Thus, these two muscles act

antagonistically, possibly bringing about indirect head roll via

rotation of the propectus-endosternum unit.

Indirect neck muscles—49 and 50
Muscles 49 and 50 are closely associated and similar in

appearance. Both muscles are fan shaped with broad basal origins

located between the anterior pronotal inflection and the pleural

wall of the pronotum. Tapering posteriorly, both muscles overly

but do not attach to the pleural walls of the propectus; their

insertion point is the apical tip of the pleural apophysis (Fig. 8D–

F). Innervation to both muscles arises from IN1.

Snodgrass [12] describes both muscles as protractors of the

propectus, as suggested by their posteriorly projecting insertions. We

agree that both muscles protract the propectuses, but, we consider

Figure 6. Schematic diagram illustrating direct and indirect head rotation around the three primary axes. Left: the head and propectus
from the side in their natural position, after direct upward head pitch, and after indirect upward head pitch. Middle: the head and prospectus from
above in their natural position, after direct rightward head yaw, and indirect rightward head yaw. Right: the head and prospectus as seen from the
back in their natural position, after direct rightward head roll, and indirect rightward head roll. In all cases the head is rotated by 20u. Dark grey
indicates the occipital processes, filled circles indicate the pivot points of the head.
doi:10.1371/journal.pone.0010771.g006
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this to be the dominant function only for 49. Muscle 50 is a depressor,

providing strong anchorage and support to the posterior bases of the

propectuses, and possibly contributing to ipsilateral head roll.

Indirect neck muscles—51
Snodgrass [12] and Markl [13] describe muscle 51 as a single

muscle, while Schröter et al. [14] describe 51 as being composed of

two closely related but anatomically distinct subunits (dorsal and

ventral). Our results agree with the latter study, and in keeping with

the established nomenclature we term the subunits 51a (dorsal) and

51b (ventral). Both subunits connect the cervical apodeme of the

propectus to the supraneural apodeme of the endosternum (Fig. 8E–

F). Anteriorly they are divided by a dense, forward projecting branch

of IN1, posteriorly they are divided by the supraneural apodeme—

Figure 7. The direct neck muscles. (A) Dorsal view of muscles 40a–41b. Pronotum and mesonotum translucent. (B) Posterior view of same
showing innervation by IK2. Mesonotum translucent. (C) Side view of right muscle 42a/b/c and right propectus. (D) Oblique posterodorsal view of
same showing IN1 innervation. (E) Lateral view of muscles 43 and 44. (F) Dorsal view of left muscle 43 and right muscle 44 showing innervation by left
IN1 and right IK1 respectively. Colour codes as in Fig. 1.
doi:10.1371/journal.pone.0010771.g007
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51a attaching to the dorsal surface of the apodeme and 52b to the

ventral surface (Fig. 8E). Both 51a and 51b are innervated by IK1.

Snodgrass [12] states that 51 is an adductor of the occipital

processes. Here we consider the predominant function of 51a and

51b to be retraction of the occipital processes, with secondary

adduction action. When muscle 51 contracts, the cervical

apodemes are permitted to move inwards into the prothoracic

cavity because the flexible nature of the propectal plates allows

outward deformation of the propectuses. Thus muscle 51

generates indirect head yaw to the ipsilateral side.

Indirect neck muscles—52
The last of the indirect neck muscles connects the base of the

endosternum to the supraneural bridge of the mesothoracic

Figure 8. The indirect neck muscles. (A) Anterior view of muscles 45–48. Pronotum and mesonotum translucent. (B) Dorsal view of same. (C) Posterior
view of same showing innervation by IN1 (left) and IK2 (right). Mesonotum translucent. (D) Side view of muscles 49–51. Pronotum translucent. (E) Side view
of same with overlying pronotum and left propectus not shown. (F) Dorsal view of 49 and 50 (right), and 51a and 51b (left). Innervation by IN1 (right) and IK1
(left) also shown. 49 and 51a shown translucent to expose underlying 50 and 51b, respectively. Colour codes as in Fig. 1.
doi:10.1371/journal.pone.0010771.g008
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endosternum, and is thus a retractor of the propectus [12]. This

muscle lay beyond the posterior limits of our section series and was

not reconstructed.

The leg muscles
Nine other muscles attach to the propectus, endosternum, or

anterior pronotum. These are all muscles that are responsible for

promoting (53a/b, 54, mcr) or remoting the fore coxae (55, 56) or

trochanter (61a/b) (Fig. 9). While the dominant function of these

muscels is to move the legs, it is possible that contraction of these

muscles causes indirect head movement by depression of the

propectus (53, 57, 61) or endosternum (54, 56), or flexion of the

pronotum (55), thus linking movements of the forelegs to movements

of the head. Certainly, these muscles provide substantial rigidity

between the propectus, endosternum and coxae.

Here we also describe three muscles not described by Snodgrass

[12]. Muscle 53b connects the anterolateral rims of the coxae,

running adjacent to 53a, but separated by a sheath for most of its

length before terminating on the lateral extremes of the

supraneural bridge of the endosternum (not the propectus as for

53a). Muscle 61b merges with the muscle mass of 61a posteriorly,

where it inserts on the anteromedial rims of the trochanter.

Anteriorly, 61b diverges from 61a to attach on the underside of the

endosternal wings rather than the pleural walls of the propectus.

The fibres composing 61b are clearly smaller and of different type

than those of 61a. The last of the undescribed muscles runs from

the lateral extents of the cervical apodemes, crosses the midline of

the body, and inserts anterolaterally on the contralateral coxae.

Markl [13] also appears to have recognised these muscles, which

he called the musculus cruciatus prothoracis.

Discussion

We developed a comprehensive 3D digital atlas of the head-neck

system of the honeybee. The model was generated from serial

sections, because this was the only approach available to us capable of

providing sufficient resolution to reconstruct the fine details of skeletal

structures and nerve branches. The laborious nature of reconstruc-

tion from serial sections limited our sample size to one. Given that the

anatomy of the honeybee neck described here agrees very closely with

three earlier studies [12–14], we consider this atlas to be

representative of the worker honeybee. Nevertheless, it is possible

that the location of muscle attachment points, muscle masses, or

cuticle rigidity at critical stress points varies between individuals of the

same species. Such variability could lead to errors in biomechanical

simulations based upon this work.

Mechanics of skeletal morphology
The high resolution of our model, combined with the ability to

independently show or hide individual muscles and skeletal

Figure 9. The leg muscles of the propectus, endosternum and pronotum. (A) Promoters of the fore coxae: dorsal view; (B) anterolateral view
of right propectus, right 53a/b, left 54 and left mcr. (C) Remoters of the fore coxae: dorsal view; (D) Posterior view of right 55, right 56, left 61a
(translucent) and left 61b. Colour codes as in Fig. 1.
doi:10.1371/journal.pone.0010771.g009

3D Atlas of the Honeybee Neck

PLoS ONE | www.plosone.org 11 May 2010 | Volume 5 | Issue 5 | e10771



structures greatly aided our understanding of the head-neck

system. We concluded that the head articulates upon two pivot

points (the occipital processes of the propectuses). This makes the

head-neck joint of the bee especially well adapted for rotations in

pitch (driven by direct muscles). Conversely, we concluded that

mechanical and anatomical constraints make mechanisms using

indirect muscles most effective for generating head roll and yaw

(via deformation of the propectus).

The two levels of articulation, via direct and indirect muscles,

bear similarities to the inner and outer rings of a gimbal. Rotation

of the propectuses results in rotation of the head, which can then

be rotated independently of the propectuses. Such a two-

component gimbal system provides a method of allowing complex

movements of the head in several axes. Gimbal-like mechanisms

have also been proposed when describing the coxa-trochanter

chain in the insect leg [17].

Muscle morphology
Five direct neck muscles (muscles 40–44) and seven indirect neck

muscles (muscles 45–51) have been classically described in the

honeybee [12]. We consider this number to be an over simplification,

because at least two of the direct neck muscles (muscles 40 and 41)

clearly consist of two branches, each of which exert force in a different

direction, and can therefore be considered a separate muscle.

Schröter et al. [14] also showed that neck muscles 44 and 51

are composed of five and two subunits respectively. Each

subunit is anatomically separable, and each possesses unique

attachment points on the endoskeleton and tendon. Some

subunits may be differentiated on the basis of staining intensity

or muscle fibre size, indicating that subunits may be composed

of different fibre types [14], which is not unusual in

invertebrates [18].

It was not deemed necessary to reconstruct subunits of muscles

where all subunits exert force in a similar direction. However,

observation of the sequential section series, and of the recon-

structed surfaces clearly supported the conclusions of [14].

Additionally, we found here that muscle 43 bifurcates into two

branches, suggesting that this muscle also consists of two distinct

subunits. In this case both bundles of muscle fibres were of similar

size and appearance.

Muscle function
The accessibility of the model generated here allowed us to

closely consider the functions of the neck muscles. For several of

the neck muscles, we assigned different functions to those given

previously [12] (summarised in Table 1). It is apparent that

contraction of a single neck muscle may result in head

movement in several degrees of freedom. Therefore, contraction

Figure 10. The steps involved in generation of the three-dimensional atlas. (A) Imaging: multiple images of each section were stitched
together to create a single high-resolution image. Outline of multiple images are visible as white boundaries on the black background. (B) Alignment:
images of each section were aligned relative to each other. Registration was quickly verified by volume rendering the image stack; the bee head and
thorax are shown from the top (left) and side (right). (C) Segmentation: every structure of interest was manually outlined in each of the aligned
sections. Different colours overlaid over this cross-section of the prothorax represent different structures. The boxed area illustrates the region shown
in Fig. 11. (D) Model generation: mesh models were created from stacks of segmented images using Amira 3.1. (E) Redrawing: mesh models were
greatly smoothed, simplified, and corrected for artefacts by manually redrawing using Silo 2.1. The approximate total number of polygons in each of
the mesh models is indicated by n.
doi:10.1371/journal.pone.0010771.g010
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of a neck muscle may cause a combination of translation, pitch,

roll and yaw. As a result a single muscle may be useful in many

different situations, and may receive a variety of visual and non-

visual sensory inputs [14,19]. The direction in which the head

moves when a given neck muscle contracts is dependent on

which other neck muscles are contracting at the same time. It

follows that the most useful investigation of muscle function in

such a system is not to consider the action of each muscle in

isolation, but rather to consider which muscle interactions must

occur to produce common head movements exhibited by bees.

Correspondingly, we aim to use the 3D model as a tool for

investigating synergistic muscle actions in a series of following

studies. Similarly, electrical stimulation of combinations of

muscles or groups of muscles, and high-speed video observations

of head rotations in tethered bees may provide additional

insights into the physiological actions and interactions of the

neck muscles.

Materials and Methods

Animals
Foraging female bees (Apis mellifera) were obtained from hives at

the Australian National University. A total of 7 samples were

embedded. Of these, a single sample was selected for 3D

reconstruction on the basis of minimal tissue damage, good

infiltration of the embedding agent, and a natural head position.

Histology
Cold anaesthetised bees were killed by gently cutting through the

thorax just posterior to the first coxae, then submerging the head and

prothorax in fixative (3.7% formaldehyde, 2.5% glutaraldehyde in

0.01 M phosphate buffered saline). The head capsule was exposed by

removing the mouthparts and frons. Small incisions were made in the

compound eyes and thorax to enhance fixative penetration. Samples

were left in fixative at 4uC overnight. Samples were postfixed in 1%

Figure 11. Representative image contrast. (A) Enlarged view of the marked region of section shown in Fig. 10C. The original image before
segmentation is shown. Section was taken in a transverse plane, at a level near the anterior margin of the endosternum. The ventral direct neck
muscles and their innervating nerves are visible. (B) Histogram of intensity values of the image shown in (A).
doi:10.1371/journal.pone.0010771.g011
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phosphate buffered osmium tetroxide, dehydrated through a graded

acetone series, and embedded in an Araldite 502/Epon 812 resin.

Fixation, dehydration and infiltration times were reduced by

microwave radiation with concurrent vacuum pressure (Pelco

BioWave 34700-230).

3D Reconstruction
The specimen was serially sectioned with a diamond knife

(Diatome, HistoJumbo) at 1 mm intervals on a Reichert-Jung

ultramicrotome. Every tenth section was retained (resulting in a

total of 304 sections), post-stained with toluidine blue and imaged

on a Zeiss Axioplan 2 equipped with a Zeiss MRc camera. The

large size of the sections relative to the high resolution required to

resolve small nerve fibres necessitated imaging regions of each

section individually, then stitching the multiple images together

(Fig. 10A). This was facilitated using a semi-automated panoramic

imaging module on the Zeiss Axioplan 2 (Zeiss AxioVision

Panorama module). The outer boundaries of images were padded

with black pixels, so that all resized images consisted of identical

pixel dimensions (317163012 pixels) (Matlab, The Math-

Works). The dimensions of the entire block were approxi-

mately 4.163.963.0 mm, with voxel (mm/pixel) dimensions of

1.28961.289610 (width6height6depth).

Images were imported into Amira 3.1 (Visage Imaging), and

manually aligned such that they were deemed to have the best

possible fit. Image registration could be quickly verified by volume

rendering a down-sampled version of the entire image stack

(Fig. 10B). After alignment, each image was segmented into

discrete components by manually tracing every structure of

interest (Fig. 10C). The segmentation processes was performed

with little prior knowledge of the honeybee neck anatomy.

Anatomical components reconstructed in the model were later

identified by comparison to earlier studies of honeybee neck

anatomy [12–14]. In general, image contrast was sufficient to

allow segmentation of objects as small as 5–10 mm in diameter,

such as fine nerve branches (Fig. 11). Contrast often varied little

between the muscle fibres of individual muscles, making

distinction of neighbouring muscles difficult. In these cases, the

ability to follow muscle fibres by moving back and forth between

adjacent serial sections greatly facilitated the segmentation process.

Occasionally, regions of a section were obviously distorted and

could not be reliably used for alignment or segmentation. In these

cases, the region in question was segmented by interpolating

between the two adjacent sections, or by using segmented regions

from the previous section.

Following segmentation, Amira 3.1 was used to generate a mesh

model of each structure of interest. Because of the large size and

number of images, it was necessary to perform the segmentation and

mesh generation process in blocks of approximately 50 images. The

meshes generated by Amira (Fig. 10D) suffered a number of

problems: discontinuities often occurred in clearly continuous

structures; the boundary between sections appeared artificially step-

like, due to the high voxel size in the z-dimension; the meshes had a

very high polygon count. While the last two problems could be solved

with smoothing and simplification algorithms, this often led to the loss

of fine structural detail. To reduce polygon count and smooth

surfaces without a loss of fine structure, the original meshes were

imported into the 3D modelling software Silo (Nevercenter), and used

as a base over which new meshes were manually drawn (Fig. 10E). To

greatly facilitate this process, segmentation and redrawing were

performed on one side of the bee, with the opposing side generated by

mirror copying.

Individual fibres of some of the neck muscles were found to

splay out at their origin. In these cases this was represented by

drawing diverging muscle fibres. No attempt was made to

accurately trace individual fibres.

Supporting Information

Figure S1 Interactive three-dimensional atlas of the honeybee

head-neck system. Requires viewing with Adobe Acrobat Reader

8.0 or greater in order to utilise 3D tools.

Found at: doi:10.1371/journal.pone.0010771.s001 (21.44 MB

PDF)
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