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Abstract

Background: Whether or not animals habituate to repeated exposure to predator scents may depend upon whether there
are predators associated with the cues. Understanding the contexts of habituation is theoretically important and has
profound implication for the application of predator-based herbivore deterrents. We repeatedly exposed a mixed mob of
macropod marsupials to olfactory scents (urine, feces) from a sympatric predator (Canis lupus dingo), along with a control
(water). If these predator cues were alarming, we expected that over time, some red kangaroos (Macropus rufous), western
grey kangaroos (Macropus fuliginosus) and agile wallabies (Macropus agilis) would elect to not participate in cafeteria trials
because the scents provided information about the riskiness of the area.

Methodology/Principal Findings: We evaluated the effects of urine and feces independently and expected that urine
would elicit a stronger reaction because it contains a broader class of infochemicals (pheromones, kairomones). Finally, we
scored non-invasive indicators (flight and alarm stomps) to determine whether fear or altered palatability was responsible
for the response. Repeated exposure reduced macropodid foraging on food associated with 40 ml of dingo urine,
X = 986.7563.97 g food remained as compared to the tap water control, X = 209.06107.0 g (P,0.001). Macropodids fled
more when encountering a urine treatment, X = 4.5062.08 flights, as compared to the control, X = 0 flights (P,0.001). There
was no difference in effect between urine or feces treatments (P.0.5). Macropodids did not habituate to repeated exposure
to predator scents, rather they avoided the entire experimental area after 10 days of trials (R2 = 83.8; P,0.001).

Conclusions/Significance: Responses to urine and feces were indistinguishable; both elicited fear-based responses and
deterred foraging. Despite repeated exposure to predator-related cues in the absence of a predator, macropodids
persistently avoided an area of highly palatable food. Area avoidance is consistent with that observed from other species
following repeated anti-predator conditioning, However, this is the first time this response has been experimentally
observed among medium or large vertebrates 2 where a local response is observed spatially and an area effect is revealed
over time.
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Introduction

Many animals assess risk from intra-specific scent cues left

behind by potential predators. Sulfur containing chemicals,

volatile fatty acids and ketones (all diet released metabolites) may

cause the repellent properties of predator urine and feces [1].

However, urine and anal scent gland exudates also contain a

broad class of infochemicals [2], including steroid alcohols and

carrier proteins, that may synergistically indicate the: reproductive

status [3], territorial status [4], age [5] social and nutritional status

[6], and a time-stamp of an animal’s presence (time since void/

excretion) [7]. These complex properties likely evolved to assist

intra-specific communication without alerting potential prey to the

predator’s presence. However, heterospecific eavesdropping,

where potential prey species respond to such predator-secreted

olfactory cues, has been demonstrated in invertebrates [8], fish [9],

amphibians [10], birds [11], and mammals [12]. Animals can also

discriminate urine from closely related species. For instance,

foraging beavers (Castor fiber) respond to odors from the wolf (Canis

lupus), but not dogs (Canis familiaris; [13]). Similarly, western grey

kangaroos (Macropus fuliginosis) can discriminate between urine

from a coyote (Canis latrans) and dingo (Canis lupus dingo; [14]).

However, less is known about the chemical composition and

stability of the messages contained within predator wastes, and this

knowledge gap makes assessing the use of chemical cues as

foraging deterrents difficult. For instance, there are extensive
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debates on the mechanism for deterrence [15], the time to

habituation [16], and the likelihood of using this technology to

train orphaned or predator naı̈ve animals to avoid predators when

re-introduced into the wild [17].

Prey may habituate (decline in responsiveness over repeated

exposure) to the presence of the cue when not accompanied by the

predator. For instance, bank voles (Clethrionomys glareolus) avoided

areas with least weasel (Mustela nivalis) scent the most on the first

day of a multi-day trail [18]. Goats (Capra hircus) habituated to tiger

(Panthera tigris) feces as early as the third trial following repeated

exposure [19]. Cape ground squirrels (Xerus inauris) quickly

habituate to odors from black backed jackals (Canis mesomelas;

[16] while mountain beavers (Aplodontia rufa) rapidly habituate to

synthetic predator scents [20]. Even invertebrates have the ability

to habituate; isopods habituate to sunfish (Lepomis megalottis)

chemicals in 3 days [21].

Nonetheless, the presence of predator scents may influence

patch selection [22], particularly when critical resources aren’t

being guarded [23]. Vilhunen [24] found that Arctic charr

(Salvelinus alpinus) exposed only four times to cues from predatory

pikeperch (Sander lucioperca) increased their spatial avoidance to

pikeperch. Mongolian gerbils (Meriones unguiculatus; [25]), bank

voles (C. glareolus;[26]), European hedgehog (Erinaceus europae; [26]),

and house mice (Mus domesticus; [27]), avoid cue-laden habitats

following repeated exposure to predatory cues. Few studies have

demonstrated that medium -sized or large mammals have

abandoned cafeteria trial areas. Moose (Alces alces) abandoned

more than 50% of experimental areas following repeated exposure

to urine from wolf (Canis lupus) and grizzly bears (Ursus arctos

horribilis; [28]) and goats avoided ‘landscapes of fear’ laced with

caracal dung (Felis caracal) however, indirect vulnerability cues

(habitat features) were associated with the response [29].

It is essential to differentiate between habituation to chemical

cues and the loss of potency of an aging cue; both could lead to the

observation of decreased responsiveness. Highly volatile and less

volatile agents combine to form complex scents [30]. For example,

Brown hyenas (Hyaena brunnei) paste two different scents on the

same blade of grass, one dissipates within two days and one lasts a

month [31]. Carnivore scents are refreshed regularly in the wild

[4] and it is likely that volatiles which advertise a time component

of the scent are rapidly lost [32]. If the olfactory secretion contains

differentially volatile compounds, the secretion may function as a

‘‘time-stamp’’ [7].

Different methods to study the response to olfactory secretions

have unique constraints. Giving up densities (GUD; [33]) do not

provide insight into the actual mechanism for deterrence because

it does not demonstrate whether fear is responsible for the

deterrent effect, only that animals stopped foraging at a particular

time. For instance, sheep (Ovis aries) avoid food near domestic dog

feces (Canis familaris; [34]; [35]). However, an aversive response

was also observed from pig feces (Sus domesticus) during the same

trials. The study concluded that wolf and dog feces were more

heavily avoided than feces from non-predators. However carni-

vore feces are generally more pungent than herbivore feces, and

thus dog feces may have simply been more volatile and noxious

resulting in a higher level of reduced palatability. Kimball and

Nolte [36] noted the common use of feces placed alongside

experimental food troughs in GUD experiments, and have

suggested that altered palatability is often misinterpreted as fear.

And, when rabbits demonstrated a GUD response to fox, but not

sheep feces, a second measure using fecal cortisol levels was

necessary to characterize the response [37]. Similarly, Pyare and

Berger [28] have used three escalating levels to characterize moose

(Alces alces) response to Grizzly bear (Ursus arctos horribilis) urine;

vigilance, pilo-erection, and avoidance or site abandonment were

all necessary to describe the complete response. Among macro-

podids, flight from an area [38] may be the most apparent (and

useful) measure of response to threat.

Different cues from the same predators may elicit dissimilar

responses. For instance, fecal odors may generate different

responses than those elicited by urine and dander. Both urine

and feces from wolves (Canis lupus) and African lions (Panthera leo)

produce repellent effects, possibly due to sulfurous meat

metabolites in both substances [34]. However, Masini et al. [39]

has shown that rats were able to discriminate among fur, urine and

feces from ferrets (Mustela nigripes); fur created the strongest

defensive response. Strangely, the repellent effects of hair and

dander [1] are not related to the activity of sulphurous chemicals.

Sullivan [40] has shown that snowshoe hares, (Lepus americanus)

show a highly aversive response to wolverine (Gulo gulo) urine,

demonstrate no response to feces, and only a moderate response to

anal gland scents.

We previously observed western grey kangaroos (Macropus

fuliginosus) to be deterred from food sources using urine from a

sympatric predator (dingo, Canis lupus dingo); we were unable to

elicit similar responses from coyote (Canis latrans) or human urine

[14]. The aim of this study was to characterize the observed effects

(fear or noxious-based avoidance), to understand the effects of

repeated exposure over time, and to determine whether kangaroos

can discriminate between different predator cues from the same

species.

Results

Kangaroo participation dropped steadily throughout the trial

period (R2 = 83.8; F1,9 = 46.46; P,0.001; Figure 1). A maximum

of 45 individuals participated during the first day, and by day 11,

no kangaroos elected to participate in the experiment

(X = 27.3664.27 individuals). There were significant increases in

all between – subject effects following treatments (Table 1);

MANOVA(flight): F2,3 = 483.55, P,0.001; MANOVA(alarm):

F2,3 = 146.98, P,0.001; MANOVA(encroach): F2,3 = 13.966,

P = 0.006; and in the level of food remaining MANOVA(GUD):

F2,3 = 55.25, P,0.001. Participation did not vary by specific

treatment: F2,3 = 6.41, P.0.5, but rather, macropodids reduced

their overall participation over time.

Urine and feces generated strong effects as compared to the

control for each response, though they did not differ from one

another. Flight: Macropodids fled more when encountering a

urine treatment, X = 4.5062.08 flights, compared to the control

X = 0 flights (P,0.001; Table 2, Figure 2). There were no

detectable flight differences when encountering a fecal treatment,

X = 6.6763.055 flights (P = 0.444); the control was different to

urine (P,0.001) and to feces (P,0.001). Alarm Stomps: Macro-

podids generated more alarm stomps when encountering a urine

treatment, X = 3.7562.21 stomps, as compared to the control

X = 0 stomps (P,0.001). There were no detectable flight

differences when encountering a fecal treatment, X = 6.0066.92

stomps (P = 1.0); the control was different to both urine (P,0.001)

and feces (P,0.001). Encroachment: Macropodids encroached

less when encountering a urine treatment, X = 0 than a control,

X = 9.0060.676 encroaches (P = 0.002), but there was no

difference between feces X = 0.3360.33 and urine (P = 0.385);

the control was different to both urine (P,0.001) and feces

(P,0.001). GUD: Macropodids removed less food from the trough

beside the urine treatment, X = 986.7563.97 g as compared to the

control trough, X = 209.06107.0 g (P,0.001), but there was no

difference between urine and feces, X = 988.6762.03 g treatments
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(P = 1.0). The effect size of comparisons (d-scores) for each

response was large between the urine and control, and between

the feces and control, and negligible between urine and feces

(Table 3).

Discussion

We found that visitation to the experimental array dropped

steadily throughout the trial despite the attractive foods on offer,

and despite the close proximity between treatment and control

troughs. Indirect cues (shelter, resources, and lack of direct experi-

ence with predators) [29] may counter the intrinsic aversion –

for a time. An area effect may not become apparent until repeated

exposures reinforce memory. We are unaware of any other

instances where area-affects were illuminated through temporal,

rather than strictly spatial, responses. This finding is in strong

contrast to expectations that animals rapidly habituate to

predator cues [18;16;20]. We did not observe any habituation

during these trials. This strengthens our concerns that subtle

changes in chemical integrity over time [7,30] may be falsely

interpreted as habituation. We previously established that novel

odors such as human and coyote (Canis latrans) urine did not

produce alarm responses from western grey kangaroos, thus

subjects learned to avoid an area that contained more threatening

stimuli [24], possibly because alternative natural resources were

available ad libitum in other park areas [23].

Area avoidance is consistent with that observed following

repeated anti-predator conditioning of Arctic charr (Salvelinus

alpinus) [24]. Space use was also modified with bank voles

(Clethrionomys glareolus) [26] and spiny mice (Acomys spp.) [41] in

the presence of predator odors. To our knowledge, however, area

avoidance (third order responses; Table 4) from predator cues has

rarely been experimentally demonstrated among medium or large

sized mammals exposed to predator cues in cafeteria trials.

Macropodids fed substantially less when a predatory cue was

present compared to the water control. As has previously been

observed [14], 68–90% of the food was taken from the trough

during presentation of the tap water control, while no food was

removed from the treatment troughs. Our indicators of fear, flight

and alarm-stomps, were observed during all treatment periods and

absent during control periods. This is not the first time that

animals emitted alarm signals following presentation of an odor

cue; meerkats (Suricata suricata) produce alarm calls following

exposure to predator odor [42]. We wonder whether the alarm

stomps acted synergistically in concert with the olfactory smell to

increase the area of effect for congeners and conspecifics. For

instance, when crayfish are exposed to a predator odour and alarm

signal simultaneously, effects are increased [43]. We are confident

that we have demonstrated that fear, rather than altered

palatability [36], was responsible for these results.

We detected no difference in the response to dingo urine and

feces; both were evocative. By constrast, dingo feces failed to

produce an effect on the feeding rate of red-necked wallabies

(Macropus rufogriseus) in an enclosure [17]. The structural integrity

of the chemical cue (either frozen or fresh; [44] may have been

Table 1. MANOVA for behavioral responses and GUD
(biomass remaining) following presentation of two scent cues
from the same predator.

Response
Sum of
Squares df F P

MANOVA Overall 6 22.533 0.001

Flight 28.686 2 483.551 ,0.001

Treatment Stomps 26.544 2 144.981 ,0.001

Encroach 27.110 2 13.966 0.006

Biomass (g) 8.482 2 55.245 ,0.001

Participation Flight 0.060 1 2.031 0.204

Stomps 0.084 1 0.918 0.375

Encroach 0.189 1 0.195 0.674

Biomass (g) 0.001 1 0.007 0.937

Participation * Treatment 12.81 2 0.038 0.963

doi:10.1371/journal.pone.0010403.t001

Figure 1. Participation over time. Participation by Western grey kangaroos (Macropus fuliginosus) Red kangaroos, (Macropus rufous) and Agile
wallabies (Macropus agilis) attracted to trial area over a period of 11 days.
doi:10.1371/journal.pone.0010403.g001
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responsible for the disparity between these different studies. We

also note that some, but not all, canine feces are treated with

exudates from the anal scent glands [4], thus a higher level of

infochemicals may have been present in either sample.

The close proximity by which captive macropodids initially

approached treatments was unexpected. Urine constituents

(including pheromones) may be perceived up to 1 km from the

source [7], and the olfactory capabilities of red kangaroos (M.

rufous) have been compared to ‘the sharks’ ability to detect a drop

of blood in water’ [45]. Yet, we observed animals investigating to

within 20 cm before reacting to the source cue. Animals may have

been drawn to the scent by volatiles and then examined non

volatiles for further information. We are also curious as to why

some animals demonstrate vigilance (ears erect, pentapedal gait)

following the investigation of the source cue, but still consume food

at untreated troughs a few meters away. These findings confound

the traditional (spatial) notion of ‘area effect’.

To maximize the value of fear based cues in rehabilitation and

training contexts, further research is required to better understand:

temporal and spatial interactions, cumulative effects of fear cues

and microhabitat features (indirect cues), mechanisms to habitu-

ation, and the chemical stability of the signal. Due to species-

specific responses to predator cues and the rarity of some natural

predators, it may be necessary to artificially recreate (synthesize)

active chemicals in a way that approximates the natural signal and

context of application. A comparison of overlapping constituents

in urine and feces (that have been treated with anal scent gland

exudates) may assist identification of these compounds. Ultimately,

artificial predator cues may be most useful in acute applications

and are not intended to replace the ecological value of apex

predators.

Materials and Methods

Trials were carried out at the Caversham Wildlife Park (CWP;

31u85939.50 S, 115u97945.10 E), a commercial wildlife park 18 km

N of Perth, Australia. CWP is located within a 3,600 ha

conservation and leisure reserve. Seventy–two macropodid

marsupials; 50 Red kangaroos (Macropus rufous) 20 western grey

kangaroos (Macropus fuliginisus) and 2 agile wallabies (Macropus agilis)

inhabited a 9 ha area. There were no apparent or detectable

patterns in distribution except when macropodids congregated

each morning to feed in the public lawn prior to public visitation.

Among the red kangaroos, there were 30 females and 20 males,

ages ranged from 4 months out of the pouch to 20 yrs. There were

10 males and 10 female adult western greys whose ages ranged

from 2 to 20 yrs. There was one male and one female agile

wallaby; both were ,2 yrs. old. The macropodids had free access

to water, herbage and shrubs and all were considered healthy.

Experiments were conducted in compliance with the National

Health and Medical Research Council (NHMRC) of Australia’s

code of practice for protecting animal welfare during research and

Figure 2. Indicators of fear. Effects of three behavioral measures (X 6 SEM) to quantify vigilance as an indicator of fear; P,0.001 for all responses
except as indicated. Y-axis is average frequency of instances for each indicator: flight, stomps, feeds from treatment trough, or LN mass removed (g).
doi:10.1371/journal.pone.0010403.g002

Table 2. Pairwise comparisons (Tukey’s HSD) for behavioral
responses and GUD (biomass remaining) following
presentation of two scent cues from the same predator.

Tukey’s HSD Contrast pairs P

Flight Urine control ,0.001

Urine feces 0.444

Feces control ,0.001

Alarm Stomps Urine control ,0.001

Urine feces 0.966

Feces control ,0.001

Encroachment Urine control 0.002

Urine feces 0.385

Feces control 0.014

Biomass (g) Urine control ,0.001

Urine feces 1.000

Feces control ,0.001

doi:10.1371/journal.pone.0010403.t002
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followed ASAB/ABS guidelines for use. The Animal Ethics permit

was granted by Curtin University of Technology; AEC R68-06.

Dingo urine and feces were collected from the Australian Dingo

Conservation Association (ADCA) in Michelago, NSW. Animals

spent evenings housed in a concrete lined shelter where pooled

evening voids drain into a central repository (1 L Schott bottles).

All urine and feces were collected fresh in 1 L Schott bottles and

stored at 2uC. Fecal samples are commonly frozen for predator

based cafeteria trials. However, we chose not to freeze samples due

to the possibility of denaturing urine ‘carrier’ proteins during the

freezing process [44]. To control for the loss of signal activity over

time [7;32], we staggered our order of urine and feces (fresh urine

and feces arrived weekly) to keep all treatments less than six-weeks

old from time of collection. We have previously been unable to

elicit fearful responses (flight, alarm stomps) using domestic dog

urine (unpublished data) thus, for this study, we only used samples

from pure bred dingoes [46]. Animals were fed a standard diet of

chicken carcasses prior to sample collection.

Feeding trials
Cafeteria trials (Figure 3) were carried out from 27 September–

6 October, 2007. The study area comprised a large grassy lawn on

the eastern side of the property where 50–60 animals aggregated

daily to interact and accept supplemental food from visitors. The

property managers attracted the kangaroos to this area daily by

offering the most palatable food one time/day (fresh breads at

6am). Two researchers were trained to follow the same feeding

protocol as staff so that variations in animal participation may be

attributed to treatments rather than undeclared variables. The

kangaroos have followed this schedule for three years prior to our

trials. Experiments were conducted before the park was opened for

visitors. We employed feeding trials at four feeding stations [14;

Figure 3] selected at arbitrary intervals. Animals had equal access

to all stations.

Each station consisted of a single trough filled with 1 kg whole

seeded-bread broken into 5 cm cubes. Four troughs were placed at

approximately 4 m intervals along a linear transect. Despite our

haphazard randomization of troughs to avoid handedness from

influencing where animals select food, animals did not participate

equally among the four troughs. Thus, we only included levels of

food remaining in the trough beside treatment or tap-water

control for comparative GUD measures (N = 10; 4 urine, 3 feces

and 3 controls). Treatments consisted of 40 ml of dingo urine,

40 ml of tap water, or 20 mg of feces. Volumes/mass were chosen

to represent a ‘typical’ void (Barry Oakman, Australian Dingo

Conservation Association, personal communication) and placed

next to one of the stations in a Petri dish.

Animals were observed by two observers, 10 m away (a distance

that did not interfere with the behavior of these habituated

subjects), and trials were terminated after 30 min. Remaining food

at each trough was collected, and weighed to the nearest g to

quantify the GUD. In addition to GUD, we recorded two

behavioral measures that might indicate fear: flight from the

feeding station, and foot stomps—an alarm signal that may

function to warn conspecifics about imminent danger [47]; [48] or

to confuse predators in pursuit [49]. We also used two measures to

quantify altered palatability. We previously observed that

kangaroos would turn away from an odor rather than leaning

over the treatment to feed. Thus, we noted instances of feeding

over the treatment trough, and refer to this behavior as

‘encroachment’.

We were unable to identify individual animals; therefore, we

counted the number of animals participating in the trial area at the

start of each trial as a crude measure of whether habituation was

occurring over time.

Statistics
We recorded four response variables to quantify approach and

avoidance responses ([50]; Table 4): the frequency of flight, the

number of foot stomps, number of encroaches directly over the

treatment and z scores for the amount of biomass remaining

(GUD). Kangaroo participation, defined as number of animals

present in the trial area at the commencement of each trial, was

recorded as a covariate for all measures. We fitted a MANOVA

Table 4. Summary of cafeteria experiment to evaluate fear and avoidance responses among kangaroos to different dingo waste
cues.

Inferred state Treatments Covariate

Variable Flight Vigilance/fear Dingo urine Participation

Alarm Stomp Vigilance/fear Dingo feces

Encroachment Attraction Tap water

Biomass removed Attraction

Implication Example of behavior

Response level First order Awareness Ignore food

Second order Discrimination Flight

Third order Avoidance Site abandonment

doi:10.1371/journal.pone.0010403.t004

Table 3. Effect size (d-scores) comparing the response of
kangaroos following presentation of two scent cues (urine,
feces) from the same predator.

Dependent variable Urine- control Feces- control Urine- feces

Flight 2.79 4.00 2.41

Stomps 2.18 1.33 20.75

Encroachments 2206 215.0 21.11

GUD 6.64 5.93 0.13

doi:10.1371/journal.pone.0010403.t003
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model in SPSS version 11.5 (SPSS Inc., Chicago, IL, U.S.A.) to all

response variables. Tukey’s HSD post hoc analysis was applied to

within- subject treatments (e.g., urine, feces, control). A linear

regression was fitted to assess whether elapsed days explained

variation in participation rate. We calculated d-scores [51] to

identify effect size of comparisons between treatments. All tests

were two-tailed, we set our a= 0.05. Means are given 6SEM.
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