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Abstract

Background: Duchenne muscular dystrophy (DMD) is the most common, lethal disease of childhood. One of 3500 new-born
males suffers from this universally-lethal disease. Other than the use of corticosteroids, little is available to affect the
relentless progress of the disease, leading many families to use dietary supplements in hopes of reducing the progression or
severity of muscle wasting. Arginine is commonly used as a dietary supplement and its use has been reported to have
beneficial effects following short-term administration to mdx mice, a genetic model of DMD. However, the long-term effects
of arginine supplementation are unknown. This lack of knowledge about the long-term effects of increased arginine
metabolism is important because elevated arginine metabolism can increase tissue fibrosis, and increased fibrosis of skeletal
muscles and the heart is an important and potentially life-threatening feature of DMD.

Methodology: We use both genetic and nutritional manipulations to test whether changes in arginase metabolism
promote fibrosis and increase pathology in mdx mice. Our findings show that fibrotic lesions in mdx muscle are enriched
with arginase-2-expressing macrophages and that muscle macrophages stimulated with cytokines that activate the M2
phenotype show elevated arginase activity and expression. We generated a line of arginase-2-null mutant mdx mice and
found that the mutation reduced fibrosis in muscles of 18-month-old mdx mice, and reduced kyphosis that is attributable to
muscle fibrosis. We also observed that dietary supplementation with arginine for 17-months increased mdx muscle fibrosis.
In contrast, arginine-2 mutation did not reduce cardiac fibrosis or affect cardiac function assessed by echocardiography,
although 17-months of dietary supplementation with arginine increased cardiac fibrosis. Long-term arginine treatments did
not decrease matrix metalloproteinase-2 or -9 or increase the expression of utrophin, which have been reported as
beneficial effects of short-term treatments.

Conclusions/Significance: Our findings demonstrate that arginine metabolism by arginase promotes fibrosis of muscle in
muscular dystrophy and contributes to kyphosis. Our findings also show that long-term, dietary supplementation with
arginine exacerbates fibrosis of dystrophic heart and muscles. Thus, commonly-practiced dietary supplementation with
arginine by DMD patients has potential risk for increasing pathology when performed for long periods, despite reports of
benefits acquired with short-term supplementation.
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Introduction

Fibrosis is a prominent feature of Duchenne muscular dystrophy

(DMD) that underlies many aspects of the disease that lead to

death. Respiratory insufficiency, the leading cause of death among

DMD patients, results from progressive fibrosis that diminishes the

contractile function of the respiratory muscles [1–3]. Respiratory

function is further compromised by thoracic deformities caused by

fibrosis of postural muscles [4–6]. Myocardial fibrosis, the second

leading cause of death in DMD [3,7,8], occurs in more than 96%

of DMD hearts and causes cardiac dysfunction that leads to heart

failure. Furthermore, fibrotic lesions in the myocardium can act as

foci of ventricular arrhythmias that are common and often fatal in

DMD patients [7,9,10]. Additionally, fibrosis of limb muscles

causes permanent, immobilizing contractures that impede ambu-

lation [11]. Despite the severe effects of fibrosis, little is known

about the mechanisms that induce the deposition of connective

tissue in dystrophin-deficient muscle and heart.
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The primary cause of DMD is a mutation of the dystrophin

gene that results in loss of dystrophin protein [12]. Dystrophin is a

member of a transmembrane complex of structural and signaling

proteins, called the dystrophin glycoprotein complex (DGC).

Dystrophin-deficiency causes great reductions in DGC proteins at

the sarcolemma [13] and this increases the membrane’s

susceptibility to mechanical damage and compromises functions

related to the loss of signaling proteins in the DGC [14–16].

Neuronal nitric oxide synthase (nNOS) is a member of the DGC

whose loss from dystrophic muscle plays a significant role in the

disease [17,18]. Because arginine metabolism by nNOS yields

production of nitric oxide (NO), a versatile and physiologically-

important signaling molecule, nNOS-deficiency produces numer-

ous defects in muscle homeostasis. Several investigations have

been directed toward identifying features of DMD pathology that

are primarily attributable to nNOS-deficiency by analyzing the

effect of expressing a muscle-specific nNOS transgene in the mdx

mouse model of DMD. In the nNOS transgenic mdx mice used for

those analyses, NO production by the muscles was returned to

wild-type levels [15]. Among the improvements observed, skeletal

muscles and hearts from mdx mice experienced large, significant

reductions in inflammation that were accompanied by reductions

in skeletal muscle fibrosis [our unpublished data] and complete

prevention of myocardial fibrosis that was attributable to nNOS

transgene expression [16]. However, whether those reductions in

fibrosis resulted from reductions in inflammation or some other

NO-mediated process could not be addressed by the findings.

The abilities of macrophages to drive tissue fibrosis and of NO

to function as an anti-inflammatory molecule support the

hypothesis that the reductions in mdx fibrosis that were achieved

by normalizing muscle NO production could be secondary to an

anti-inflammatory, NO-mediated effect. Recent findings support

this possibility by showing that mdx muscle is infiltrated by pro-

fibrotic M2a macrophages [19]. M2a macrophages express high

levels of arginase that metabolizes arginine to produce pro-fibrotic

agents such as polyamines and ornithine [20–23]. During the

early, acute stage of mdx pathology, mdx muscles are also invaded

by M1 macrophages that express high concentrations of inducible

nitric oxide synthase (iNOS). Arginine metabolism by iNOS in M1

macrophages produces toxic levels of NO that lyse muscle cell

membranes [19]. Mdx muscle is subsequently invaded by M2c

macrophages that do not express iNOS, but release IL-10 that can

inactivate the M1 phenotype [19,24]. Both M1 and M2a

populations are present during the acute, necrotic phase of the

mdx pathology where they compete for arginine, the common

substrate for iNOS and arginase [19]. However, deactivation of

the M1 phenotype by M2c macrophages can increase substrate

availability for arginase [19]. The shift of arginine metabolism

from iNOS to arginase, called the ‘‘arginine switch,’’ can create a

more pro-fibrotic environment [25].

Macrophage-driven fibrosis could be further exacerbated by

nNOS deficiency in mdx tissues because arginine oxidation by

NOS yields metabolites that inhibit arginase and that would be

lost in dystrophin-deficient muscles [26,27]. Nitrite, which is a

stable oxidation product of NO, also reduces arginase activity in

vitro [28]. In addition, NO can S-nitrosylate an active site cysteine

on ornithine decarboxylase (ODC), thereby inactivating the

enzyme [29]. This S-nitrosylation prevents ODC from converting

ornithine to polyamines that can promote proliferation of

fibroblasts involved in connective tissue production [29]. Collec-

tively, these findings show that NOS is a powerful negative

regulator of arginase, and the ability of arginase-derived

metabolites to promote fibrosis could be magnified by the loss of

nNOS from dystrophic muscle.

Tissue fibrosis may also be increased by dietary supplementa-

tion with arginine, increasing substrate availability for arginase.

For example, dietary supplementation with arginine for 2 weeks in

humans increased connective tissue deposition in wounds [30]. We

believe that dietary arginine supplementation for DMD patients

would have an even greater effect on increasing fibrosis because of

the lack of competition for arginine by nNOS. Unfortunately,

dietary, arginine-supplementation is a common practice for DMD

patients. Arginine supplementation by DMD patients stems from

reports that short-term, arginine treatment for 2–6 weeks has

beneficial effects in young, mdx mice that include increased

utrophin expression, increased force production, decreased

inflammation and decreased fiber damage [31–34]. However,

the effects of long-term, dietary, arginine supplementation in the

treatment of dystrophinopathy are unknown and have the

unexplored potential to promote tissue fibrosis.

In this study, we tested whether the loss of nNOS in nNOS-

null mutant mice or the displacement of nNOS from the

sarcolemma of muscle cells in a-syntrophin null mice was

sufficient to increase fibrosis or cause functional defects in the

heart. We then assessed whether macrophages that express

arginase-2 are present in the fibrotic lesions of mdx muscle, and

whether their arginase expression is modulated by cytokines that

promote the M2 phenotype. We then investigated whether

ablation of arginase-2 expression in mdx mice affects fibrosis of

skeletal muscle or the myocardium or influences defects in

cardiac function in mdx mice. Conversely, increasing arginase

substrate availability by dietary supplementation with arginine

was analyzed to assay for effects on mdx pathology. Collectively,

our findings reveal a new, profibrotic pathway that plays an

important role in the pathophysiology of muscular dystrophy, and

provide a caution for the use of long-term dietary supplemen-

tation with arginine for DMD patients.

Materials and Methods

Ethics statement
Experiments were conducted according to the National

Institutes of Health Guide for the Care and Use of Laboratory

Animals and the UCLA Institutional Animal Care and Use

Committee. The experimental protocols used in this investigation

were approved by the UCLA Animal Research Committee

(protocol #ARC-2004-216). UCLA is accredited by the Associ-

ation for Assessment and Accreditation of Laboratory Animal

Care (#A3196-01).

Animals
Mice were obtained from our breeding colony at the UCLA

vivarium. C57BL/6, mdx and nNOS -/- mice breeding pairs were

purchased from The Jackson Laboratory (Bar Harbor, ME, USA).

Mice that were null mutants for arginase-2 (A2ko null mice) were

provided by Dr. William O’Brien (Baylor College of Medicine,

Houston, TX, USA) and crossed onto the mdx background in our

lab. Mice that were null mutants for a-sarcoglycan (a-sko) mice

were provided by Dr. Stanley Froehner and Dr. Marvin Adams

(University of Washington, Seattle, WA, USA). C57BL/6 mice

were used for wild-type controls.

Only male mice were used in experimentation to avoid effects of

gender dimorphism on fibrosis [35]. Analyses were performed on

18-month-old mice, during late-stage mdx fibrosis. However,

nNOS null mice were analyzed at 12 months of age, which nears

their near-maximum lifespan due to gastric complications caused

by nNOS deficiency [36].
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Th2-stimulation of mdx muscle macrophages
Macrophages were isolated from mdx skeletal muscle as

previously described [15]. Muscle macrophages were resuspended

in Dulbecco’s modified eagle medium (DMEM) (Sigma, St. Louis,

MO, USA) containing 10% fetal bovine serum (Omega Scientific,

Tarzana, CA, USA) and plated at 16106 cells/ml. Cultures were

stimulated for 24 hours with either 10 ng/ml IL-4), 10 ng/ml IL-

10, 20 ng/ml IL-13 or no cytokine as controls (all cytokines, BD

Biosciences, San Jose, CA, USA. A minimum of five replicates per

condition was assayed at each age.

Arginase activity assay
Arginase activity was determined according to Corraliza et al

[37]. Cells were lysed with 0.2% Triton-100 (EMD Biochemicals,

Gibbstown, NJ, USA) containing a protease inhibitor cocktail

(Sigma). Cells were scraped into 10 mM MnCl2, 50 mM Tris-

HCl, pH 7.5 and heated to 56uC for 10 minutes to activate

arginase. Substrate hydrolysis was performed by adding 0.5 M

arginine, pH 9.7 to the cell lysate followed by a 1-hour incubation

at 37uC. The reaction was stopped by adding H2SO4 and H3PO4.

Samples were heated to 100uC for 45 minutes after adding a-

isonitrosopropriophenone and urea content was then measured

spectrophotometrically at 540 nm. Values were normalized to

protein content of the cell lysate. A minimum of five replicates per

condition was assayed at each age.

Arginine treatment
Mdx and C57BL/6 mice received drinking water supplemented

with 5 mg/ml of L- or D-arginine (EMD Biochemicals, San

Diego, CA) from 3 weeks to 18 months of age. This quantity of L-

arginine supplementation has been reported to decrease muscle

pathology in young, mdx mice and increase connective tissue

deposition during wound healing [30,38]. Water intake was

measured weekly and was similar between L- and D-arginine-

treated groups. Each treatment group consisted of 10 animals. D-

arginine is used in control treatments because it is a non-

metabolized, stereoisomer of L-arginine. This control differs from

previous investigations of the short-term effects of L-arginine

treatments on mdx pathology, which used saline [31–34].

Histology
Dissected tissues were stored in isopentane at 280uC until they

were sectioned at a thickness of 10 mm. Sections used for

immunostaining were fixed in acetone and endogenous peroxidase

activity was quenched with 0.03% hydrogen peroxide. Non-

specific binding was blocked with phosphate buffered saline (PBS)

containing 2% gelatin and 3% bovine serum albumin. Tissues

were incubated with primary antibodies for 3 hours followed by a

biotinylated, second antibody and horseradish peroxidase-avidin

D (Vector Laboratories, Burlingame, CA, USA). Signals were

visualized using 3-amino-9-ethyl carbazole (AEC, red) (Vector) as

substrate. Primary antibodies used were monoclonal rat anti-

mouse F4/80 for macrophages and rat anti-mouse CD4 purified

from supernatants of hybridoma cultures (hybridomas from

American Type Culture Collection, Bethesda, MD, USA),

monoclonal rat anti-mouse CD8 (Southern Biotech, Birmingham,

AL, USA), monoclonal rat anti-mouse Ly-6G for neutrophils

(Serotec, Raleigh, NC, USA) and polyclonal rabbit anti-murine

eosinophil granule major basic protein (a gift from Dr. J.J. Lee,

Mayo Clinic Scottsdale, AZ, USA) [39]. The concentrations of

inflammatory cells were measured by histomorphometry as

previously described [40]. Quantitative histological analyses were

performed on seven animals per genotype or treatment group.

Collagen staining was performed as described above, but with

the following modifications. The sections were not quenched with

hydrogen peroxide, and following a 3-hour incubation with

primary antibody the sections were incubated with host-appro-

priate fluorescent-conjugated secondary antibodies (Vector) for 1

hour. Primary antibodies used were rabbit anti-rat collagen type I

(Chemicon, Temecula, CA, USA), rabbit anti-rat collagen type III

(Chemicon), goat anti-human collagen type IV (Southern Biotech),

and goat anti-human collagen type V (Southern Biotech).

Hydroxyproline assay
Skeletal muscle (quadriceps, soleus, diaphragm and longissimus

dorsi) and cardiac fibrosis was determined by quantifying

hydroxyproline in tissues from 5 animals per group according to

the technique of Kivirikko et al. [41]. Hydroxyproline is present

almost exclusively in collagens, so that its quantification provides

an accurate assessment of the relative quantity of collagen in a

tissue.

Kyphotic index
Kyphosis was measured using the murine kyphotic index (KI) as

established by Laws and Hoey [5]. KI was measured from a

radiograph of a mouse in lateral recumbancy by drawing a line

(AB) between the posterior most aspects of C6 and L6 and a line

(CD) from AB to the point of greatest dorsal curvature of the spine.

KI is calculated as AB/CD. KI was measured in at least 6 animals

from each group, as indicated in the text.

Echocardiography
Two-dimensional, M-mode echocardiography and spectral

Doppler images were obtained to analyze cardiac function, left

ventricular chamber size, wall thickness, ventricular and valve

function and blood flow [42]. At least 5 mice per group were

sedated with isoflurane vaporized in oxygen, maintained at

physiological heart rates (500–600 bpm) and imaged using a

Siemens Acuson Sequoia C256 equipped with a 15L8 15 MHz

probe (Siemens Medical Solutions, Mountain View, CA). Data

were analyzed using the Acuson and AccessPoint software

(Freeland Systems LLC, Santa Fe, NM, USA).

Western blot analysis
Tibialis anterior muscles for western analysis were stored in

liquid nitrogen until homogenized in 40 volumes sodium dodecyl-

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) reducing

buffer (80 mM Tris-HCl pH 6.8, 0.1 M dithiothreitol, 70 mM

SDS and 1.0 mM glycerol) with protease inhibitor cocktail

(Sigma). Cultured macrophages were rinsed once with PBS before

collecting in SDS-PAGE reducing sample buffer with protease

inhibitor cocktail. All samples were heated to 100uC for 1 minute

and then centrifuged for 1 minute at 12,000 g. Protein

concentration of the supernatant was measured at 280 nm and

samples were separated on 5% (for utrophin) or 12% (for arginase)

SDS-PAGE gels. Proteins were transferred electrophoretically to

nitrocellulose membranes and the efficiency and uniformity of

loading was confirmed by staining membranes with 0.1% Ponceau

S (Sigma). Membranes were incubated in blocking buffer (0.5%

Tween-20, 0.2% gelatin and 3.0% nonfat dry milk) for 1 hour.

Blots were probed with rabbit anti-arginase-1/2 [43], rabbit anti-

utrophin (Novocastra, Bonnockburn, IL, USA) or mouse anti-

nNOS (BD Transduction Labs, San Jose, CA, USA) for 3 hours

followed by an anti-rabbit, HRP-conjugated antibody (Amersham,

Buckinghamshire, UK). Washes in PBS with 0.1% Tween

followed each incubation. Bands were visualized via enhanced
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chemiluminescence and quantified using Alpha Innotech imaging

software (Alpha Innotech, San Leandro, CA, USA). Each western

blot was then subsequently reprobed with a rabbit anti-skeletal

alpha-actin antibody (Sigma) to confirm that loading and protein

transfer were consistent between lanes.

Zymography
Gelatinase zymography was performed using a modification of

Kherif et al [44]. Frozen tibialis anterior muscles were homoge-

nized in 40 volumes of sample buffer (125 mM Tris, pH, 6.8, 20%

glycerol, 4% SDS). After centrifuging the homogenates at

12,000 g and 4uC for 5 minutes, protein concentration of the

supernatant was measured at 280 nm. We loaded 40 mg of each

sample onto 10% acrylamide gels impregnated with 1 mg/ml

gelatin and electrophoresed the samples at 4uC. The gels were

agitated in renaturing buffer (2.5% Triton-X100) for 1 hour with 3

buffer changes. Gels were switched to developing buffer, pH 7.5

(50 mM Tris, 0.2 M NaCl, 5 mM CaCl2, 0.02% Brij-35) for two,

30-minute washes at room temperature and 24 hours at 37uC.

Gels were stained overnight in Coomassie Blue R250 (Sigma) and

clear bands indicating matrix metalloproteinase activity were

visualized by destaining in 40% MeOH with 10% acetic acid.

Bands were quantified using Alpha Innotech imaging software.

Statistics
Statistical analyses were calculated using the one-way ANOVA

or the non-parametric, Kruskal-Wallis test. The p value was set at

p,0.05. Significant differences between groups were identified

using Tukey’s Post Hoc test.

Results

Disruption of nNOS expression or localization in the
absence of inflammation is not sufficient to induce
skeletal muscle or cardiac fibrosis

We tested whether fibrosis could result from disruptions in

nNOS expression or localization because nNOS expression is

greatly reduced in the hearts and muscles of mdx mice and previous

investigations showed that nNOS transgene expression in mdx

muscles reduces muscle fibrosis and prevents cardiac fibrosis [16].

We examined nNOS null mice [36] and a2sko mice in which

nNOS is displaced from the muscle cell membrane to the cytosol

[45,46], but do not experience chronic inflammation or myopathy.

Examination of skeletal muscles and hearts from nNOS null and

a2sko mice confirmed the absence of inflammation in both

models (Fig. 1A and B). Quantification of connective tissue in

skeletal muscles and hearts showed that neither the nNOS null nor

the a2sko mice developed fibrosis (Fig. 1D). Thus, neither the

absence of nNOS or its mislocalization is sufficient to induce the

fibrosis present in aged mdx muscles and hearts. Additionally,

nNOS null and a2sko mice were less kyphotic than the mdx mice

(kyphotic index (KI): mdx = 2.9 (sem = 0.04), n = 10; nNOS

null = 3.3 (sem = 0.2), n = 7; a2sko = 3.7 (sem = 0.08), n = 6)

showing that kyphosis that results from muscle fibrosis is

independent of reduced NOS expression or changes in nNOS

distribution.

Disruption of nNOS expression or localization is not
sufficient to yield defects in cardiac structure and
function that are characteristic of mdx dilated
cardiomyopathy

Previous work has shown that mdx mice that are about 10

months of age exhibit morphological features of dilated cardio-

myopathy (DCM) that are detectable by echocardiography, and

noted the association between the presence of myocardial fibrosis

and inflammation with the occurrence of DCM in mdx mice [47–49].

Because nNOS-derived NO can contribute to vasodilation under

some conditions [50] and reductions in NO can lead to increased

peripheral resistance that can subsequently promote DCM [51], we

assayed whether the genetic ablation of nNOS was sufficient to

induce features of DCM that were detectable by echocardiography.

However, all aspects of nNOS null cardiac structure and function

that were examined by echocardiography did not differ significantly

from wild-type hearts (Table 1), showing that loss of nNOS in the

absence of inflammation and fibrosis is insufficient to cause defects

that are characteristic of DCM in the dystrophic heart. Similarly,

normal cardiac structure and function were observed in a2sko mice

for all ECG parameters that were examined, which indicated that loss

of nNOS from the cell membrane is insufficient to induce defects in

cardiac function that resemble DCM (Table 1).

The increase in end diastolic diameter (EDD) and decrease in

fractional shortening (FS) in 10-month-old mdx hearts compared

to control [47–49] is consistent with DCM in mdx mice at that

age. Because fibrosis is increased in mdx hearts between 12 and

24 months of age [52], we assayed whether aging exacerbated

defects in EDD or FS in mdx mice (Table 1). However, we

observed no difference in either EDD or FS in the hearts of 18-

month-old mdx mice compared to wild-type controls. Similarly,

Cohn et al. [52] previously observed no difference in EDD in

the hearts of mdx and wild-type mice at 24 months of age,

indicating that there is not a mdx specific DCM in 24-month-old

mice.

Th2 cytokines induce arginase activity in mdx muscle
macrophages

Because neither the loss or mislocalization of nNOS was

sufficient to cause muscle and cardiac fibrosis or cause defects in

cardiac function that resemble DCM, we assayed whether these

features of the dystrophic pathology resulted from inflammatory

cell mediated processes. We focused on M2 macrophages because

they can drive fibrosis through arginine metabolism by arginase,

and M2 macrophages have been shown to be present in mdx

muscle [19,53]. Furthermore, previous investigations have shown

that as the mdx pathology progresses, there is an increase in

expression of Th2 cytokines that induce an M2 macrophage

phenotype, especially IL-4 and IL-10 [19]. Immunohistochemistry

confirmed that inflammatory lesions in mdx mice contained high

concentrations of inflammatory cells that expressed arginase

(Fig. 1C). We next tested whether muscle macrophages isolated

from mdx mice during various stages of the pathology respond to

Th2 stimuli by increasing arginase activity and expression. Our

findings show that IL-4 and IL-10 each significantly increase

arginase activity in mdx muscle macrophages, although the

magnitude of induction of arginase activity varied with the stage

of pathology when the macrophages were collected and with the

cytokine used for their stimulation. The strongest responses to

Th2-cytokine stimulation were observed in macrophages isolated

from 12 month-old mdx mice, indicating that M2 macrophages

expressing receptors for IL-4, IL-10 and IL-13 are most prevalent

at this stage of the disease that temporally coincides with the

development of pathological fibrosis in skeletal and cardiac muscle

(Fig. 2A). Although each Th2 cytokine tested induced significant

increases in arginase activity at 3 and 12 months of age, only IL-4

elicited an increase in arginase activity at 1 month of age, and only

IL-13 increased arginase activity at 6 months of age. Despite the

severe fibrosis observed in 18 month-old mdx mice [present study],

Th2 cytokine-stimulation of muscle macrophages isolated from
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mdx mice at the same age did not elicit an increase in arginase

activity. We also found that the Th2-induced increases in arginase

activity were associated with significantly increased expression of

arginase protein by mdx muscle macrophages (Fig. 2B and C).

Similar to the trend in arginase activity, the greatest increase in

arginase expression was observed at the 12-month age-point.

Deleting arginase-2 expression reduces skeletal muscle
fibrosis and kyphosis in mdx mice

Because arginine metabolism by arginase-2 in M2 macrophages

can drive fibrosis following tissue injury [54,55] and arginase-2-

expressing M2 macrophages are present in elevated numbers in

mdx skeletal muscle and hearts, we tested whether ablation of

arginase-2 in mdx mice could affect fibrosis and associated features

of dystrophinopathy. Unfortunately, use of a double, arginase-1/-2

knockout mouse for this study was not possible because null-

mutation of the arginase-1 gene is lethal by 14 days of age [56].

Dystrophin-deficient mice lacking arginase-2 expression (A2ko/

mdx) developed significantly less fibrosis in quadriceps and

diaphragm muscles than mdx mice expressing arginase-2 (Fig. 3A

and 4). We also observed a consistent trend toward reduced

fibrosis in soleus, longissimus dorsi and cardiac muscle of A2ko/

mdx mice as well, although these values did not reach statistical

significance. Interestingly, arginase-2-null mutation also affected

hydroxyproline concentration in wild-type mice (A2ko/wt). The

connective tissue content of diaphragms and hearts of A2ko/wt

mice was significantly reduced compared to C57 controls. The

reduced connective tissue in the A2ko lines was not due to

decreased inflammatory cell infiltration since A2ko/mdx and

A2ko/wt mice showed similar concentrations of macrophages,

neutrophils, eosinophils, CD4+ and CD8+ cells (Fig. 3B-F),

compared to their arginase-expressing controls in all muscles

examined. Kyphosis, which results from fibrosis of postural

muscles and significantly contributes to reduced respiratory

function in DMD patients [4–6], was significantly reduced in

A2ko/mdx mice (KI: A2ko/mdx = 3.4 (sem = 0.11), n = 6; mdx =

Figure 1. Mice with disrupted nNOS expression or localization do not exhibit inflammation or develop fibrosis. (A and B) Cross-
sections of 12-month old nNOS null (A) and a2sko (B) quadriceps stained with hematoxylin are free of inflammation. Bar = 50 mm. (C) Mononuclear
cells in an inflammatory lesion of 18-month-old mdx quadriceps stain positive for arginase expression. Bar = 50 mm. (D) Mice lacking nNOS expression
(nNOS ko) or localization to the sarcolemma (a-sko) do not develop pathological fibrosis in quadriceps (Quad), soleus, diaphragm (Diaph),
longissimus dorsi (LD) and heart tissues. C57 mice (n = 5) and a-sko mice (n = 5) were 18-months old. nNOS ko mice (n = 5) were 12-months old.
doi:10.1371/journal.pone.0010763.g001

Table 1. Echocardiographic evaluation of mice with modified
arginase-2 or nNOS expression.

VST
(mm)

EDD
(mm)

PWT
(mm)

FS
(%)

Vcf
(mm/s)

LvEF
(%)

C57 0.69 (0.02) 4.16 (0.11) 0.70 (0.02) 29.6 (2.54) 5.56 (0.57) 62.6 (3.51)

A2ko 0.72 (0.03) 4.22 (0.10) 0.76 (0.01) 31.8 (1.50) 6.12 (0.40) 66.8 (2.30)

mdx 0.73 (0.01) 4.22 (0.22) 0.65 (0.004) 26.5 (2.60) 5.83 (0.60) 58.2 (5.20)

A2ko/
mdx

0.76 (0.02) 4.70 (0.15) 0.73 (0.02) 23.9 (1.07) 5.31 (0.39) 53.6 (2.13)

a-sko 0.75 (0.06) 3.98 (0.12) 0.71 (0.04) 30.2 (2.40) 6.13 (0.46) 63.6 (3.84)

nNOS ko 0.74 (0.04) 4.43 (0.11) 0.74 (0.02) 23.5 (1.82) 4.23 (0.36) 53.7 (3.01)

Values are means with standard errors. VST = ventricular septal thickness; EDD
= end diastolic diameter;
PWT = posterior wall thickness; FS = fractional shortening; Vcf = mean
circumferential shortening rate; LvEF =
left ventricular ejection fraction. Sample sizes: C57, n = 7; A2ko, n = 5; mdx, n = 5;
A2ko/mdx, n = 6; a2sko, n = 5;
nNOS ko, n = 7.
doi:10.1371/journal.pone.0010763.t001
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2.9 (sem = 0.04), n = 10). The absence of arginase-2 had no effect

on kyphosis in wild-type mice (KI: A2ko/wt = 4.0 (sem = 0.28),

n = 5; C57 = 4.0 (sem = 0.11), n = 7). Null mutation of arginase-2

did not affect arginase-1 expression in either wild-type or mdx

muscles (Figs. 3I and 3J).

Echocardiography showed that the posterior wall thickness

(PWT) of mdx mice did not differ significantly from wild-type mice

at 18 months (Table 1, Fig. 5). Because the mdx hearts are severely

fibrotic, this finding indicates that the increase in fibrous tissue in

the posterior wall of the left ventricle of the mdx heart is similar in

magnitude to the loss of contractile tissue in the posterior wall.

However, ablation of arginase-2 expression in mdx mice did not

affect cardiac fibrosis (Fig. 3A) showing that arginase-2 is not

required for fibrosis of mdx hearts. The reduction of hydroxypro-

line concentration in wild-type mice in which arginase-2

expression was ablated compared to wild-type hearts that

expressed arginase-2 indicates that normal connective tissue

accumulation in the myocardium involves arginine metabolism

by arginase-2.

Long-term arginine supplementation increases fibrosis in
dystrophin-deficient mice without affecting
inflammation

The reduced skeletal muscle fibrosis in A2ko/mdx mice

suggested the possibility that dietary supplementation with

arginine could worsen mdx muscle fibrosis because arginase

activity can be substrate limited. We found that mdx mice

supplemented with L-arginine from 3 weeks to 18 months of age

developed more severe muscle fibrosis than mdx mice treated with

D-arginine, with increases in connective tissue in quadriceps

(+23%), soleus (+43%), diaphragm (+36%) and longissimus dorsi

(+30%) observed (Figs. 6A and 7). The pro-fibrotic effect of L-

arginine was specific to dystrophin-deficient tissue, as treatment

did not induce fibrosis in C57 mice. Muscles from C57 and mdx

mice treated with D-arginine exhibited connective tissue concen-

trations similar to untreated mice verifying that the inactive isomer

had no effect on fibrosis.

Dietary supplementation with arginine in mdx mice also caused

large increases in cardiac fibrosis (Fig. 6A). Since fibrosis is the

basis of most functional cardiac defects in dystrophin-deficient

dystrophy, we examined whether L-arginine treatment affected

functional indices measurable by echocardiography. We were not

able to detect functional changes in FS, mean circumferential fiber

shortening rate (Vcf) or left ventricular ejection fraction (LvEF) in

mdx mice treated with L-arginine as compared to those treated

with D-arginine (Table 2). However, ventricular septal thickness

(VST) and PWT were significantly increased in the L-arginine-

treated mdx mice, compared to mdx mice treated with D-arginine.

These findings are consistent with our data showing that L-

arginine induced an increase in mdx cardiac fibrosis. We detected a

deficit in mdx cardiac function evidenced by decreased FS and

LvEF in mdx mice treated with L-arginine compared to C57 mice

treated with L-arginine (Table 2). Treatment with L-arginine did

not have any effect on echocardiographs from C57 mice.

We also measured the concentrations of specific inflammatory

cell populations in arginine-treated mdx mice to test if L-arginine

induced mdx fibrosis by increasing inflammatory cell numbers. As

expected, mdx skeletal muscle and cardiac muscle exhibited more

inflammation than C57 tissues, including increases in macrophag-

es, eosinophils, neutrophils, CD4+ T cells and CD8+ T cells

(Fig. 6B-F). However, immunohistochemical data showed that L-

arginine treatment did not affect the concentration of any

leukocyte population measured (Fig. 6B-F), suggesting that the

increase in fibrosis was not caused by enhancement of inflamma-

tory cell recruitment.

Mdx mice subjected to long-term arginine treatment do
not display the benefits reported with short-term
arginine treatment

Previously published results indicate that short-term L-arginine

treatment has beneficial effects in mdx mice. Hnia et al [33]

reported that muscle macrophage number and cytokine expression

were decreased after young mdx mice were treated with L-arginine

for 2 weeks. In the same study, the investigators report that short-

term L-arginine treatment decreased the activity of matrix

metalloproteinases (MMPs) that is thought to correlate with

disease status in mdx mice [57]. We tested whether similar effects

were associated with our long-term arginine-treatment. First, L-

Figure 2. Th2 cytokines induce arginase activity and expres-
sion in mdx muscle macrophages. (A) Arginase activity of muscle
macrophages isolated from mdx mice at various ages was measured
following in vitro stimulation with either IL-4, IL-10, IL-13 or no cytokine.
At least 3 experiments were performed with a minimum of 5 wells for
each age and condition. Some error bars are too small to be visible. (B)
Representative western blot of 3-month mdx muscle macrophage
lysates prepared following stimulation with IL-4, or no cytokine, loaded
in various quantities as indicated and probed with an arginase-1 and 2
antibody. Homogenates of kidney, which expresses arginase-2, and
liver, which expresses arginase-1, were included to show that the
antibody recognizes both arginase isoforms. (C) Cytokines that induced
increases in arginase activity increased arginase expression. Stimulated
and control mdx muscle macrophages were analyzed by western
blotting as in (B) and densitometrically quantified. * indicates statistical
significance at p,0.05 as compared to age-matched control.
doi:10.1371/journal.pone.0010763.g002
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arginine did not affect inflammatory cell infiltration; muscle and

hearts from mdx mice treated with L-arginine contained concen-

trations of immune cells that were not different from mdx mice

treated with D-arginine (Fig. 6B-F). We also measured matrix

MMP levels in our long-term L-and D-arginine-treated mice using

gelatinase zymography. The levels of MMP in mdx and C57 mice

Figure 3. Arginase-2 mutation reduces muscle fibrosis. (A) Mdx mice lacking arginase-2 expression demonstrated decreased fibrosis in
quadriceps (Quad) and diaphragm (Diaph) muscles. Arginase-2 mutation reduced fibrosis in diaphragm, longissimus dorsi (LD) and heart of wild-type
mice. Sol = soleus. n = 5 animals per group. (B-F) The concentration of macrophages, eosinophils, CD4+ cells, CD8+ cells and neutrophils in muscles
were not affected by arginase-2 mutation. # indicates statistical significance at p,0.05 as compared to C57; ˆ indicates statistical significance at
p,0.05 as compared to mdx; * indicates statistical significance at p,0.05 as compared to A2ko/wt. n = 7 animals per group. (In A – F, some error bars
are too small to be visible.) (G and H) Representative autoradiographs of C57 (G) and mdx (H) mice used to measure the kyphotic index (KI). The lines,
AB and CD, used to calculate KI are indicated on (H). (I and J) Western blots for arginase-1 in wild-type, C57 mice (I) and mdx mice (J) show that null
mutation of arginase-2 did not affect arginase-1 expression in muscles from either mouse line. All mice were 18-months old.
doi:10.1371/journal.pone.0010763.g003
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Figure 4. Absence of arginase-2 expression reduces collagen deposition. Cross-sections of quadriceps from C57, arginase-2 null mice on a
wild-type background (A2ko/wt), mdx and arginase-2 null mice on an mdx background (A2ko/mdx) were stained with antibodies specific for collagen
type I (C1), collagen type 3 (C3), collagen type 4 (C4) and collagen type 5 (C5). No pathological fibrosis is evident in C57 or A2ko/wt quadriceps. Mdx
mice develop fibrotic lesions and thickening of connective tissue which are reduced in A2ko/mdx mice. Bar = 50 mm. All mice were 18-months old.
doi:10.1371/journal.pone.0010763.g004

Figure 5. Echocardiography shows that ablation of arginase-2 expression does not affect posterior wall thickness in the left
ventricle of mdx or wild-type mice. Image taken at the chordal level in the left ventricle shows relative motion of the interventricular septum (IVS)
and posterior wall (PW) that delineate the end diastolic diameter (EDD) over time (left to right in image). Representative echocardiographs from (A)
mdx (n = 5), (B) C57 (n = 7), (C) A2ko (n = 5) and (D) A2ko/mdx (n = 6) mice are shown. All mice were 18-months old.
doi:10.1371/journal.pone.0010763.g005
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were not affected by L-arginine treatment (Fig. 8). MMP-9 was

elevated in all mdx samples, in agreement with Kherif et al. [44].

While MMP-9 was not detected in the majority of the C57 mice,

two samples exhibited high levels that were apparently not related

to our experimental perturbation. MMP-2 levels were similarly

unaffected by L-arginine treatment in both the mdx and C57

groups. MMP-2 was constitutively expressed in C57 and mdx mice

with greater concentrations in mdx muscles, as expected [44].

Several published reports indicate that short-term L-arginine

treatment of mdx or C57 mice for periods of 2 to 6 weeks can

increase expression of the dystrophin homologue, utrophin [31–34].

Our analysis of mdx and C57 mice shows that 18 months of L-

arginine treatment did not significantly affect the expression of

utrophin or nNOS, although variability in utrophin concentration

was observed in muscles from both L-arginine and D-arginine

treated mice (Fig. 9). Collectively, these results indicate that

previously reported benefits derived from short-term arginine

treatment of mdx mice do not persist with extended treatment.

Discussion

Our findings show that arginine metabolism contributes

significantly to fibrosis of dystrophin-deficient muscle. Because

the only detectible arginase expression in mdx muscle occurs in

inflammatory cells, these observations provide insights into a

previously unexplored mechanism through which fibrosis can be

promoted by the immune system in muscular dystrophy. Our data

show that Th2 cytokines, which are expressed at increasingly

elevated levels as the mdx pathology proceeds [19], increase the

expression and activity of arginase in M2 macrophages in mdx

muscle. We also show that ablation of arginase-2 expression in mdx

mice reduces fibrosis and decreases kyphosis that may result from

Figure 6. Long-term supplementation with L-arginine increases fibrosis in dystrophin-deficient skeletal muscles and heart, without
affecting inflammation. (A) Connective tissue content of all dystrophin-deficient muscles assayed was significantly increased after 18 months of L-
arginine treatment. There was no effect on C57 muscles. { indicates statistical significance at p,0.05 as compared to C57 samples. ˆ indicates
statistical significance at p,0.05 as compared to mdx mice treated with D-arginine as well as C57 samples. n = 5 animals per group. (B-F) Long-term
treatment with L-arginine did not affect the muscle concentrations of macrophages, eosinophils, CD4+ cells, CD8+ cells or neutrophils. # indicates
statistical significance at p,0.05 as compared to C57 D-arg samples. * indicates statistical significance at p,0.05 as compared to C57 L-arg samples.
Quad = quadriceps, Sol = soleus, Diaph = diaphragm, LD = longissimus dorsi. n = 7 animals per group. Some error bars are too small to be visible.
doi:10.1371/journal.pone.0010763.g006
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fibrosis of paraspinal muscles. Furthermore, dietary supplementa-

tion with arginine, which can increase arginase activity, increases

fibrosis of skeletal and cardiac muscles in mdx mice. Collectively,

these data support a model in which perturbations in arginine

metabolism promote tissue fibrosis driven by a Th2 inflammatory

response that is dominated by M2 macrophages (Fig. 10).

Although our findings show that arginine metabolism by

arginase generally increased muscle fibrosis, the relative magni-

tudes of the effect of arginase-2 mutation on skeletal muscle

hydroxyproline content in mdx and wild-type muscles varied

greatly between the muscles analyzed. For example, the arginase-2

mutation reduced hydroxyproline in mdx quadriceps muscles, but

not wild-type quadriceps. In the diaphragm, the mutation reduced

hydroxyproline in both mdx and wild-type but did not affect

hydroxyproline concentration in the soleus of either mdx or wild-

type. These findings reveal new, muscle-specific differences in the

pathophysiology of muscular dystrophy. Previous investigators

have shown tremendous differences in the course of pathology

between different muscle groups in mdx mice, with extraocular

muscle suffering no pathology, triceps brachii exhibiting more

Figure 7. Extended L-arginine treatment increases collagen deposition in mdx muscles. Cross-sections of quadriceps isolated from C57 or
mdx mice treated with L-arginine or D-arginine were labeled with antibodies to collagen type 1 (C1), collagen type 3 (C3), collagen type 4 (C4) and
collagen 5 (C5). Collagen distribution is similar in C57 mice treated with D- or L-arginine (C57/D-arg and C57/L-arg, respectively). Significantly more
collagen is present in mdx mice compared to C57 mice and collagen deposition is more prominent in mdx mice treated with L-arginine (mdx/L-arg)
than mdx mice treated with D-arginine (mdx/D-arg). Bar = 50 mm. All mice were 18-months old.
doi:10.1371/journal.pone.0010763.g007

Table 2. Echocardiographic analysis of C57 and mdx mice
treated with L- or D-arginine.

VST
(mm)

EDD
(mm)

PWT
(mm)

FS
(%)

Vcf
(mm/s)

LvEF
(%)

C57/D-arg 0.71 (0.02) 4.22 (0.13)0.70 (0.03) 25.7 (1.61) 5.15 (0.28)56.3 (2.43)

C57/L-arg 0.77 (0.03) 4.19 (0.11)0.74 (0.02) 28.2 (1.48) 5.33 (0.33)60.4 (2.05)

mdx/D-arg 0.67 (0.03) 4.15 (0.12)0.65 (0.02) 23.1 (1.49) 4.50 (0.34)52.2 (2.34)

mdx/L-arg 0.79 (0.06)* 4.49 (0.11)0.75 (0.04)* 22.5 (1.43)̂ 4.50 (0.31)51.5 (2.79)̂

Values are means with standard errors. VST = ventricular septal thickness; EDD
= end diastolic diameter; PWT =
posterior wall thickness; FS = fractional shortening; Vcf = mean circumferential
shortening rate; LvEF = left
ventricular ejection fraction. Sample sizes: C57/D-arg, n = 5; C57/L-arg, n = 8;
mdx/D-arg, n = 6; mdx/L-arg, n = 7.
* = statistically significant compared to mdx/D-arg at p,0.05.ˆ = statistically
significant compared to C57/L-arg at
p,0.05.
doi:10.1371/journal.pone.0010763.t002
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pathology than other limb muscles and diaphragm muscle

experiencing the most severe pathology [58,59]. Our findings

add to these differences by illustrating distinctions in the relative

importance of arginase-mediated pathways in driving connective

tissue production in different muscles, which may underlie a

portion of the muscle specific differences in pathology.

Previous studies have identified other mechanisms through

which inflammation can promote fibrosis of dystrophin-deficient

muscles and hearts. Transforming growth factor-b (TGFb), a Th2

cytokine that can increase the expression of connective tissue

proteins [60–65], has been implicated in promoting fibrosis in mdx

and DMD muscle. However, the pattern of expression of TGFb in

mdx and DMD muscle indicates that it may activate fibrosis in

early stages of the pathology, but its role is diminished during the

later, progressive stages of the disease. For example, TGFb mRNA

is elevated in DMD muscle early in the disease, but then declines

while fibrosis continues to progress [66]. Similarly, dystrophin-

deficient dogs show a reduction in TGFb expression in muscle

while fibrosis progresses [67] and mdx quadriceps muscles show

elevations in TGFb mRNA at early stages of the pathology that

then decline to levels that do not differ significantly from wild-type

muscles as the disease progresses [68]. However, findings conflict

concerning changes in TGFb expression in the progressively

fibrotic diaphragms in mdx mice, where fibrosis is an early feature

of the disease. Some investigators report an early, transient

elevation of TGFb mRNA in mdx diaphragms followed by a rapid

decline to control levels [69] while others report a progressive

increase in TGFb mRNA and protein in mdx diaphragms over a

similar period [53]. Data also suggest that the TGFb signaling may

be most important at the onset of mdx pathology; in vivo depletions

of CD4+ and CD8+ cells from mdx mice beginning at 4 weeks of

age produced large reductions in circulating TGFb levels in 24-

week old-mice, without reducing diaphragm fibrosis [70].

More recently, major basic protein (MBP), which is released by

eosinophils, has been shown to play a major role in promoting

fibrosis in dystrophin-deficient muscles and hearts. Eosinophils are

also associated with Th2 inflammatory responses and upon

activation they can release MBP, which can drive fibrosis [71].

Figure 8. Matrix metalloproteinases 2 and 9 were unaffected
following L-arginine treatment. (A) Gelatinase zymogram showing
MMP-2 and –9 in muscle homogenates from long-term, L- or D-
arginine-treated mdx or C57 mice. MMP-9 activity was detected at 100
kDa and MMP-2 activity was detected at 60 and 66 kDa. Human MMP-9
was used as a standard and migrates lower than mouse MMP-9 (47). (B)
Densitometric analysis of cleared bands shows that MMP activity is
greater in mdx tissues, but is not affected by L-arginine supplemen-
tation. * indicates significant difference at p,0.05 as compared to
treatment-matched C57 samples. All mice were 18-months old.
doi:10.1371/journal.pone.0010763.g008

Figure 9. L-arginine treatment does not affect utrophin or
nNOS expression. Western blot of tibialis anterior muscle homoge-
nates from long-term, L- or D-arginine-treated mdx or C57 mice probed
for utrophin (A) or nNOS (C). Blots A and C were stripped and reprobed
with anti-skeletal muscle alpha-actin (B and D, respectively) to verify
loading consistency. Densitometry of protein expression assessed by
western blotting shows that utrophin concentration is greater in mdx
muscles but is unaffected by L-arginine treatment (E) and that nNOS
concentration is greater in wild-type muscles but is unaffected by L-
arginine treatment (F). * indicates statistical significance at p,0.05 as
compared to treatment-matched C57 samples. All mice were 18-
months old.
doi:10.1371/journal.pone.0010763.g009
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Eosinophils also release IL-4 and IL-10. The elevated production of

IL-4 and IL-10 can have multiple effects on driving muscle fibrosis.

For example, IL-4 can activate macrophages to a profibrotic, M2

phenotype and IL-10 can deactivate iNOS-expressing M1 macro-

phages which would increase substrate availability for arginase.

Although our findings confirmed that expression of arginase-2

contributes significantly to muscle fibrosis in mdx dystrophy,

ablation of arginase-2 expression did not reduce mdx cardiac

fibrosis. This negative finding was unexpected because previous

work has shown that arginase and NOS compete for substrate in

the heart, which apparently affects fibrosis. For example,

inhibition of arginase in isolated cardiac myocyte preparations

increases NO production [72,73] and elevated expression of

nNOS in the myocardium of mdx mice reduces cardiac fibrosis

[16]. Because cardiac tissue also expresses arginase-1 [72,73], the

lack of effect of arginase-2 mutation on mdx cardiac fibrosis may

show that arginine metabolism by arginase-1 is sufficient to drive

fibrosis in the mdx heart. In contrast, our finding that arginase-2

mutation in wild-type hearts greatly reduced cardiac fibrosis shows

that arginine metabolism by arginase-2 is important in driving

connective tissue production in healthy hearts.

We were surprised to find no significant differences in EDD, FS

or LVEF in 18-month-old mdx hearts compared to wild-type hearts

because a previous study found greater EDD and reduced FS in

10-month-old mdx hearts [47]. However, no difference in EDD or

FS were observed between mdx and C57 hearts at 24 months of

age in a subsequent investigation [52], similar to our findings on

18-month-old mice. We attribute the lack of differences between

mdx and C57 hearts in the old mice (18 to 24 months age) to the

occurrence of age-related changes that overwhelm changes that

are attributable to the dystrophinopathy and that are apparent in

10-month old mice. Findings by others support this interpretation.

For example, echocardiographic data show that FS in wild-type

mice decreases significantly between 6 and 18 months of age [74].

A similar trend for decreased FS in wild-type hearts by the age of

16 months has been reported, although the decrease did not reach

statistical significance [75]. Significant reductions in the FS of rat

hearts have also been reported by 22 months of age in

echocardiographic studies [76], that were accompanied by

significant increases in EDD.

Perhaps the most striking discovery of this study is that long-

term, dietary supplementation with L-arginine exacerbates fibrosis

Figure 10. Model of potential, competitive interactions between mdx muscle fibers and macrophages for arginine in dystrophic
muscles. A: In 4-week muscles, M1 macrophages expressing iNOS and M2 macrophages expressing arginase are present in inflammatory lesions in
mdx muscle (19). M1 macrophage iNOS and M2 macrophage arginase compete for their common substrate, arginine (19). In wild-type muscle, nNOS
in muscle fibers also competes for arginine, but loss of nNOS from dystrophic muscle eliminates that competition, increasing arginine availability for
iNOS, increasing cytolysis (19), or arginase, increasing fibrosis (present study). The numbers of iNOS expressing M1 macrophages decline after 4-
weeks of age in mdx muscle increasing substrate availability for arginase, and the proportion of arginase-expressing macrophages increases by 12-
months of age, further driving fibrosis (B). In addition to an increase in arginine for arginase, the loss of several negative regulatory influences of
nNOS-derived NO fibrosis occurs. For example, nNOS-derived hydroxyarginine which can inhibit arginase would be diminished. Red arrows =
profibrotic pathways. Black arrow = pathways that compete with fibrotic pathways. Broken arrow = pathways that are deficient in mdx muscle.
doi:10.1371/journal.pone.0010763.g010
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in dystrophin-deficient muscle and heart. Treating mdx mice with

L-arginine from 3 weeks to 18 months of age induced significant

increases in connective tissue in cardiac tissue and all muscles

examined. Echocardiography showed that mdx mice treated with

L-arginine had significantly thicker heart walls which is consistent

with increased cardiac fibrosis. These findings are clinically

relevant because DMD patients frequently use arginine supple-

mentation in their diets; long-term supplementation could

aggravate potentially-lethal features of the pathology including

respiratory function and cardiac function as well as spinal

deformity and contractures. Nevertheless, there may be benefits

to small increases in connective tissue content in dystrophic

muscle, if the increases reduced fragility of the muscle cell

membrane without causing pathological fibrosis. For example,

systemic administration of laminin-111 to mdx mice results in

deposition of the protein in the endomysium and reduces muscle

membrane damage [77].

Our findings also show that the reported, beneficial effects of

short-term L-arginine treatment on young, mdx mice are not

sustained with long-term treatment. Several groups [31–34]

reported that treating young, mdx and C57 mice with L-arginine

for 2 to 6 weeks increased utrophin, a dystrophin homologue that

can reduce dystrophic pathology [78,79]. However, our long-term

L-arginine treatment had no significant effect on utrophin

expression in mdx or C57 mice measured at 18 months of age.

Additionally, Hnia et al. [33] reported that MMP-2 and –9 were

decreased in 5-week-old mice after 2 weeks of L-arginine

treatment, which could reflect a reduction of inflammation of

mdx muscle because immune cells produce MMP [80,81]. More

specifically, reductions in MMP-9 could reflect fewer M1

macrophages because MMP-9 co-localizes with M1 macrophages

in mdx muscle and MMP-9 mutation reduces macrophages in mdx

muscle [82]. However, we found that long-term L-arginine

treatment had no effect on MMP-2 or MMP-9 levels in mdx or

C57 mice which may reflect the 18-month treatment period, in

contrast to the previous investigation in which the mdx mice were

treated for 2 weeks early in the disease [33].

In this study, we demonstrate the contribution of arginine

metabolism by M2 macrophages to the development of dystrophic

fibrosis. We also provide clinically-relevant evidence showing the

detrimental effect of long-term L-arginine supplementation on the

progression of fibrosis in dystrophic muscle. In the absence of a

cure or well-tolerated treatment for DMD, modifying the

secondary features of the pathology could lead to significant

improvements in health and longevity. Ultimately, we expect that

therapeutically modulating the function of specific populations of

inflammatory cells during distinct phases of the disease will

ameliorate specific features of the pathology.
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